Skip to main content
Log in

Structure Simulation and Calculation of the Energy of Interaction of the Fragments of Cellulose Macromolecules

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemistry methods were used to calculate the energy parameters of an elementary unit and a cellulose macromolecule dimer (cellobiose), and structure simulation was performed and the energy of interaction between the fragments of native cellulose macromolecules was calculated. It was established that the trans conformation of cellobiose is more stable than the cis conformation by 6.7 kcal/mol. Differences in the calculated and real (according to literature data) IR spectra of cellulose were related to the presence of intramolecular and intermolecular hydrogen bonds in the native structure. It was shown that the interaction of individual fragments of cellulose macromolecules from eight monomer units is due to the manifestation of intramolecular hydrogen bonds. It was found that the energies of intermolecular interactions ∆Е essentially depend on the terminal groups X in the cellulose macromolecule fragments, and they are –26, 49, and ‒32 kcal/mol for X = –H, –COOH, and –COH, respectively. The structure of the interacting fragments of cellulose macromolecules can be regulated by replacing the hydrogen atoms of hydroxyl or terminal groups of the macromolecules with functional groups that do not form intramolecular hydrogen bonds and impede self-organization into fibrillar structures. It was shown that compounds with a high electron affinity or a negative energy of the lower vacant molecular orbital are the best reagents for complexation reactions with cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bledzki, A.K. and Gassan, J., Progr. Polym. Sci., 1999, vol. 24, no. 2, p. 221.

    Article  CAS  Google Scholar 

  2. Mohanty, A.K., Misra, M., and Hinrichsen, G., Macromolec. Mater. Eng., 2000, vol. 276, no. 1, p. 1.

    Google Scholar 

  3. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, p. 3941.

    Article  CAS  PubMed  Google Scholar 

  4. Martin-Alfonso, J.E., Nunez, N., Valencia, C., Franco, J.M., and Diaz, M.J., J. Industr. Eng. Chem., 2011, no. 17, p. 818.

  5. Sanchez, R., Franco, J.M., Delgado, M.A., Valencia, C., and Gallegos, C., Carbohydr. Polym., 2011, vol. 83, p. 151.

    Article  CAS  Google Scholar 

  6. Nevell, T.P. and Zeronian, S.H., Cellulose Chemistry and Its Applications, New York: Wiley, 1985.

    Google Scholar 

  7. Battista, O.A., Industr. Eng. Chem., 1950, vol. 42, no. 3, p. 502.

    Article  CAS  Google Scholar 

  8. Haensel, T., Reinmoller, M., Lorenz, P., Beenken, W.J.D., Krischok, S., and Syed Imad-Uddin, A., Cellulose, 2012, vol. 19, no. 3, p. 1005.

    Article  CAS  Google Scholar 

  9. Akman, F., Cellulose Chem. Technol., 2017, vol. 51, nos. 3–4, p. 253.

    CAS  Google Scholar 

  10. Kocheva, L.S., Extended Abstract of Doctoral (Chem.) Dissertation, Arkhangel’sk: Arkh. State Techn. Univ., 2008.

  11. Granovsky, A.A., GAMESS v.7.1. http://classic.chem.msu.su/gran/games/index.html

  12. Ivanov-Omskii, V.I., Gerasyuta, S.M., and Ivanova, E.I., Izv. St.-Peterb. Lesotekhn. Akad., 2017, no. 218, p. 199.

  13. Kačuráková, M. and Wilson, R.H., Carbohydrate Polym., 2001, vol. 44, no. 4, p. 291. https://doi.org/10.1016/S0144-8617(00)00245-9

    Article  Google Scholar 

  14. Ali, M., et al., Polymer., 2001, vol. 42, no. 7, p. 2893.

    Article  CAS  Google Scholar 

  15. Nugmanov, O.K., Grigor’eva, N.P., and Lebedev, N.A., Khim. Rastit. Syr’ya, 2013, no. 1, p. 40.

  16. Langkilde, F.W. and Svantesson, A., J. Pharm. Biomed. Anal., 1995, vol. 13, nos. 4–5, p. 409.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, J.H., et al., Anal. Chem., 2002, vol. 74, no. 14, p. 3555.

    Article  CAS  PubMed  Google Scholar 

  18. Peng, B.L., Dhar, N., Liu, H.L., and Tam, K.C., Can. J. Chem. Eng., 2011, vol. 89, no. 5, p. 1191.

    Article  CAS  Google Scholar 

  19. Eichhorn, S.J., et al., J. Mater. Sci., 2010, vol. 45, no. 1, p. 1.

    Article  CAS  Google Scholar 

  20. Dufresne A., Curr. Opin. Colloid In. Sci., 2017, vol. 29, p. 1.

    Article  CAS  Google Scholar 

  21. Dufresne, A., Current Opinion in Colloid & Interface Sci, 2017, vol. 29, p. 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Gyul’maliev, R. Z. Safieva, V. A. Vinokurov or O. P. Parenago.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyul’maliev, A.M., Safieva, R.Z., Vinokurov, V.A. et al. Structure Simulation and Calculation of the Energy of Interaction of the Fragments of Cellulose Macromolecules. Solid Fuel Chem. 53, 190–196 (2019). https://doi.org/10.3103/S0361521919030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521919030030

Keywords:

Navigation