Skip to main content
Log in

Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the recent times sodium ion batteries (SIBs) have come to the forefront as an economic and resourceful alternative to lithium-ion batteries (LIBs) for powering portable electronic devices and large-scale grid storage. As the specific capacity, energy density and long cycle life of batteries depend upon the performance of anode materials; their quest is the ultimate need of the hour. Among the anode materials, the semimetallic pnictogens (As, Sb, Bi) and their compounds offer high gravimetric/volumetric capacities, but suffer from undesired volume expansion and inferior electrical conductivity. Herein, this paper reviews the recent progress in semimetallic pnictogens as alloying anodes and their compounds mainly as conversion-alloying anodes. Various debatable sodiation mechanisms (intercalation or alloying) have been presented with emphasis on in situ/ex situ advanced characterization methods well supported by theoretical modeling and calculations. The reviewed electrochemical reaction mechanisms, coherent structural designs and engineering provide a vital understanding of the electrochemical processes of Na+ ion storage. The existing challenges and perspectives are also presented, and several research directions are proposed from the aspects of special morphological design, employing conductive substrates, electrolyte additives and reducing particle size for technical and commercial success of SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  CAS  Google Scholar 

  2. Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

    Article  CAS  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  5. Duan, J.; Tang, X.; Dai, H. F.; Yang, Y.; Wu, W. Y.; Wei, X. Z.; Huang, Y. H. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem. Energy Rev. 2020, 3, 1–42.

    Article  CAS  Google Scholar 

  6. Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

    Article  CAS  Google Scholar 

  7. Yang, D.; Tan, H. T.; Rui, X. H.; Yu, Y. Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 395–427.

    Article  CAS  Google Scholar 

  8. Lokhande, P. E.; Chavan, U. S.; Pandey, A. Materials and fabrication methods for electrochemical supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186.

    Article  CAS  Google Scholar 

  9. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    Article  CAS  Google Scholar 

  10. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  11. Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

    Article  CAS  Google Scholar 

  12. Song, S. F.; Kotobuki, M.; Zheng, F.; Xu, C. H.; Savilov, S. V.; Hu, N.; Lu, L.; Wang, Y.; Li, W. D. Z. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J. Mater. Chem. A 2017, 5, 6424–6431.

    Article  CAS  Google Scholar 

  13. Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 2018, 8, 1703496.

    Article  CAS  Google Scholar 

  14. Zhao, Y. X.; Ren, X. C.; Xing, Z. J.; Zhu, D. M.; Tian, W. F.; Guan, C. R.; Yang, Y.; Qin, W. M.; Wang, J.; Zhang, L. L. et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small 2020, 16, 1905789.

    Article  CAS  Google Scholar 

  15. Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

    Article  CAS  Google Scholar 

  16. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

    Article  CAS  Google Scholar 

  17. Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

    Article  CAS  Google Scholar 

  18. Kim, J.; Park, H.; Lee, B.; Seong, W. M.; Lim, H. D.; Bae, Y.; Kim, H.; Kim, W. K.; Ryu, K. H.; Kang, K. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries. Nat. Commun. 2016, 7, 10670.

    Article  CAS  Google Scholar 

  19. Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.

    Article  CAS  Google Scholar 

  20. Wu, Y. P.; Gong, M.; Lin, M. C.; Yuan, C. Z.; Angell, M.; Huang, L.; Wang, D. Y.; Zhang, X. D.; Yang, J.; Hwang, B. J. et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 2016, 28, 9218–9222.

    Article  CAS  Google Scholar 

  21. Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.

    Article  CAS  Google Scholar 

  22. Zhong, Y. J.; Xu, X. M.; Veder, J. P.; Shao, Z. P. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries. iScience 2020, 23, 100943.

    Article  CAS  Google Scholar 

  23. Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

    Article  CAS  Google Scholar 

  24. Pei, P. C.; Wang, K. L.; Ma, Z. Technologies for extending zinc-air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324.

    Article  CAS  Google Scholar 

  25. Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78–81.

    Article  CAS  Google Scholar 

  26. Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

    Article  CAS  Google Scholar 

  27. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  28. Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972.

    Article  CAS  Google Scholar 

  29. Ding, Y. L.; Cano, Z. P.; Yu, A. P.; Lu, J.; Chen, Z. W. Automotive li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28.

    Article  CAS  Google Scholar 

  30. Grosjean, C.; Miranda, P. H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sust. Energy Rev. 2012, 16, 1735–1744.

    Article  Google Scholar 

  31. Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. —Eur. J. 2014, 20, 11980–11992.

    Article  CAS  Google Scholar 

  32. Roberts, S.; Kendrick, E. The re-emergence of sodium ion batteries: Testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 2018, 11, 23–33.

    Article  CAS  Google Scholar 

  33. Zhang, H.; Hasa, I.; Passerini, S. Sodium-ion batteries: Beyond insertion for Na-ion batteries: Nanostructured alloying and conversion anode materials (Adv. Energy Mater. 17/2018). Adv. Energy Mater. 2018, 8, 1870082.

    Article  CAS  Google Scholar 

  34. Muñoz-Márquez, M. Á.; Saurel, D.; Gómez-Cámer, J. L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 2017, 7, 1700463.

    Article  CAS  Google Scholar 

  35. Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

    Article  CAS  Google Scholar 

  36. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.

    Article  CAS  Google Scholar 

  37. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  38. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055.

    Article  CAS  Google Scholar 

  39. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0< x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

    Article  CAS  Google Scholar 

  40. Nagelberg, A. S.; Worrell, W. L. A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 1979, 29, 345–354.

    Article  CAS  Google Scholar 

  41. Parant, J. P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. Sur quelques nouvelles phases de formule NaxMnO2 (x < 1). J. Solid State Chem. 1971, 3, 1–11.

    Article  CAS  Google Scholar 

  42. Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.

    Article  CAS  Google Scholar 

  43. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  CAS  Google Scholar 

  44. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  CAS  Google Scholar 

  45. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  46. Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

    Article  CAS  Google Scholar 

  47. Chu, S. Y.; Zhong, Y. J.; Liao, K. M.; Shao, Z. P. Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Curr. Opin. Green Sustain. Chem. 2019, 17, 29–34.

    Article  Google Scholar 

  48. Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Peña, J. S.; Aranda, M. A. G. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 2002, 12, 1142–1147.

    Article  CAS  Google Scholar 

  49. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

    Article  CAS  Google Scholar 

  50. Yuan, Z.; Wu, X. H.; Wu, W. W.; Wang, K. T. Synthesis and electrochemical performance of Na0.7Fe0.7Mn0.3O2 as a cathode material for Na-ion battery. Ceram. Int. 2014, 40, 13679–13682.

    Article  CAS  Google Scholar 

  51. Zhu, H. L.; Lee, K. T.; Hitz, G. T.; Han, X. G.; Li, Y. Y.; Wan, J. Y.; Lacey, S.; von Wald Cresce, A.; Xu, K.; Wachsman, E. et al. Freestanding Na2/3Fe1/2Mn1/2O2@graphene film for a sodium-ion battery cathode. ACS Appl. Mater. Interfaces 2014, 6, 4242–4247.

    Article  CAS  Google Scholar 

  52. Kalluri, S.; Seng, K. H.; Pang, W. K.; Guo, Z. P.; Chen, Z. X.; Liu, H. K.; Dou, S. X. Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 8953–8958.

    Article  CAS  Google Scholar 

  53. Yoshida, H.; Yabuuchi, N.; Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 2013, 34, 60–63.

    Article  CAS  Google Scholar 

  54. Kubota, K.; Asari, T.; Yoshida, H.; Yaabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6047–6059.

    Article  CAS  Google Scholar 

  55. Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.

    Article  CAS  Google Scholar 

  56. Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.

    Article  CAS  Google Scholar 

  57. Vassilaras, P.; Toumar, A. J.; Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 2014, 38, 79–81.

    Article  CAS  Google Scholar 

  58. Le Poul, N.; Baudrin, E.; Morcrette, M.; Gwizdala, S.; Masquelier, C.; Tarascon, J. M. Development of potentiometric ion sensors based on insertion materials as sensitive element. Solid State Ionics 2003, 159, 149–158.

    Article  CAS  Google Scholar 

  59. Wongittharom, N.; Wang, C. H.; Wang Y. C.; Yang C. H.; Chang J. K. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl. Mater. Interfaces 2014, 6, 17564–17570.

    Article  CAS  Google Scholar 

  60. Moring, J.; Kostiner, E. The crystal structure of NaMnPO4. J. Solid State Chem. 1986, 61, 379–383.

    Article  CAS  Google Scholar 

  61. Koleva, V.; Boyadzhieva, T.; Zhecheva, E.; Nihtianova, D.; Simova, S.; Tyuliev, G.; Stoyanova, R. Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure. CrystEngComm 2013, 15, 9080–9089.

    Article  CAS  Google Scholar 

  62. Zhou, W. D.; Xue, L. G.; Lu, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough, J. B. NaxMV(PO4)3 (M= Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836–7841.

    Article  CAS  Google Scholar 

  63. Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

    Article  CAS  Google Scholar 

  64. Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

    Article  CAS  Google Scholar 

  65. Uebou, Y.; Okada, S.; Yamaki, J. I. Electrochemical insertion of lithium and sodium into (MoO2)2P2O7. J. Power Sources 2003, 115, 119–124.

    Article  CAS  Google Scholar 

  66. Adam, L.; Guesdon, A.; Raveau, B. A new lithium manganese phosphate with an original tunnel structure in the A2MP2O7 family. J. Solid State Chem. 2008, 181, 3110–3115.

    Article  CAS  Google Scholar 

  67. Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 2012, 6, 1688–1694.

    Article  CAS  Google Scholar 

  68. Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2011, 159, A98–A103.

    Article  CAS  Google Scholar 

  69. Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550.

    Article  CAS  Google Scholar 

  70. Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem. 2014, 126, 6002–6006.

    Article  Google Scholar 

  71. Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode properties of Na2C6O6 for sodium-ion batteries. Electrochim. Acta 2013, 110, 240–246.

    Article  CAS  Google Scholar 

  72. Zhao, R. R.; Zhu, L. M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. Electrochem. Commun. 2012, 21, 36–38.

    Article  CAS  Google Scholar 

  73. Stevens, D. A.; Dahn, J. R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 2000, 147, 4428–4431.

    Article  CAS  Google Scholar 

  74. Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

    Article  CAS  Google Scholar 

  75. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

    Article  CAS  Google Scholar 

  76. Luo, X. F.; Yang, C. H.; Peng, Y. Y.; Pu, N. W.; Ger, M. D.; Hsieh, C. T.; Chang, J. K. Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 10320–10326.

    Article  CAS  Google Scholar 

  77. Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208.

    Article  CAS  Google Scholar 

  78. Legrain, F.; Malyi, O.; Manzhos, S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: A comparative first-principles study. J. Power Sources 2015, 278, 197–202.

    Article  CAS  Google Scholar 

  79. Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029.

    Article  CAS  Google Scholar 

  80. Ni, Q.; Dong, R. Q.; Bai, Y.; Wang, Z. H.; Ren, H. X.; Sean, S.; Wu, F.; Xu, H. J.; Wu, C. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Stor. Mater. 2020, 25, 903–911.

    Google Scholar 

  81. DiVincenzo, D. P.; Mele, E. J. Cohesion and structure in stage-1 graphite intercalation compounds. Phys. Rev. B 1985, 32, 2538–2553.

    Article  CAS  Google Scholar 

  82. Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Carbon black: A promising electrode material for sodium-ion batteries. Electrochem. Commun. 2001, 3, 639–642.

    Article  Google Scholar 

  83. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  CAS  Google Scholar 

  84. Hasa, I.; Dou, X. W.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 2016, 310, 26–31.

    Article  CAS  Google Scholar 

  85. Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, M. S.; Yoon, W. S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963–2969.

    Article  CAS  Google Scholar 

  86. Xiao, B. W.; Rojo, T.; Li, X. L. Hard carbon as sodium-ion battery anodes: Progress and challenges. ChemSusChem 2019, 12, 133–144.

    Article  CAS  Google Scholar 

  87. Wang, Z. H.; Wang, X. R.; Bai, Y.; Yang, H. Y.; Li, Y.; Guo, S. N.; Chen, G. H.; Li, Y.; Xu, H. J.; Wu, C. Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method. ACS Appl. Mater. Interfaces 2020, 12, 2481–2489.

    Article  CAS  Google Scholar 

  88. Wu, F.; Zhang, M. H.; Bai, Y.; Wang, X. R.; Dong, R. Q.; Wu, C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12554–12561.

    Article  CAS  Google Scholar 

  89. Zheng, P.; Liu, T.; Yuan, X. Y.; Zhang, L. F.; Liu, Y.; Huang, J. F.; Guo, S. W. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode. Sci. Rep. 2016, 6, 26246.

    Article  CAS  Google Scholar 

  90. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    Article  CAS  Google Scholar 

  91. Li, Y.; Yuan, Y. F.; Bai, Y.; Liu, Y. C.; Wang, Z. H.; Li, L. M.; Wu, F.; Amine, K.; Wu, C.; Lu, J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv. Energy Mater. 2018, 8, 1702781.

    Article  CAS  Google Scholar 

  92. Wu, F.; Dong, R. Q.; Bai, Y.; Li, Y.; Chen, G. H.; Wang, Z. H.; Wu, C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 21335–21342.

    Article  CAS  Google Scholar 

  93. Zhou, W. D.; Li, Y. T.; Xin, S.; Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 2017, 3, 52–57.

    Article  CAS  Google Scholar 

  94. Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbon-armored Co9S8 nanoparticles as all-ph efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.

    Article  CAS  Google Scholar 

  95. Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. NiP3: A promising negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2014, 2, 2050–2059.

    Article  CAS  Google Scholar 

  96. Li, Y.; Qian, J.; Zhang, M. H.; Wang, S.; Wang, Z. H.; Li, M. S.; Bai, Y.; An, Q. Y.; Xu, H. J.; Wu, F. et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 2020, 32, 2005802.

    Article  CAS  Google Scholar 

  97. Li, Y.; Xu, Y. H.; Wang, Z. H.; Bai, Y.; Zhang, K.; Dong, R. Q.; Gao, Y. N.; Ni, Q.; Wu, F.; Liu, Y. J. et al. Stable carbon-selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode. Adv. Energy Mater. 2018, 8, 1800927.

    Article  CAS  Google Scholar 

  98. Jing, W. T.; Yang, C. C.; Jiang, Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 2913–2933.

    Article  CAS  Google Scholar 

  99. Liang, S. Z.; Cheng, Y. J.; Zhu, J.; Xia, Y. G.; Müller-Buschbaum, P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium- ion battery alloying anodes. Small Methods 2020, 4, 2000218.

    Article  CAS  Google Scholar 

  100. Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

    Article  CAS  Google Scholar 

  101. He, X.; Bi, L. N.; Li, Y.; Xu, C. G.; Lin, D. M. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim. Acta 2020, 332, 135453.

    Article  CAS  Google Scholar 

  102. Khan, M.; Ahmad, N.; Lu, K. W.; Sun, Z. H.; Wei, C. H.; Zheng, X. J.; Yang, R. Z. Nitrogen-doped carbon derived from onion waste as anode material for high performance sodium-ion battery. Solid State Ionics 2020, 346, 115223.

    Article  CAS  Google Scholar 

  103. Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865–1869.

    Article  CAS  Google Scholar 

  104. Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

    Article  CAS  Google Scholar 

  105. Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

    Article  CAS  Google Scholar 

  106. Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.

    Article  CAS  Google Scholar 

  107. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    Article  CAS  Google Scholar 

  108. Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

    Article  CAS  Google Scholar 

  109. Zhao, M. M.; Zhao, Q. X.; Qiu, J. Q.; Xue, H. G.; Pang, H. Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 2016, 6, 95449–95468.

    Article  CAS  Google Scholar 

  110. Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

    Article  CAS  Google Scholar 

  111. Ying, H. J.; Han, W. Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 2017, 4, 1700298.

    Article  CAS  Google Scholar 

  112. Huang, B.; Pan, Z. F.; Su, X. Y.; An, L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J. Power Sources 2018, 395, 41–59.

    Article  CAS  Google Scholar 

  113. Lim, Y. R.; Shojaei, F.; Park, K.; Jung, C. S.; Park, J.; Cho, W. I.; Kang, H. S. Arsenic for high-capacity lithium- and sodium-ion batteries. Nanoscale 2018, 10, 7047–7057.

    Article  CAS  Google Scholar 

  114. Liu, X. H.; Zhang, S. L.; Guo, S. Y.; Cai, B.; Yang, S. A.; Shan, F.; Pumera, M.; Zeng, H. B. Advances of 2D bismuth in energy sciences. Chem. Soc. Rev. 2020, 49, 263–285.

    Article  CAS  Google Scholar 

  115. Ji, B. F.; Zhang, F.; Song, X. H.; Tang, Y. B. A novel potassium-ion-based dual-ion battery. Adv. Mater. 2017, 29, 1700519.

    Article  CAS  Google Scholar 

  116. Jia, H.; Dirican, M.; Aksu, C.; Sun, N.; Chen, C.; Zhu, J. D.; Zhu, P.; Yan, C. Y.; Li, Y.; Ge, Y. Q. et al. Carbon-enhanced centrifugallyspun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. J. Colloid Interface Sci. 2019, 536, 655–663.

    Article  CAS  Google Scholar 

  117. Pan, J.; Yu, K.; Mao, H. Z.; Li, L. L.; Zhang, Y. C.; Li, Y. L.; Ferreira, P. J.; Yang, J. Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem. Eng. J. 2020, 380, 122624.

    Article  CAS  Google Scholar 

  118. Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336.

    Article  CAS  Google Scholar 

  119. Beladi-Mousavi, S. M.; Pumera, M. 2D-pnictogens: Alloy-based anode battery materials with ultrahigh cycling stability. Chem. Soc. Rev. 2018, 47, 6964–6989.

    Article  CAS  Google Scholar 

  120. Mortazavi, M.; Ye, Q. J.; Birbilis, N.; Medhekar, N. V. High capacity Group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights. J. Power Sources 2015, 285, 29–36.

    Article  CAS  Google Scholar 

  121. Songster, J.; Pelton, A. D. The As-Na (arsenic-sodium) system. J. Phase Equilib. 1993, 14, 240–242.

    Article  Google Scholar 

  122. Songster, J.; Pelton, A. D. The Na-Sb (sodium-antimony) system. J. Phase Equilib. 1993, 14, 250–255.

    Article  Google Scholar 

  123. Sangster, J.; Pelton, A. D. The Bi-Na (bismuth-sodium) system. J. Phase Equilib. 1991, 12, 451–456.

    Article  CAS  Google Scholar 

  124. Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity li-ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

    Article  CAS  Google Scholar 

  125. Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for highperformance li-ion battery anodes. J. Am. Chem. Soc. 2013, 135, 4199–4202.

    Article  CAS  Google Scholar 

  126. Wang, X. Y.; Fan, L.; Gong, D. C.; Zhu, J.; Zhang, Q. F.; Lu, B. G. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 2016, 26, 1104–1111.

    Article  CAS  Google Scholar 

  127. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  CAS  Google Scholar 

  128. Xu, H.; Qin, L. G.; Chen, J.; Wang, Z. K.; Zhang, W.; Zhang, P. G.; Tian, W. B.; Zhang, Y.; Guo, X. L.; Sun, Z. M. Toward advanced sodium-ion batteries: A wheel-inspired yolk-shell design for large-volume-change anode materials. J. Mater. Chem. A 2018, 6, 13153–13163.

    Article  CAS  Google Scholar 

  129. Li, X. Y.; Ni, J. F.; Savilov, S. V.; Li, L. Materials based on antimony and bismuth for sodium storage. Chem.—Eur. J. 2018, 24, 13719–13727.

    Article  CAS  Google Scholar 

  130. Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.

    Article  CAS  Google Scholar 

  131. Besenhard, J. O.; Fritz, H. P. Reversibles elektrochemisches legieren von metallen der v. Hauptgruppe in organischen Li+—Lösungen. Electrochim. Acta 1975, 20, 513–517.

    Article  CAS  Google Scholar 

  132. Park, C. M. Electrochemical lithium quasi-intercalation with arsenic. J. Solid State Electrochem. 2016, 20, 517–523.

    Article  CAS  Google Scholar 

  133. Chen, J. B.; Zhao, H. L.; Chen, N.; Wang, X. C.; Wang, J.; Zhang, R.; Jin, C. Q. A novel FeAs anode material for lithium ion battery. J. Power Sources 2012, 200, 98–101.

    CAS  Google Scholar 

  134. Benzidi, H.; Lakhal, M.; Garara, M.; Abdellaoui, M.; Benyoussef, A.; El kenz, A.; Mounkachi, O. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: Density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 19951–19962.

    Article  CAS  Google Scholar 

  135. Hays, K. A.; Banek, N. A.; Wagner, M. J. High performance arsenic: Multiwall carbon nanotube composite anodes for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1635–A1643.

    Article  CAS  Google Scholar 

  136. Subramanyan, K.; Aravindan, V. Stibium: A promising electrode toward building high-performance Na-ion full-cells. Chem 2019, 5, 3096–3126.

    Article  CAS  Google Scholar 

  137. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  CAS  Google Scholar 

  138. Kong, B.; Zu, L. H.; Peng, C. X.; Zhang, Y.; Zhang, W.; Tang, J.; Selomulya, C.; Zhang, L. D.; Chen, H. X.; Wang, Y. et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J. Am. Chem. Soc. 2016, 138, 16533–16541.

    Article  CAS  Google Scholar 

  139. Caputo, R. An insight into sodiation of antimony from first-principles crystal structure prediction. J. Electron. Mater. 2016, 45, 999–1010.

    Article  CAS  Google Scholar 

  140. Tian, W. F.; Zhang, S. L.; Huo, C. X.; Zhu, D. M.; Li, Q. W.; Wang, L.; Ren, X. C.; Xie, L.; Guo, S. Y.; Chu, P. K. et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 2018, 12, 1887–1893.

    Article  CAS  Google Scholar 

  141. Upadhyay, S.; Srivastava, P. Modelling of antimonene as an anode material in sodium-ion battery: A first-principles study. Mater. Chem. Phys. 2020, 241, 122381.

    Article  CAS  Google Scholar 

  142. Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

    Article  CAS  Google Scholar 

  143. Su, J. C.; Duan, T. F.; Li, W. K.; Xiao, B.; Zhou, G.; Pei, Y.; Wang, X. Y. A first-principles study of 2D antimonene electrodes for Li ion storage. Appl. Surf. Sci. 2018, 462, 270–275.

    Article  CAS  Google Scholar 

  144. Sengupta, A.; Frauenheim, T. Lithium and sodium adsorption properties of monolayer antimonene. Mater. Today Energy 2017, 5, 347–354.

    Article  Google Scholar 

  145. Wang, X. X.; Tang, C. M.; Zhou, X. F.; Zhu, W. H.; Cheng, C. Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries. Appl. Surf. Sci. 2019, 491, 451–459.

    Article  CAS  Google Scholar 

  146. Su, J. C.; Li, W. K.; Duan, T. F.; Xiao, B.; Wang, X. Y.; Pei, Y.; Zeng, X. C. Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries. Carbon 2019, 153, 767–775.

    Article  CAS  Google Scholar 

  147. He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.

    Article  CAS  Google Scholar 

  148. Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquidphase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447.

    Article  CAS  Google Scholar 

  149. Hou, H. S.; Jing, M. J.; Zhang, Y.; Chen, J.; Huang, Z. D.; Ji, X. B. Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2015, 3, 17549–17552.

    Article  CAS  Google Scholar 

  150. Song, J. H.; Yan, P. F.; Luo, L. L.; Qi, X. G.; Rong, X. H.; Zheng, J. M.; Xiao, B. W.; Feng, S.; Wang, C. M.; Hu, Y. S. et al. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy 2017, 40, 504–511.

    Article  CAS  Google Scholar 

  151. Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.; Cheng, S. J.; Jiang, K. Facile tailoring of multidimensional nano-structured Sb for sodium storage applications. ACS Nano 2019, 13, 9533–9540.

    Article  CAS  Google Scholar 

  152. Liu, Y.; Zhou, B.; Liu, S.; Ma, Q. S.; Zhang, W. H. Galvanic replacement synthesis of highly uniform Sb nanotubes: Reaction mechanism and enhanced sodium storage performance. ACS Nano 2019, 13, 5885–5892.

    Article  CAS  Google Scholar 

  153. Bian, X.; Dong, Y.; Zhao, D. D.; Ma, X. T.; Qiu, M. D.; Xu, J. Z.; Jiao, L. F.; Cheng, F. Y.; Zhang, N. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for rechargeable lithium-/sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 3554–3562.

    Article  CAS  Google Scholar 

  154. Li, X. Y.; Sun, M. L.; Ni, J. F.; Li, L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv. Energy Mater. 2019, 9, 1901096.

    Article  CAS  Google Scholar 

  155. Xu, A. D.; Xia, Q.; Zhang, S. K.; Duan, H. H.; Yan, Y. R.; Wu, S. P. Ultrahigh rate performance of hollow antimony nanoparticles impregnated in open carbon boxes for sodium-ion battery under elevated temperature. Small 2019, 15, 1903521.

    Article  CAS  Google Scholar 

  156. Li, K. F.; Su, D. W.; Liu, H.; Wang, G. X. Antimony-carbon-graphene fibrous composite as freestanding anode materials for sodium-ion batteries. Electrochim. Acta 2015, 177, 304–309.

    Article  CAS  Google Scholar 

  157. Liao, S.; Yang, G. Z.; Wang, C. X. Ultrafine Sb nanoparticles embedded in an amorphous carbon matrix for high-performance sodium ion anode materials. RSC Adv. 2016, 6, 114790–114799.

    Article  CAS  Google Scholar 

  158. Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.

    Article  CAS  Google Scholar 

  159. Zhou, X. S.; Dai, Z. H.; Bao, J. C.; Guo, Y. G. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. J. Mater. Chem. A 2013, 1, 13727–13731.

    Article  CAS  Google Scholar 

  160. Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Stor. Mater. 2020, 25, 572–584.

    Google Scholar 

  161. Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.

    Article  CAS  Google Scholar 

  162. Nita, C.; Fullenwarth, J.; Monconduit, L.; Vidal, L.; Ghimbeu, C. M. Influence of carbon characteristics on Sb/Carbon nanocomposites formation and performances in Na-ion batteries. Mater. Today Energy 2019, 13, 221–232.

    Article  Google Scholar 

  163. Meng, W. J.; Guo, M. Q.; Liu, X.; Chen, J. J.; Bai, Z. C.; Wang, Z. H. Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium-ion batteries. J. Alloys Compd. 2019, 795, 141–150.

    Article  CAS  Google Scholar 

  164. Park, J. S.; Kang, Y. C. Uniquely structured Sb nanoparticle-embedded carbon/reduced graphene oxide composite shell with empty voids for high performance sodium-ion storage. Chem. Eng. J. 2019, 373, 227–237.

    Article  CAS  Google Scholar 

  165. Xu, X.; Si, L.; Zhou, X. S.; Tu, F. Z.; Zhu, X. S.; Bao, J. C. Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion battery anode. J. Power Sources 2017, 349, 37–44.

    Article  CAS  Google Scholar 

  166. Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.

    Article  CAS  Google Scholar 

  167. Chen, B. C.; Qin, H. Y.; Li, K.; Zhang, B.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; He, C. N. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy 2019, 66, 104133.

    Article  CAS  Google Scholar 

  168. Li, X. Y.; Qu, J. K.; Xie, H. W.; Song, Q. S.; Fu, G. F.; Yin, H. Y. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode. Electrochim. Acta 2020, 332, 135501.

    Article  CAS  Google Scholar 

  169. Li, P. H.; Yu, L. T.; Ji, S. M.; Xu, X. J.; Liu, Z. B.; Liu, J. W.; Liu, J. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem. Eng. J. 2019, 374, 502–510.

    Article  CAS  Google Scholar 

  170. Dong, S. H.; Li, C. X.; Li, Z. Q.; Ge, X. L.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Synergistic effect of porous phosphosulfide and antimony nanospheres anchored on 3D carbon foam for enhanced long-life sodium storage performance. Energy Stor. Mater. 2019, 20, 446–454.

    Google Scholar 

  171. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  CAS  Google Scholar 

  172. Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.

    Article  CAS  Google Scholar 

  173. Wang, P. Z.; Qiao, B.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 2015, 119, 21336–21344.

    Article  CAS  Google Scholar 

  174. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.

    Article  CAS  Google Scholar 

  175. Cui, C. Y.; Xu, J. T.; Zhang, Y. Q.; Wei, Z. X.; Mao, M. L.; Lian, X.; Wang, S. Y.; Yang, C. Y.; Fan, X. L.; Ma, J. M. et al. Antimony nanorod encapsulated in cross-linked carbon for high-performance sodium ion battery anodes. Nano Lett. 2019, 19, 538–544.

    Article  CAS  Google Scholar 

  176. Ning, X. M.; Zhou, X. S.; Luo, J.; Ma, L.; Zhan, L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology 2020, 31, 095404.

    Article  CAS  Google Scholar 

  177. Wu, P.; Zhang, A. P.; Peng, L. L.; Zhao, F.; Tang, Y. W.; Zhou, Y. M.; Yu, G. H. Cyanogel-enabled homogeneous Sb-Ni-C ternary framework electrodes for enhanced sodium storage. ACS Nano 2018, 12, 759–767.

    Article  CAS  Google Scholar 

  178. Gao, H.; Niu, J. Z.; Zhang, C.; Peng, Z. Q.; Zhang, Z. H. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577.

    Article  CAS  Google Scholar 

  179. Guo, S. T.; Li, H.; Lu, Y.; Liu, Z. F.; Hu, X. L. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Stor. Mater. 2020, 27, 270–278.

    Google Scholar 

  180. Jackson, E. D.; Green, S.; Prieto, A. L. Electrochemical performance of electrodeposited Zn4Sb3 films for sodium-ion secondary battery anodes. ACS Appl. Mater. Interfaces 2015, 7, 7447–7450.

    Article  CAS  Google Scholar 

  181. Hong, K. S.; Nam, D. H.; Lim, S. J.; Sohn, D.; Kim, T. H.; Kwon, H. Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17264–17271.

    Article  CAS  Google Scholar 

  182. Tan, Y. M.; Chen, L. J.; Chen, H.; Hou, Q. L.; Chen, X. H. Synthesis of a symmetric bundle-shaped Sb2O3 and its application for anode materials in lithium ion batteries. Mater. Lett. 2018, 212, 103–106.

    Article  CAS  Google Scholar 

  183. Li, K. F.; Liu, H.; Wang, G. X. Sb2O3 nanowires as anode material for sodium-ion battery. Arab. J. Sci. Eng. 2014, 39, 6589–6593.

    Article  CAS  Google Scholar 

  184. Hu, M. J.; Jiang, Y. Z.; Sun, W. P.; Wang, H. T.; Jin, C. H.; Yan, M. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449–19455.

    Article  CAS  Google Scholar 

  185. Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. Highperformance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 2015, 11, 2885–2892.

    Article  CAS  Google Scholar 

  186. Pan, J.; Wang, N.; Zhou, Y. L.; Yang, X. F.; Zhou, W. Y.; Qian, Y. T.; Yang, J. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017, 10, 1794–1803.

    Article  CAS  Google Scholar 

  187. Guo, X.; Xie, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

    Article  CAS  Google Scholar 

  188. Deng, M. X.; Li, S. J.; Hong, W. W.; Jiang, Y. L.; Xu, W.; Shuai, H. L.; Zou, G. Q.; Hu, Y. C.; Hou, H. S.; Wang, W. L. et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater. Chem. Phys. 2019, 223, 46–52.

    Article  CAS  Google Scholar 

  189. Ye, J. J.; Xia, G.; Zheng, Z. Q.; Hu, C. Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries. Int. J. Hydrogen Energy 2020, 45, 9969–9978.

    Article  CAS  Google Scholar 

  190. Liu, Q.; Chen, Z. Z.; Qin, R.; Xu, C. X.; Hou, J. G. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries. Electrochim. Acta 2019, 304, 405–414.

    Article  CAS  Google Scholar 

  191. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    Article  CAS  Google Scholar 

  192. Kim, S.; Qu, S. B.; Zhang, R. Y.; Braun, P. V. High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes. Small 2019, 15, 1900258.

    Article  CAS  Google Scholar 

  193. Shi, L.; Wang, W. H. Submicron-sized Sb2O3 with hierarchical structure as high-performance anodes for Na-ion storage. Int. J. Energy Res. 2019, 43, 6561–6565.

    Article  CAS  Google Scholar 

  194. Zhai, H. L.; Jiang, H. F.; Qian, Y.; Cai, X. Y.; Liu, H. M.; Qiu, Y. T.; Jin, M. M.; Xiu, F.; Liu, X.; Lai, L. F. Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Mater. Chem. Phys. 2020, 240, 122139.

    Article  CAS  Google Scholar 

  195. Dong, Y. C.; Hu, M. J.; Zhang, Z. Y.; Zapien, J. A.; Wang, X.; Lee, J. M.; Zhang, W. J. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl. Nano Mater. 2019, 2, 1457–1465.

    Article  CAS  Google Scholar 

  196. Dong, Y. C.; Yang, S. L.; Zhang, Z. Y.; Lee, J. M.; Zapien, J. A. Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 2018, 10, 3159–3165.

    Article  CAS  Google Scholar 

  197. Zhang, H. J.; Ge, M.; Yang, L. T.; Zhou, Z.; Chen, W.; Li, Q. Z.; Liu, L. Synthesis and catalytic properties of Sb2S3 nanowire bundles as counter electrodes for dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 10285–10290.

    Article  CAS  Google Scholar 

  198. Yang, Q. Q.; Zhou, J.; Zhang, G. Q.; Guo, C.; Li, M.; Zhu, Y. C.; Qian, Y. T. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 2017, 5, 12144–12148.

    Article  CAS  Google Scholar 

  199. Yao, S. S.; Cui, J.; Lu, Z. H.; Xu, Z. L.; Qin, L.; Huang, J. Q.; Sadighi, Z.; Ciucci, F.; Kim, J. K. Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 2017, 7, 1602149.

    Article  CAS  Google Scholar 

  200. Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

    Article  CAS  Google Scholar 

  201. Zhao, Y. B.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 13205–13208.

    Article  CAS  Google Scholar 

  202. Hou, H. S.; Jing, M. J.; Huang, Z. D.; Yang, Y. C.; Zhang, Y.; Chen, J.; Wu, Z. B.; Ji, X. B. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 19362–19369.

    Article  CAS  Google Scholar 

  203. Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

    Article  CAS  Google Scholar 

  204. Li, J. B.; Yan, D.; Zhang, X. J.; Hou, S. J.; Li, D. S.; Lu, T.; Yao, Y. F.; Pan, L. K. In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochim. Acta 2017, 228, 436–446.

    Article  CAS  Google Scholar 

  205. Wu, F. M.; Guo, X. M.; Li, M.; Xu, H. One-step hydrothermal synthesis of Sb2S3/reduced graphene oxide nanocomposites for high-performance sodium ion batteries anode materials. Ceram. Int. 2017, 43, 6019–6023.

    Article  CAS  Google Scholar 

  206. Mullaivananathan, V.; Kalaiselvi, N. Sb2S3 added bio-carbon: Demonstration of potential anode in lithium and sodium-ion batteries. Carbon 2019, 144, 772–780.

    Article  CAS  Google Scholar 

  207. Xie, F. X.; Zhang, L.; Gu, Q. F.; Chao, D. L.; Jaroniec, M.; Qiao, S. Z. Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 2019, 60, 591–599.

    Article  CAS  Google Scholar 

  208. Wu, C.; Jiang, Y.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv. Mater. 2016, 28, 7276–7283.

    Article  CAS  Google Scholar 

  209. Zhao, W. X.; Li, C. M. Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries. J. Colloid Interface Sci. 2017, 488, 356–364.

    Article  CAS  Google Scholar 

  210. Ou, X.; Yang, C. H.; Xiong, X. H.; Zheng, F. H.; Pan, Q. C.; Jin, C.; Liu, M. L.; Huang, K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X-ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 2017, 27, 1606242.

    Article  CAS  Google Scholar 

  211. Ge, P.; Cao, X. Y.; Hou, H. S.; Li, S. J.; Ji, X. B. Rodlike Sb2Se3 wrapped with carbon: The exploring of electrochemical properties in sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 34979–34989.

    Article  CAS  Google Scholar 

  212. Nam, K. H.; Park, C. M. 2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. J. Power Sources 2019, 433, 126639.

    Article  CAS  Google Scholar 

  213. Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties. Angew. Chem. 2018, 130, 10007–10011.

    Article  Google Scholar 

  214. Guo, L.; Cao, L. Y.; Huang, J. F.; Li, J. Y.; Chen, S. Y. Carbon capsule confined Sb2Se3 for fast Na+ extraction in sodium-ion batteries. Sustain. Energy Fuels 2020, 4, 797–808.

    Article  CAS  Google Scholar 

  215. Man, Q. R.; Hou, Q. D.; Liu, P. F.; Jin, R. C.; Li, G. H. Cube-like Sb2Se3/C constructed by ultrathin nanosheets as anode material for lithium and sodium-ion batteries. Ionics 2019, 25, 1551–1558.

    Article  CAS  Google Scholar 

  216. Chen, Z.; Wu, J.; Liu, X.; Xu, G. B.; Yang, L. W. Ultrathin carbon-coated Sb2Se3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium-ion batteries. Ionics 2019, 25, 3737–3747.

    Article  CAS  Google Scholar 

  217. Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; Lei, H.; Petrovic, C. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3. J. Phys.: Condens. Matter 2013, 25, 075501.

    CAS  Google Scholar 

  218. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  CAS  Google Scholar 

  219. Vieira, E. M. F.; Figueira, J.; Pires, A. L.; Grilo, J.; Silva, M. F.; Pereira, A. M.; Goncalves, L. M. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J. Alloys Compd. 2019, 774, 1102–1116.

    Article  CAS  Google Scholar 

  220. Grishanov, D. A.; Mikhaylov, A. A.; Medvedev, A. G.; Gun, J.; Nagasubramanian, A.; Madhavi, S.; Lev, O.; Prikhodchenko, P. V. Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. J. Colloid Interface Sci. 2018, 512, 165–171.

    Article  CAS  Google Scholar 

  221. Yu, X. X.; Wang, L.; Yin, H. Hierarchical heterojunction structures based-on layered Sb2Te3 nanoplate@rGO for extended long-term life and high-rate capability of sodium batteries. Appl. Mater. Today 2019, 15, 582–589.

    Article  Google Scholar 

  222. Yang, Z.; Sun, J. Y.; Ni, Y. Z.; Zhao, Z. H.; Bao, J. M.; Chen, S. Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium-ion batteries. Energy Stor. Mater. 2017, 9, 214–220.

    Google Scholar 

  223. Ihsan-Ul-Haq, M.; Huang, H.; Wu, J. X.; Cui, J.; Yao, S. S.; Chong, W. G.; Huang, B. L.; Kim, J. K. Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy 2020, 71, 104613.

    Article  CAS  Google Scholar 

  224. Yin, H.; Shen, W. Q.; Qu, H. Q.; Li, C.; Zhu, M. Q. Boosted charge transfer and Na-ion diffusion in cooling-fins-like Sb2Te3-Te nano-heterostructure for long cycle life and high rate capability anode. Nano Energy 2020, 70, 104468.

    Article  CAS  Google Scholar 

  225. Yang, H. H.; Wang, P.; Zhang, J. J.; Zhang, L.; Yan, J. H. Microwave hydrothermal synthesis of SbVO4 nanospheres as anode materials for sodium ion batteries. Ionics 2020, 26, 1267–1273.

    Article  CAS  Google Scholar 

  226. Pan, J.; Zhang, Y. C.; Li, L. L.; Cheng, Z. J.; Li, Y. L.; Yang, X. F.; Yang, J.; Qian, Y. T. Polyanions enhance conversion reactions for lithium/sodium-ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.

    Article  CAS  Google Scholar 

  227. Wang, P.; Xie, S. M.; She, Y. Y.; Fan, W. G.; Leung, M. K. H.; Wang, H. K. Microwave-hydrothermal synthesis of hierarchical Sb2WO6 nanostructures as a new anode material for sodium storage. ChemistrySelect 2019, 4, 1078–1083.

    Article  CAS  Google Scholar 

  228. Ma, M. Y.; Lu, Y.; Yan, Z. H.; Chen, J. In situ synthesis of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries. Batteries Supercaps 2019, 2, 663–667.

    Article  CAS  Google Scholar 

  229. Yuan, Y.; Wang, C. C.; Lei, K. X.; Li, H. X.; Li, F. J.; Chen, J. Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 2018, 4, 1261–1265.

    Article  CAS  Google Scholar 

  230. Cheng, L.; Liu, H. J.; Tan, X. J.; Zhang, J.; Wei, J.; Lv, H. Y.; Shi, J.; Tang, X. F. Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C 2014, 118, 904–910.

    Article  CAS  Google Scholar 

  231. Sun, J. G.; Li, M. C.; Oh, J. A. S.; Zeng, K. Y.; Lu, L. Recent advances of bismuth based anode materials for sodium-ion batteries. Mater. Technol. 2018, 33, 563–573.

    Article  CAS  Google Scholar 

  232. Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 2017, 29, 1702212.

    Article  CAS  Google Scholar 

  233. Sottmann, J.; Herrmann, M.; Vajeeston, P.; Hu, Y.; Ruud, A.; Drathen, C.; Emerich, H.; Fjellvåg, H.; Wragg, D. S. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying. Chem. Mater. 2016, 28, 2750–2756.

    Article  CAS  Google Scholar 

  234. Huang, Y. X.; Zhu, C. Y.; Zhang, S. L.; Hu, X. M.; Zhang, K.; Zhou, W. H.; Guo, S. Y.; Xu, F.; Zeng, H. B. Ultrathin bismuth nanosheets for stable Na-ion batteries: Clarification of structure and phase transition by in situ observation. Nano Lett. 2019, 19, 1118–1123.

    Article  CAS  Google Scholar 

  235. Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95.

    Article  CAS  Google Scholar 

  236. Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 2015, 51, 50–53.

    Article  CAS  Google Scholar 

  237. Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.

    Article  CAS  Google Scholar 

  238. Zhou, J.; Chen, J. C.; Chen, M. X.; Wang, J.; Liu, X. Z.; Wei, B.; Wang, Z. C.; Li, J. J.; Gu, L.; Zhang, Q. H. et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 2019, 31, 1807874.

    Article  CAS  Google Scholar 

  239. Liu, S. N.; Luo, Z. G.; Guo, J. H.; Pan, A. Q.; Cai, Z. Y.; Liang, S. Q. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem. Commun. 2017, 81, 10–13.

    Article  CAS  Google Scholar 

  240. Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 10098–10104.

    Article  CAS  Google Scholar 

  241. Yang, F. H.; Yu, F.; Zhang, Z. A.; Zhang, K.; Lai, Y. Q.; Li, J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem.—Eur. J. 2016, 22, 2333–2338.

    Article  CAS  Google Scholar 

  242. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

    Article  CAS  Google Scholar 

  243. Xiong, P. X.; Bai, P. X.; Li, A.; Li, B. F.; Cheng, M. R.; Chen, Y. P.; Huang, S. P.; Jiang, Q.; Bu, X. H.; Xu, Y. H. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 2019, 31, 1904771.

    Article  CAS  Google Scholar 

  244. Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nano-particles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ. Sci. 2018, 11, 1218–1225.

    Article  CAS  Google Scholar 

  245. Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

    Article  CAS  Google Scholar 

  246. Jin, Y. Q.; Yuan, H. C.; Lan, J. L.; Yu, Y. H.; Lin, Y. H.; Yang, X. P. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: The case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale 2017, 9, 13298–13304.

    Article  CAS  Google Scholar 

  247. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    Article  CAS  Google Scholar 

  248. Xue, P.; Wang, N. N.; Fang, Z. W.; Lu, Z. X.; Xu, X.; Wang, L.; Du, Y.; Ren, X. C.; Bai, Z. C.; Dou, S. X. et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett. 2019, 19, 1998–2004.

    Article  CAS  Google Scholar 

  249. Wang, L. B.; Voskanyan, A. A.; Chan, K. Y.; Qin, B.; Li, F. J. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Appl. Energy Mater. 2020, 3, 565–572.

    Article  CAS  Google Scholar 

  250. Zhang, Y. F.; Su, Q.; Xu, W. J.; Cao, G. Z.; Wang, Y. P.; Pan, A. Q.; Liang, S. Q. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv. Sci. 2019, 6, 1900162.

    Article  CAS  Google Scholar 

  251. Hwang, J.; Park, J. H.; Chung, K. Y.; Kim, J. One-pot synthesis of Bi-reduced graphene oxide composite using supercritical acetone as anode for Na-ion batteries. Chem. Eng. J. 2020, 387, 124111.

    Article  CAS  Google Scholar 

  252. Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li, F. J. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022.

    Article  CAS  Google Scholar 

  253. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. 2018, 130, 4777–4781.

    Article  Google Scholar 

  254. Fan, H. M.; Li, H. Y.; Liu, B. K.; Lu, Y. C.; Xie, T. F.; Wang, D. J. Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl. Mater. Interfaces 2012, 4, 4853–4857.

    Article  CAS  Google Scholar 

  255. Adhikari, S. P.; Dean, H.; Hood, Z. D.; Peng, R.; More, K. L.; Ivanov, I.; Wu, Z. L.; Lachgar, A. Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv. 2015, 5, 91094–91102.

    Article  CAS  Google Scholar 

  256. Kim, M. K.; Yu, S. H.; Jin, A. H.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y. E. Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem. Commun. 2016, 52, 11775–11778.

    Article  CAS  Google Scholar 

  257. Zhang, J. Y.; Dang, W. Q.; Yan, X. C.; Li, M.; Gao, H.; Ao, Z. M. Doping indium in β-Bi2O3 to tune the electronic structure and improve the photocatalytic activities: First-principles calculations and experimental investigation. Phys. Chem. Chem. Phys. 2014, 16, 23476–23482.

    Article  CAS  Google Scholar 

  258. Mei, J.; Liao, T.; Ayoko, G. A.; Sun, Z. Q. Two-dimensional bismuth oxide heterostructured nanosheets for lithium- and sodium-ion storages. ACS Appl. Mater. Interfaces 2019, 11, 28205–28212.

    Article  CAS  Google Scholar 

  259. Fang, W.; Fan, L. S.; Zhang, Y.; Zhang, Q.; Yin, Y. Y.; Zhang, N. Q.; Sun, K. N. Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries. Ceram. Int. 2017, 43, 8819–8823.

    Article  CAS  Google Scholar 

  260. Nithya, C. Bi2O3@reduced graphene oxide nanocomposite: An anode material for sodium-ion storage. ChemPlusChem 2015, 80, 1000–1006.

    Article  CAS  Google Scholar 

  261. Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

    Article  CAS  Google Scholar 

  262. Demir, E.; Soytas, S. H.; Demir-Cakan, R. Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries. Solid State Ionics 2019, 342, 115066.

    Article  CAS  Google Scholar 

  263. Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.

    Article  CAS  Google Scholar 

  264. Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.

    Article  CAS  Google Scholar 

  265. Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.

    Article  CAS  Google Scholar 

  266. Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634–638.

    Article  CAS  Google Scholar 

  267. Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Q. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201–7207.

    Article  CAS  Google Scholar 

  268. Xu, B. L.; Qi, S. H.; He, P. B.; Ma, J. M. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem. Asian J. 2019, 14, 2925–2937.

    Article  CAS  Google Scholar 

  269. Li, S.; Gao, C.; Hua, D.; Wang, G.; Guo, S. H.; Qiu, J. X.; Su, X. T. Bi2S3 nanorods bonding on reduced graphene oxide surface as advanced anode materials for sodium-ion batteries. Energy Technol. 2019, 7, 1800876.

    Google Scholar 

  270. Chai, W. W.; Yin, W. H.; Wang, K.; Ye, W. K.; Li, X. C.; Tang, B.; Rui, Y. C. Bismuth sulfide-integrated carbon derived from organic ligands as a superior anode for sodium storage. Energy Technol. 2019, 7, 1900668.

    Article  CAS  Google Scholar 

  271. Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694–17698.

    Article  CAS  Google Scholar 

  272. Yang, W. L.; Wang, H.; Liu, T. T.; Gao, L. J. A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater. Lett. 2016, 167, 102–105.

    Article  CAS  Google Scholar 

  273. Klavetter, K. C.; de Souza, J. P.; Heller, A.; Mullins, C. B. High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material. J. Mater. Chem. A 2015, 3, 5829–5834.

    Article  CAS  Google Scholar 

  274. Xin, S.; Yu, L.; You, Y.; Cong, H. P.; Yin, Y. X.; Du, X. L.; Guo, Y. G.; Yu, S. H.; Cui, Y.; Goodenough, J. B. The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Lett. 2016, 16, 4560–4568.

    Article  CAS  Google Scholar 

  275. Chen, X. J.; Hong, Y.; Ge, X. L.; Li, C. X.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Se-doped Bi2S3 nanoneedles grown on the three-dimensional carbon foam as a self-supported anode for high-performance sodium ion batteries. J. Alloys Compd. 2020, 825, 153901.

    Article  CAS  Google Scholar 

  276. Dai, S. R.; Wang, L. C.; Shen, Y.; Wang, M. K. Bismuth selenide nanocrystalline array electrodes for high-performance sodium-ion batteries. Appl. Mater. Today 2020, 18, 100455.

    Article  Google Scholar 

  277. Kharade, S. D.; Pawar, N. B.; Ghanwat, V. B.; Mali, S. S.; Bae, W. R.; Patil, P. S.; Hong, C. K.; Kim, J. H.; Bhosale, P. N. Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: Effect of chelating agents. New J. Chem. 2013, 37, 2821–2828.

    Article  CAS  Google Scholar 

  278. Das, B.; Das, N. S.; Sarkar, S.; Chatterjee, B. K.; Chattopadhyay, K. K. Topological insulator Bi2Se3/Si-nanowire-based p–n junction diode for high-performance near-infrared photodetector. ACS Appl. Mater. Interfaces 2017, 9, 22788–22798.

    Article  CAS  Google Scholar 

  279. Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    Article  CAS  Google Scholar 

  280. Das, B.; Sarkar, S.; Khan, R.; Santra, S.; Das, N. S.; Chattopadhyay, K. K. rGO-wrapped flowerlike Bi2Se3 nanocomposite: Synthesis, experimental and simulation-based investigation on cold cathode applications. RSC Adv. 2016, 6, 25900–25912.

    Article  CAS  Google Scholar 

  281. Xie, L. X.; Yang, Z.; Sun, J. Y.; Zhou, H. Q.; Chi, X. W.; Chen, H. L.; Li, A. X.; Yao, Y., Chen, S. Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 2018, 10, 50.

    Article  CAS  Google Scholar 

  282. Li, D.; Zhou, J. S.; Chen, X. H.; Song, H. H. Graphene-loaded Bi2Se3: A conversion-alloying-type anode material for ultrafast gravimetric and volumetric Na storage. ACS Appl. Mater. Interfaces 2018, 10, 30379–30387.

    Article  CAS  Google Scholar 

  283. Sun, D. D.; Zhang, G. J.; Li, D.; Liu, S. T.; Jia, X. L.; Zhou, J. S. A layered Bi2Te3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustain. Energy Fuels 2019, 3, 3163–3171.

    Article  CAS  Google Scholar 

  284. Wu, S. J.; Xiong, J. W.; Sun, J. G.; Hood, Z. D.; Zeng, W.; Yang, Z. Z.; Gu, L.; Zhang, X. X.; Yang, S. Z. Hydroxyl-dependent evolution of oxygen vacancies enables the regeneration of BiOCl photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 16620–16626.

    Article  CAS  Google Scholar 

  285. Jiang, Y.; Sun, J. G.; Wu, S. J. BiOCl nanosheets with controlled exposed facets and improved photocatalytic activity. Catal. Lett. 2017, 147, 2006–2012.

    Article  CAS  Google Scholar 

  286. Zhang, Y.; Lu, S. Y.; Wang, M. Q.; Niu, Y. B.; Liu, S. G.; Li, Y. T.; Wu, X. S.; Bao, S. J.; Xu, M. W. Bismuth oxychloride ultrathin nanoplates as an anode material for sodium-ion batteries. Mater. Lett. 2016, 178, 44–47.

    Article  CAS  Google Scholar 

  287. Chen, F. M.; Huang, Y. X.; Guo, L.; Sun, L. F.; Wang, Y.; Yang, H. Y. Dual-ions electrochemical deionization: A desalination generator. Energy Environ. Sci. 2017, 10, 2081–2089.

    Article  CAS  Google Scholar 

  288. Sun, J. G.; Tu, W. Q.; Chen, C.; Plewa, A.; Ye, H. L.; Oh, J. A. S.; He, L. C.; Wu, T.; Zeng, K. Y.; Lu, L. Chemical bonding construction of reduced graphene oxide-anchored few-layer bismuth oxychloride for synergistically improving sodium-ion storage. Chem. Mater. 2019, 31, 7311–7319.

    Article  CAS  Google Scholar 

  289. Muruganantham, R.; Liu, W. R. A venture synthesis and fabrication of BiVO4 as a highly stable anode material for Na-ion batteries. ChemistrySelect 2017, 2, 8187–8195.

    Article  CAS  Google Scholar 

  290. Xu, X. S.; Xu, Y. X.; Xu, F.; Jiang, G. S.; Jian, J.; Yu, H. W.; Zhang, E. M.; Shchukin, D.; Kaskel, S.; Wang, H. Q. Black BiVO4: Size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 2020, 8, 1636–1645.

    Article  CAS  Google Scholar 

  291. Durai, L.; Moorthy, B.; Thomas, C. I.; Kim, D. K.; Bharathi, K. K. Electrochemical properties of BiFeO3 nanoparticles: Anode material for sodium-ion battery application. Mater. Sci. Semicond. Process. 2017, 68, 165–171.

    Article  CAS  Google Scholar 

  292. Shadike, Z.; Zhao, E. Y.; Zhou, Y. N.; Yu, X. Q.; Yang, Y.; Hu, E. Y.; Bak, S.; Gu, L.; Yang, X. Q. Advanced characterization techniques for sodium-ion battery studies. Adv. Energy Mater. 2018, 8, 1702588.

    Article  CAS  Google Scholar 

  293. Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium-ion battery materials. Small Methods 2017, 1, 1600063.

    Article  CAS  Google Scholar 

  294. Rehr, J. J.; Ankudinov, A. L. Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 2005, 249, 131–140.

    Article  CAS  Google Scholar 

  295. Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

    Article  CAS  Google Scholar 

  296. Xia, Z. M.; Zhang, H.; Shen, K. C.; Qu, Y. Q.; Jiang, Z. Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. Phys. B Condens. Matter 2018, 542, 12–19.

    Article  CAS  Google Scholar 

  297. Bai, Q.; Yang, L. F.; Chen, H. L.; Mo, Y. F. Computational studies of electrode materials in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702998.

    Article  CAS  Google Scholar 

  298. Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.

    Article  CAS  Google Scholar 

  299. Ellis, L. D.; Wilkes, B. N.; Hatchard, T. D.; Obrovac, M. N. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 2014, 161, A416–A421.

    Article  CAS  Google Scholar 

  300. Mortazavi, M.; Deng, J. K.; Shenoy, V. B.; Medhekar, N. V. Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 2013, 225, 207–214.

    Article  CAS  Google Scholar 

  301. Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

    Article  CAS  Google Scholar 

  302. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.

    Article  CAS  Google Scholar 

  303. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

    Article  CAS  Google Scholar 

  304. Shim, J.; Striebel, K. A. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries. J. Power Sources 2003, 119–121, 934–937.

    Article  CAS  Google Scholar 

  305. Zheng, H. H.; Li, J.; Song, X. Y.; Liu, G.; Battaglia, V. S. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim. Acta 2012, 71, 258–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (No. 51774251), Hebei Natural Science Foundation for Distinguished Young Scholars (No. B2017203313), Hundred Excellent Innovative Talents Support Program in Hebei Province (No. SLRC2017057), Talent Engineering Training Funds of Hebei Province (No. A201802001), and the opening project of the state key laboratory of Advanced Chemical Power Sources (No. SKL-ACPS-C-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Zhao or Jiujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Roy, S., Zhao, Y. et al. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 14, 3690–3723 (2021). https://doi.org/10.1007/s12274-021-3334-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3334-y

Keywords

Navigation