Skip to main content
Log in

An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Elemental antimony has recently become an attractive anode material for potential application in rechargeable sodium-ion batteries. I present a first-principles study of the structure–composition dependence of the Na–Sb system for both sodiation and desodiation processes. The enthalpy of reaction of x moles of sodium with the hexagonal structure of antimony reveals several stable crystal structures for 0 < x ≤ 3, with variable composition states for 1.25 < x < 2.75. The direct and reverse reactions pass through similar states in terms of enthalpy of formation and symmetry representation of the corresponding optimized structures, in particular for x = 1 and x = 3, confirming the two known phases, namely NaSb and Na3Sb. The calculations suggest that the optimal composition range for reversible sodiation of antimony is 1 < x ≤ 3, thus avoiding the global minimum at x = 1. This can help to rationalize the structure–composition dependence of the electrochemical performance of antimony in Na-ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Darwiche, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, Electrochem. Commun. 32, 18 (2013).

    Article  Google Scholar 

  2. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, J. Am. Chem. Soc. 134, 20805 (2012).

    Article  Google Scholar 

  3. H. Meng, K. Kravchyk, M. Walter, and M.V. Kovalenko, Nano Lett. 14, 1255 (2014).

    Article  Google Scholar 

  4. D.-H. Nam, K.-S. Hong, S.-J. Lim, and H.-S. Kwon, J. Power Sources 247, 423 (2014).

    Article  Google Scholar 

  5. J. Qian, Y. Chen, W. Lin, and Y. Cao, Chem. Commun. 48, 7070 (2012).

    Article  Google Scholar 

  6. L. Baggetto, P. Ganesh, C.-N. Sun, R.A. Meisner, T.A. Zawodzinski, and G.M. Veith, J. Mater. Chem. 1, 7985 (2013).

    Article  Google Scholar 

  7. L. Baggetto, P. Ganesh, R.P. Meisner, R.R. Unocic, J.-C. Jumas, C.A. Bridges, and G.M. Veith, J. Power Sources 234, 48 (2013).

    Article  Google Scholar 

  8. W. Weppner and R.A. Huggins, J. Electroanal. Soc. 125, 7 (1978).

    Article  Google Scholar 

  9. P. Ge and M. Fouletier, Solid State Ionics 28–30, 1172 (1988).

    Article  Google Scholar 

  10. R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, and J.L. Tirado, Electrochem. Commun. 3, 639 (2001).

    Article  Google Scholar 

  11. M.E. Leonova, L.G. Sevast’yanova, O.K. Gulish, and K.P. Burdina, Sci. Rep. 4, 4562 (2014).

    Google Scholar 

  12. Na-Sb (sodium-antimony). New Series IV/5. Springer Materials, The Landolt-Börnstein Database.

  13. J. Sangster and A.D. Pelton, J. Phase Equ. 14, 250 (1993).

    Article  Google Scholar 

  14. A.R.H.F. Ettema and R.A. de Groot, Phys. Rev. B 61, 10035 (2000).

    Article  Google Scholar 

  15. S. Imamura, J. Phys. Soc. Jpn. 14, 1491 (1959).

    Article  Google Scholar 

  16. D.T. Cromer, Acta Cryst. 12, 41 (1959).

    Article  Google Scholar 

  17. H.J. Breunig, Antimony: Inorganic Chemistry, Encyclopedia of Inorganic Chemistry (Chichester: Wiley, 2006).

    Google Scholar 

  18. K. Doll, J.C. Schön, and M. Jansen, J. Phys. 117, 012014 (2008).

    Google Scholar 

  19. K. Doll, J. Schön, and M. Jansen, Phys. Rev. B 78, 144110 (2008).

    Article  Google Scholar 

  20. J. Maddox, Nature 335, 201 (1988).

    Article  Google Scholar 

  21. A. Gavezzotti, Acc. Chem. Res. 27, 309 (1994).

    Article  Google Scholar 

  22. A.R. Oganov, Modern Methods of Crystal Structure Prediction (Berlin: Wiley, 2011).

    Google Scholar 

  23. C.J. Pickard and R.J. Needs, J. Phys. 23, 053201 (2011).

    Google Scholar 

  24. R. Caputo, S. Garroni, D. Olid, F. Teixidor, S. Suriñach, and M.D. Baró, Phys. Chem. Chem. Phys. 12, 15093 (2010).

    Article  Google Scholar 

  25. R. Caputo, RSC Adv. 3, 10230 (2013).

    Article  Google Scholar 

  26. R. Caputo, A. Tekin, W. Sikora, and A. Züttel, Chem. Phys. Lett. 480, 203 (2009).

    Article  Google Scholar 

  27. R. Caputo and A. Tekin, Inorg. Chem. 51, 9757 (2012).

    Article  Google Scholar 

  28. R. Caputo and A. Tekin, J. Solid State Chem. 184, 1622 (2011).

    Article  Google Scholar 

  29. R. Caputo, A. Kupczak, W. Sikora, and A. Tekin, Phys. Chem. Chem. Phys. 15, 1471 (2013).

    Article  Google Scholar 

  30. A. Tekin, R. Caputo, and A. Züttel, Phys. Rev. Lett. 104, 215501 (2010).

    Article  Google Scholar 

  31. A. van de Walle, The Alloy-Theoretic Automated Toolkit (ATAT): A User Guide (2013).

  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Carso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gertsmann, C. Gougoussis, A. Kokalj, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. 21, 395502 (2009).

    Google Scholar 

  33. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  Google Scholar 

  34. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  Google Scholar 

  35. S.J. Clark, M.D. Segall, C.J. Pickard, P. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Krystallographie 220, 567 (2005).

    Google Scholar 

  36. K. Refson, S.J. Clark, and P.R. Tulip, Phys. Rev. B 73, 155114 (2006).

    Article  Google Scholar 

  37. G.J. Ackland, M.C. Warren, and S.J. Clark, J. Phys. 9, 7861 (1997).

    Google Scholar 

  38. R.W. James and N. Tunstall, Phil. Mag. 40, 233 (1920).

    Article  Google Scholar 

  39. C.S. Barrett, P. Cucka, and K. Haefner, Acta Cryst. 16, 451 (1963).

    Article  Google Scholar 

  40. R. Dalven, Phys. Rev. B 8, 6033 (1973).

    Article  Google Scholar 

  41. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Modern Phys. 73, 515 (2001).

    Article  Google Scholar 

  42. W. Müller, Z. Naturforsch B 32, 357 (1977).

    Google Scholar 

  43. G. Brauer and E. Zintl, Z. Phys. Chem. B 37, 323 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccarda Caputo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputo, R. An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction. J. Electron. Mater. 45, 999–1010 (2016). https://doi.org/10.1007/s11664-015-4260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4260-0

Keywords

Navigation