Skip to main content
Log in

Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This paper offers a comprehensive overview on the role of nanostructures in the development of advanced anode materials for application in both lithium and sodium-ion batteries. In particular, this review highlights the differences between the two chemistries, the critical effect of nanosize on the electrode performance, as well as the routes to exploit the inherent potential of nanostructures to achieve high specific energy at the anode, enhance the rate capability, and obtain a long cycle life. Furthermore, it gives an overview of nanostructured sodium- and lithium-based anode materials, and presents a critical analysis of the advantages and issues associated with the use of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R. P. There’s plenty of room at the bottom. Caltech Eng. Sci. 1960, 23, 22–36.

    Google Scholar 

  2. Toumey, C. Reading feynman into nanotechnology: A text for a new science. Techné 2008, 12, 133–168.

    Google Scholar 

  3. Taniguchi, N. On the basic concept of “nano-technology”. In Proceedings of the International Conference on Production Engineering Part II; Japan Society of Precision Engineering: Tokyo, 1974; pp 18–23.

    Google Scholar 

  4. Drexler, K. E. Engines of creation 2. 0.: The Coming Era of Nanotechnology; Anchor Books: United States, 1986.

    Google Scholar 

  5. Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244.

    Article  Google Scholar 

  6. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

    Article  Google Scholar 

  7. Buzea, C.; Pacheco, I. Nanomaterials and their classification. In EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials; Shukla, A. K., Ed.; Springer: India, 2017; pp 3–45.

    Chapter  Google Scholar 

  8. Ebbensen, T. W. Carbon Nanotubes. Annu. Rev. Mater. Sci. 1994, 24, 235–264.

    Article  Google Scholar 

  9. Aleklett, K.; Höök, M.; Jakobsson, K.; Lardelli, M.; Snowden, S.; Söderbergh, B. The peak of the oil age—Analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 2010, 38, 1398–1414.

    Article  Google Scholar 

  10. De Almeida, P.; Silva, P. D. Timing and future consequences of the peak of oil production. Futures 2011, 43, 1044–1055.

    Article  Google Scholar 

  11. Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522.

    Article  Google Scholar 

  12. Hall, P. J.; Bain, E. J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352–4355.

    Article  Google Scholar 

  13. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  14. Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461–2466.

    Article  Google Scholar 

  15. Balbuena, P. B.; Wang, Y. X. Lithium-Ion Batteries: Solid-Electrolyte Interphase; Imperial College Press: London, 2004.

    Book  Google Scholar 

  16. Wakihara, M.; Yamamoto, O. Lithium Ion Batteries: Fundamentals and Performance; Wiley-VCH: New York, 1998.

    Book  Google Scholar 

  17. Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

    Article  Google Scholar 

  18. Tarascon, J. M. Key challenges in future Li-battery research. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 2010, 368, 3227–3241.

    Article  Google Scholar 

  19. Risacher, F.; Fritz, B. Origin of salts and brine evolution of Bolivian and Chilean salars. Aquat. Geochem. 2009, 15, 123–157.

    Article  Google Scholar 

  20. Grosjeana, C.; Miranda, P. M.; Perrina, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sust. Energ. Rev. 2012, 16, 1735–1744.

    Article  Google Scholar 

  21. Yaksic, A.; Tilton, J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185–194.

    Article  Google Scholar 

  22. Tarascon, J. M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.

    Article  Google Scholar 

  23. Abraham, K. M. Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 1982, 7, 199–212.

    Article  Google Scholar 

  24. Delmas, C.; Braconnier, J. J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3–4, 165–169.

    Article  Google Scholar 

  25. West, K.; Zachau-Christiansen, B.; Jacobsen, T.; Skaarup, S. Solid-state sodium cells—An alternative to lithium cells? J. Power Sources 1989, 26, 341–345.

    Article  Google Scholar 

  26. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  27. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  28. Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

    Article  Google Scholar 

  29. Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.

    Article  Google Scholar 

  30. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  31. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  32. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  33. Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.

    Article  Google Scholar 

  34. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

    Article  Google Scholar 

  35. Huang, H.; Yin, S. C.; Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001, 4, A170–A172.

    Article  Google Scholar 

  36. Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nanonetwork electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152.

    Article  Google Scholar 

  37. Kant, R.; Kaur, J.; Singh, M. B. Nanoelectrochemistry in India. In Electrochemistry: Volume 12 Nanoelectrochemistry; Wadhawan, J. D.; Compton, R. G., Eds.; The Royal Society of Chemistry: Cambridge, 2013; pp 336–378.

    Chapter  Google Scholar 

  38. Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621–638.

    Article  Google Scholar 

  39. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  Google Scholar 

  40. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  41. Balaya, P.; Bhattacharyya, A. J.; Jamnik, J.; Zhukovskii, Y. F.; Kotomin, E. A.; Maier, J. Nano-ionics in the context of lithium batteries. J. Power Sources 2006, 159, 171–178.

    Article  Google Scholar 

  42. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  43. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–92.

    Article  Google Scholar 

  44. Patey, T. J.; Hintennach, A.; La Mantia, F.; Novák, P. Electrode engineering of nanoparticles for lithium-ion batteries—Role of dispersion technique. J. Power Sources 2009, 189, 590–593.

    Article  Google Scholar 

  45. Selim, R.; Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 1974, 121, 1457–1459.

    Article  Google Scholar 

  46. Harry, K. J.; Liao, X. X.; Parkinson, D. Y.; Minor, A. M.; Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 2015, 162, A2699–A2706.

    Article  Google Scholar 

  47. Wenzel, S.; Metelmann, H.; Raiß, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758–765.

    Article  Google Scholar 

  48. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4, 171–174.

    Article  Google Scholar 

  49. Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

    Article  Google Scholar 

  50. Garcia, B.; Farcy, J.; Pereira-Ramos, J. P.; Baffier, N. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 1997, 144, 1179–1184.

    Article  Google Scholar 

  51. Gabrisch, H.; Yazami, R.; Fultz, B. Hexagonal to cubic spinel transformation in lithiated cobalt oxide. J. Electrochem. Soc. 2004, 151, A891–A897.

    Article  Google Scholar 

  52. Tournadre, F.; Croguennec, L.; Saadoune, I.; Carlier, D.; Shao-Horn, Y.; Willmann, P.; Delmas, C. On the mechanism of the P2-Na0.70CoO2→O2-LiCoO2 exchange reaction—Part I: Proposition of a model to describe the P2–O2 transition. J. Solid State Chem. 2004, 177, 2790–2802.

    Article  Google Scholar 

  53. Tournadre, F.; Croguennec, L.; Willmann, P.; Delmas, C. On the mechanism of the P2-Na0.70CoO2→O2-LiCoO2 exchange reaction—Part II: An in situ X-ray diffraction study. J. Solid State Chem. 2004, 177, 2803–2809.

    Article  Google Scholar 

  54. Antolini, E. LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 2004, 170, 159–171.

    Article  Google Scholar 

  55. Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2, 132–154.

    Article  Google Scholar 

  56. Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81–85.

    Article  Google Scholar 

  57. Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288–5296.

    Article  Google Scholar 

  58. Kubota, K.; Yabuuchi, N.; Yoshida, H.; Dahbi, M.; Komaba, S. Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull. 2014, 39, 416–422.

    Article  Google Scholar 

  59. Shibata, T.; Fukuzumi, Y.; Kobayashi, W.; Moritomo, Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci. Rep. 2015, 5, 9006.

    Article  Google Scholar 

  60. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055.

    Article  Google Scholar 

  61. McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li-O2 and Na-O2 batteries. J. Phys. Chem. Lett. 2014, 5, 1230–1235.

    Article  Google Scholar 

  62. Hasa, I.; Dou, X. W.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glymebased electrolyte. J. Power Sources 2016, 310, 26–31.

    Article  Google Scholar 

  63. Kim, H.; Hong, J.; Park, Y.-U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using etherbased electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.

    Article  Google Scholar 

  64. Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

    Article  Google Scholar 

  65. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds. J. Power Sources 2013, 243, 585–587.

    Article  Google Scholar 

  66. Zhu, Z. Q.; Cheng, F. Y.; Hu, Z.; Niu, Z. Q.; Chen, J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 2015, 293, 626–634.

    Article  Google Scholar 

  67. Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K.-Y.; Park, M.-S.; Yoon, W.-S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963–2969.

    Article  Google Scholar 

  68. Gotoh, K.; Ishikawa, T.; Shimadzu, S.; Yabuuchi, N.; Komaba, S.; Takeda, K.; Goto, A.; Deguchi, K.; Ohki, S.; Hashi, K. et al. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources 2013, 225, 137–140.

    Article  Google Scholar 

  69. Bommier, C.; Surta, T. W; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

    Article  Google Scholar 

  70. Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

    Article  Google Scholar 

  71. Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

    Article  Google Scholar 

  72. Buiel, E.; Dahn, J. R. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 1999, 45, 121–130.

    Article  Google Scholar 

  73. Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307.

    Article  Google Scholar 

  74. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

    Article  Google Scholar 

  75. Bommier, C.; Ji, X. L. Recent development on anodes for Na-ion batteries. Isr. J. Chem. 2015, 55, 486–507.

    Article  Google Scholar 

  76. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

    Article  Google Scholar 

  77. Tang, K.; White, R. J.; Mu, X. K.; Titirici, M. M.; Van Aken, P. A.; Maier, J. Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem 2012, 5, 400–403.

    Article  Google Scholar 

  78. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  79. Candelaria, S. L.; Shao, Y. Y.; Zhou, W.; Li, X. L.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J.; Li, J. H.; Cao, G. Z. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220.

    Article  Google Scholar 

  80. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638–654.

    Article  Google Scholar 

  81. DiLeo, R. A.; Castiglia, A.; Ganter, M. J.; Rogers, R. E.; Cress, C. D.; Raffaelle, R. P.; Landi, B. J. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries. ACS Nano 2010, 4, 6121–6131.

    Article  Google Scholar 

  82. Matsushita, T.; Ishii, Y.; Kawasaki, S. Sodium ion battery anode properties of empty and C60-inserted single-walled carbon nanotubes. Mater. Express 2013, 3, 30–36.

    Article  Google Scholar 

  83. Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S.-C.; Wang, C. S. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254–3264.

    Article  Google Scholar 

  84. Deng, D.; Lee, J. Y. One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties. Chem. Mater. 2007, 19, 4198–4204.

    Article  Google Scholar 

  85. Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. L. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 2013, 1, 10662–10666.

    Article  Google Scholar 

  86. Li, W. H.; Zeng, L. C.; Yang, Z. Z.; Gu, L.; Wang, J. Q.; Liu, X. W.; Cheng, J. X.; Yu, Y. Free-standing and binderfree sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 2014, 6, 693–698.

    Article  Google Scholar 

  87. Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.; Zhu, Y. J.; Bigio, D.; Zhu, T. et al. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445–3452.

    Article  Google Scholar 

  88. Xiong, Z. L.; Yun, Y.; Jin, H.-J. Applications of carbon nanotubes for lithium ion battery anodes. Materials 2013, 6, 1138–1158.

    Article  Google Scholar 

  89. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

    Article  Google Scholar 

  90. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  91. Xu, C. Y.; Shi, X. M.; Ji, A.; Shi, L.; Zhou, C.; Cui, Y. Q. Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS One 2015, 10, e0144842.

    Article  Google Scholar 

  92. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160.

    Article  Google Scholar 

  93. Vargas C., O. A.; Caballero, Á.; Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 2012, 4, 2083–2092.

    Article  Google Scholar 

  94. Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.

    Article  Google Scholar 

  95. Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

    Article  Google Scholar 

  96. Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208.

    Article  Google Scholar 

  97. Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 2017, 29, 1603421.

    Article  Google Scholar 

  98. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107–2111.

    Article  Google Scholar 

  99. Hong, K. L.; Qie, L.; Zeng, R.; Yi, Z. Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.-J.; Zhang, W.-X. et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733–12738.

    Article  Google Scholar 

  100. Su, X.; Wu, Q. L.; Zhan, X.; Wu, J.; Wei, S. Y.; Guo, Z. H. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 2012, 47, 2519–2534.

    Article  Google Scholar 

  101. Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.

    Article  Google Scholar 

  102. Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

    Article  Google Scholar 

  103. Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.

    Article  Google Scholar 

  104. Wu, L. M.; Buchholz, D.; Bresser, D.; Gomes Chagas, L.; Passerini, S. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 2014, 251, 379–385.

    Article  Google Scholar 

  105. Liu, Y.; Yang, Y. F. Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 2016, 8123652.

    Google Scholar 

  106. Lunell, S.; Stashans, A.; Ojamae, L.; Lindström, H.; Hagfeldt, A. Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 1997, 119, 7374–7380.

    Article  Google Scholar 

  107. Jiang, C. H.; Honma, I.; Kudo, T.; Zhou, H. S. Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem. Solid-State Lett. 2007, 10, A127–A129.

    Article  Google Scholar 

  108. Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B. J.; Song, J.; Kim, J. Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim. Acta 2013, 90, 112–118.

    Article  Google Scholar 

  109. Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

    Article  Google Scholar 

  110. Wu, L. M.; Moretti, A.; Buchholz, D.; Passerini, S.; Bresser, D. Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochim. Acta 2016, 203, 109–116.

    Article  Google Scholar 

  111. Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029.

    Article  Google Scholar 

  112. Hong, Z. S.; Zhou, K. Q.; Zhang, J. W.; Huang, Z. G.; Wei, M. D. Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties. J. Mater. Chem. A 2015, 3, 17412–17416.

    Article  Google Scholar 

  113. González, J. R.; Alcántara, R.; Nacimiento, F.; Ortiz, G. F; Tirado, J. L. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm 2014, 16, 4602–4609.

    Article  Google Scholar 

  114. Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.

    Article  Google Scholar 

  115. Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301–309.

    Article  Google Scholar 

  116. Bresser, D.; Oschmann, B.; Tahir, M. N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes. J. Electrochem. Soc. 2014, 162, A3013–A3020.

    Article  Google Scholar 

  117. Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.

    Article  Google Scholar 

  118. Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 1994, 141, L147–L150.

    Article  Google Scholar 

  119. Mahmoud, A.; Amarilla, J. M.; Lasri, K.; Saadoune, I. Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochim. Acta 2013, 93, 163–172.

    Article  Google Scholar 

  120. Martha, S. K.; Haik, O.; Borgel, V.; Zinigrad, E.; Exnar, I.; Drezen, T.; Minersc, J. H.; Aurbach, D. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J. Electrochem. Soc. 2011, 158, A790–A797.

    Article  Google Scholar 

  121. Yang, L. X.; Gao, L. J. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery. J. Alloys Compd. 2009, 485, 93–97.

    Article  Google Scholar 

  122. Huang, J. J.; Jiang, Z. Y. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim. Acta 2008, 53, 7756–7759.

    Article  Google Scholar 

  123. Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T. Preparation and characteristic of carboncoated Li4Ti5O12 anode material. J. Power Sources 2007, 174, 1109–1112.

    Article  Google Scholar 

  124. Wang, J.; Liu, X.-M.; Yang, H.; Shen, X. D. Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J. Alloys Compd. 2011, 509, 712–718.

    Article  Google Scholar 

  125. Raja, M. W.; Mahanty, S.; Kundu, M.; Basu, R. N. Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J. Alloys Compd. 2009, 468, 258–262.

    Article  Google Scholar 

  126. Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 2003, 117, 131–136.

    Article  Google Scholar 

  127. Borghols, W. J. H.; Wagemaker, M.; Lafont, U.; Kelder, E. M.; Mulder, F. M. Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 2009, 131, 17786–17792.

    Article  Google Scholar 

  128. Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206–1215.

    Article  Google Scholar 

  129. Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.; Tarascon, J. M.; Shukla, A. K. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem. Mater. 2010, 22, 2857–2863.

    Article  Google Scholar 

  130. Zhao, L.; Pan, H.-L.; Hu, Y.-S.; Li, H.; Chen, L.-Q. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chinese Phys. B 2012, 21, 028201.

    Article  Google Scholar 

  131. Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y.-S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.

    Article  Google Scholar 

  132. Mei, Y. N.; Huang, Y. H.; Hu, X. L. Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 2016, 4, 12001–12013.

    Article  Google Scholar 

  133. Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.

    Article  Google Scholar 

  134. Wang, W.; Yu, C. J.; Lin, Z. S.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Microspheric Na2Ti3O7 consisting of tiny nanotubes: An anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale 2013, 5, 594–599.

    Article  Google Scholar 

  135. Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 2013, 49, 7451–7453.

    Article  Google Scholar 

  136. Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem. Commun. 2015, 51, 9298–9300.

    Article  Google Scholar 

  137. Goward, G. R.; Taylor, N. J.; Souza, D. C. S.; Nazar, L. F. The true crystal structure of Li17M4 (M = Ge, Sn, Pb)-revised from Li22M5. J. Alloys Compd. 2001, 329, 82–91.

    Article  Google Scholar 

  138. Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

    Article  Google Scholar 

  139. Kamali, A. R.; Fray, D. J. Tin-based materials as advanced anode materials for lithium ion batteries: A review. Rev. Adv. Mater. Sci. 2011, 27, 14–24.

    Google Scholar 

  140. Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.

    Article  Google Scholar 

  141. Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.

    Article  Google Scholar 

  142. Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.

    Article  Google Scholar 

  143. Obrovac, M. N.; Christensen, L.; Le, D. B; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154, A849–A855.

    Article  Google Scholar 

  144. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  Google Scholar 

  145. Hassoun, J.; Panero, S.; Scrosati, B. Metal alloy electrode configurations for advanced lithium-ion batteries. Fuel Cells 2009, 9, 277–283.

    Article  Google Scholar 

  146. Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.

    Article  Google Scholar 

  147. Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.

    Article  Google Scholar 

  148. Lee, D.-J.; Park, J.-W.; Hasa, I.; Sun, Y.-K.; Scrosati, B.; Hassoun, J. Alternative materials for sodium ion-sulphur batteries. J. Mater. Chem. A 2013, 1, 5256–5261.

    Article  Google Scholar 

  149. Elia, G. A.; Ulissi, U.; Jeong, S.; Passerini, S.; Hassoun, J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ. Sci. 2016, 9, 3210–3220.

    Article  Google Scholar 

  150. Hasa, I.; Hassoun, J.; Sun, Y.-K.; Scrosati, B. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. ChemPhysChem 2014, 15, 2152–2155.

    Article  Google Scholar 

  151. Kang, T.-W.; Lim, H.-S.; Park, S.-J.; Sun, Y.-K.; Suh, K.-D. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries. Mater. Chem. Phys. 2017, 185, 6–13.

    Article  Google Scholar 

  152. Dai, R. L.; Sun, W. W.; Wang, Y. Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: Metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries. Electrochim. Acta 2016, 217, 123–131.

    Article  Google Scholar 

  153. Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100.

    Article  Google Scholar 

  154. Dai, K. H.; Zhao, H.; Wang, Z. H.; Song, X. Y.; Battaglia, V.; Liu, G. Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries. J. Power Sources 2014, 263, 276–279.

    Article  Google Scholar 

  155. Xun, S. D.; Song, X. Y.; Battaglia, V.; Liu, G. Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. J. Electrochem. Soc. 2013, 160, A849–A855.

    Article  Google Scholar 

  156. Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. The role of the morphology in the response of Sb-C nanocomposite electrodes in lithium cells. J. Power Sources 2008, 183, 339–343.

    Article  Google Scholar 

  157. Hasa, I.; Passerini, S.; Hassoun, J. A rechargeable sodiumion battery using a nanostructured Sb-C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015, 5, 48928–48934.

    Article  Google Scholar 

  158. Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.

    Article  Google Scholar 

  159. Hasa, I.; Passerini, S.; Hassoun, J. Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J. Power Sources 2016, 303, 203–207.

    Article  Google Scholar 

  160. Dailly, A.; Ghanbaja, J.; Willmann, P.; Billaud, D. Lithium insertion into new graphite-antimony composites. Electrochim. Acta 2003, 48, 977–984.

    Article  Google Scholar 

  161. Elia, G. A.; Panero, S.; Savoini, A.; Scrosati, B.; Hassoun, J. Mechanically milled, nanostructured Sn-C composite anode for lithium ion battery. Electrochim. Acta 2013, 90, 690–694.

    Article  Google Scholar 

  162. Park, C.-M.; Yoon, S.; Lee, S.-I.; Kim, J.-H.; Jung, J.-H.; Sohn, H.-J. High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries. J. Electrochem. Soc. 2007, 154, A917–A920.

    Article  Google Scholar 

  163. He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.

    Article  Google Scholar 

  164. Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801–A1805.

    Article  Google Scholar 

  165. Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

    Article  Google Scholar 

  166. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

    Article  Google Scholar 

  167. Ma, D. L.; Cao, Z. Y.; Hu, A. M. Si-based anode materials for li-ion batteries: A mini review. Nano-Micro Lett. 2014, 6, 347–358.

    Article  Google Scholar 

  168. Zhang, M.; Zhang, T. F.; Ma, Y. F.; Chen, Y. S. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater. 2016, 4, 1–14.

    Article  Google Scholar 

  169. Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Article  Google Scholar 

  170. Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484.

    Article  Google Scholar 

  171. Simon, P.; Tarascon, J.-M. The positive attributes of nanomaterials to the field of electrochemical energy storage [Stockage électrochimique de I’énergie]. Actual. Chim. 2009, 327–328, 87–97.

    Google Scholar 

  172. Sethuraman, V. A.; Nguyen, A.; Chon, M. J.; Nadimpalli, S. P. V.; Wang, H.; Abraham, D. P.; Bower, A. F.; Shenoy, V. B.; Guduru, P. R. Stress evolution in composite silicon electrodes during lithiation/delithiation. J. Electrochem. Soc. 2013, 160, A739–A746.

    Article  Google Scholar 

  173. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  174. Lin, Y.-M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. High performance silicon nanoparticle anode in fluoroethylene carbonatebased electrolyte for Li-ion batteries. Chem. Commun. 2012, 48, 7268–7270.

    Article  Google Scholar 

  175. Munaò, D.; Valvo, M.; Van Erven, J.; Kelder, E. M.; Hassoun, J.; Panero, S. Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 2012, 22, 1556–1561.

    Article  Google Scholar 

  176. Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.

    Article  Google Scholar 

  177. Leonard, S. S.; Cohen, G. M.; Kenyon, A. J.; Schwegler-Berry, D.; Fix, N. R.; Bangsaruntip, S.; Roberts, J. R. Generation of reactive oxygen species from silicon nanowires. Environ. Health Insights 2014, 8, 21–29.

    Google Scholar 

  178. Marinaro, M.; Weinberger, M.; Wohlfahrt-Mehrens, M. Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries. Electrochim. Acta 2016, 206, 99–107.

    Article  Google Scholar 

  179. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Article  Google Scholar 

  180. Zhou, M.; Li, X. L.; Wang, B.; Zhang, Y. B.; Ning, J.; Xiao, Z. C.; Zhang, X. H.; Chang, Y. H.; Zhi, L. J. High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 2015, 15, 6222–6228.

    Article  Google Scholar 

  181. Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y.-K.; Scrosati, B. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries. Nano Lett. 2012, 12, 5775–5779.

    Article  Google Scholar 

  182. New Battery Anode with Four Times the Capacity of Conventional Materials; XG Sciences, Inc.: Lansing, MI, USA. www.xgsciences.com/blog/2013/04/12/new-batteryanode/(accessed Jan 10, 2017).

  183. Amprius Demonstrates a Revolutionary New Tool for Roll-to-Roll Manufacturing of High-Energy Batteries; Amprius, Inc. Amprius, Inc.: Sunnyvale, CA, USA. www.amprius.com/news/news_amprius_20160523.htm (accesses Jan 10, 2017).

  184. Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem. Commun. 2012, 21, 65–68.

    Article  Google Scholar 

  185. Ellis, L. D.; Wilkes, B. N.; Hatchard, T. D.; Obrovac, M. N. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 2014, 161, A416–A421.

    Article  Google Scholar 

  186. Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atomlevel understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288.

    Article  Google Scholar 

  187. Mali, A.; Petric, A. EMF measurements of the Na-Si system. J. Phase Equilibria Diffus. 2013, 34, 453–458.

    Article  Google Scholar 

  188. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  Google Scholar 

  189. Fuller, C. S.; Severiens, J. C. Mobility of impurity ions in germanium and silicon. Phys. Rev. 1954, 96, 21–24.

    Article  Google Scholar 

  190. Kim, C. H.; Im, H. S.; Cho, Y. J.; Jung, C. S.; Jang, D. M.; Myung, Y.; Kim, H. S.; Back, S. H.; Lim, Y. R.; Lee, C.-W. et al. High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photo-detectors and lithium ion batteries. J. Phys. Chem. C 2012, 116, 26190–26196.

    Article  Google Scholar 

  191. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 2012, 6, 9932–9942.

    Article  Google Scholar 

  192. Abel, P. R.; Lin, Y. M.; De Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.

    Article  Google Scholar 

  193. Nitta, N.; Yushin, G. High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles. Part. Part. Syst. Charact. 2014, 31, 317–336.

    Article  Google Scholar 

  194. Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

    Article  Google Scholar 

  195. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.

    Article  Google Scholar 

  196. Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

    Article  Google Scholar 

  197. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

    Article  Google Scholar 

  198. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  199. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, 170–192.

    Article  Google Scholar 

  200. Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.

    Article  Google Scholar 

  201. Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876–15887.

    Article  Google Scholar 

  202. Hasa, I.; Verrelli, R.; Hassoun, J. Transition metal oxidecarbon composites as conversion anodes for sodium-ion battery. Electrochim. Acta 2015, 173, 613–618.

    Article  Google Scholar 

  203. Ming, J.; Ming, H.; Yang, W. J.; Kwak, W.-J.; Park, J.-B.; Zheng, J. W.; Sun, Y. K. A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv. 2015, 5, 8793–8800.

    Article  Google Scholar 

  204. Lu, Y. C.; Ma, C. Z.; Alvarado, J.; Kidera, T.; Dimov, N.; Meng, Y. S.; Okada, S. Electrochemical properties of tin oxide anodes for sodium-ion batteries. J. Power Sources 2015, 284, 287–295.

    Article  Google Scholar 

  205. Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  206. Hong, I.; Angelucci, M.; Verrelli, R.; Betti, M. G.; Panero, S.; Croce, F.; Mariani, C.; Scrosati, B.; Hassoun, J. Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. J. Power Sources 2014, 256, 133–136.

    Article  Google Scholar 

  207. Verrelli, R.; Scrosati, B.; Sun, Y. K.; Hassoun, J. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. ACS Appl. Mater. Interfaces 2014, 6, 5206–5211.

    Article  Google Scholar 

  208. Ponrouch, A.; Cabana, J.; Dugas, R.; Slackc, J. L.; Palacın, M. R. Electroanalytical study of the viability of conversion reactions as energy storage mechanisms. RSC Adv. 2014, 4, 35988–35996.

    Article  Google Scholar 

  209. Débart, A.; Dupont, L.; Poizot, P.; Leriche, J.-B.; Tarascon, J.-M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266–A1274.

    Article  Google Scholar 

  210. Wang, F.; Yu, H.-C.; Chen, M.-H.; Wu, L. J.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y. M.; Amatucci, G. G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1201.

    Article  Google Scholar 

  211. Lin, F.; Nordlund, D.; Weng, T.-C.; Zhu, Y.; Ban, C. M.; Richards, R. M.; Xin, H. L. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 2014, 5, 3358.

    Google Scholar 

  212. Su, L. W.; Zhou, Z.; Shen, P. W. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: Origin of Li storage capacity, J. Phys. Chem. C 2012, 116, 23974–23980.

    Article  Google Scholar 

  213. Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

    Article  Google Scholar 

  214. Bresser, D.; Passerini, S.; Scrosati, B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 2016, 9, 3348–3367.

    Article  Google Scholar 

  215. Bresser, D.; Paillard, E.; Kloepsch, R.; Krueger, S.; Fiedler, M.; Schmitz, R.; Baither, D.; Winter, M.; Passerini, S. Carbon coated ZnFe2O4 nanoparticles for advanced lithiumion anodes. Adv. Energy Mater. 2013, 3, 513–523.

    Article  Google Scholar 

  216. Lin, L.; Pan, Q. M. ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J. Mater. Chem. A 2015, 3, 1724–1729.

    Article  Google Scholar 

  217. Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.

    Article  Google Scholar 

  218. Huang, B.; Tai, K. P.; Zhang, M. G.; Xiao, Y. R.; Dillon, S. J. Comparative study of Li and Na electrochemical reactions with iron oxide nanowires. Electrochim. Acta 2014, 118, 143–149.

    Article  Google Scholar 

  219. Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945–2953.

    Article  Google Scholar 

  220. Koo, B.; Chattopadhyay, S.; Shibata, T.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 2013, 25, 245–252.

    Article  Google Scholar 

  221. Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057–5060.

    Article  Google Scholar 

  222. Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 2014, 116, 512–517.

    Article  Google Scholar 

  223. Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 2013, 29, 8–11.

    Article  Google Scholar 

  224. Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.

    Article  Google Scholar 

  225. Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticledecorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

    Google Scholar 

  226. Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

    Article  Google Scholar 

  227. Zhu, C. B.; Mu, X. K.; Van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152–2156.

    Article  Google Scholar 

  228. Ryu, W.-H.; Jung, J.-W.; Park, K.; Kim, S.-J.; Kim, I.-D. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 2014, 6, 10975–10981.

    Article  Google Scholar 

  229. Jung, H.-G.; Hassoun, J.; Park, J.-B.; Sun, Y.-K.; Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 2012, 4, 579–585.

    Article  Google Scholar 

  230. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  Google Scholar 

  231. Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.

    Article  Google Scholar 

  232. Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 2013, 15, 11661–11672.

    Article  Google Scholar 

  233. Elia, G. A.; Hasa, I.; Hassoun, J. Characterization of a reversible, low-polarization sodium-oxygen battery. Electrochim. Acta 2016, 191, 516–520.

    Article  Google Scholar 

  234. Das, S. K.; Lau, S.; Archer, L. A. Sodium-oxygen batteries: A new class of metal-air batteries. J. Mater. Chem. A 2014, 2, 12623–12629.

    Article  Google Scholar 

  235. Hassoun, J.; Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem., Int. Ed. 2010, 49, 2371–2374.

    Article  Google Scholar 

  236. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

    Article  Google Scholar 

  237. Mueller, F.; Bresser, D.; Chakravadhanula, V. S. K.; Passerini, S. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. J. Power Sources 2015, 299, 398–402.

    Article  Google Scholar 

  238. Wu, L.; Lu, H. Y.; Xiao, L. F.; Qian, J. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 16424–16428.

    Article  Google Scholar 

Download references

Acknowledgements

S. P. acknowledges the financial support of the Helmholtz Association. J. H. acknowledges the support of University of Ferrara by Fondo di Ateneo per la Ricerca scientifica (FAR) 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivana Hasa, Jusef Hassoun or Stefano Passerini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasa, I., Hassoun, J. & Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 10, 3942–3969 (2017). https://doi.org/10.1007/s12274-017-1513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1513-7

Keywords

Navigation