Skip to main content

Advertisement

Log in

Microwave hydrothermal synthesis of SbVO4 nanospheres as anode materials for sodium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sb-based compounds are regarded as promising anode materials for sodium ion batteries (SIBs). Here, uniform SbVO4 nanospheres with an average size of around 100 nm are prepared by a facile microwave hydrothermal treating the mixed solution of SbF3 and NaVO3 at 160 °C for 90 min. When evaluated as an anode material for SIBs, the SbVO4 electrode displays superior sodium storage properties with good cycling stability and high rate capability, delivering a high reversible capacity of 318 mAh/g after 50 cycles at 200 mA/g and even 210 mAh/g at high current densities of 2 A/g. This work opens the door for convenient synthesis of nanostructured SbVO4 as excellent anode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Article  CAS  Google Scholar 

  3. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  CAS  Google Scholar 

  4. Wang H, Yang X, Wu Q, Zhang Q, Chen H, Jing H, Wang J, Mi S-B, Rogach AL, Niu C (2018) Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage. ACS Nano 12(4):3406–3416

    Article  CAS  Google Scholar 

  5. Lu JS, Maggay IVB, Liu WR (2018) CoV2O4: a novel anode material for lithium-ion batteries with excellent electrochemical performance. Chem Commun 54(25):3094–3097

    Article  CAS  Google Scholar 

  6. Wang H, Huang H, Niu C, Rogach AL (2015) Ternary Sn–Ti–O based nanostructures as anodes for lithium ion batteries. Small 11(12):1364–1383

    Article  CAS  Google Scholar 

  7. Cao D, Wang H, Li B, Li C, Xie S, Rogach AL, Niu C (2016) Hydrothermal synthesis of SnO2 embedded MoO3-x nanocomposites and their synergistic effects on lithium storage. Electrochim Acta 216:79–87

    Article  CAS  Google Scholar 

  8. Doeff MM, Ma Y, Visco SJ, Dejonghe LC (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140(12):169–170

    Article  Google Scholar 

  9. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  CAS  Google Scholar 

  10. Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014

    Article  CAS  Google Scholar 

  11. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2(7):873–877

    Article  CAS  Google Scholar 

  12. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27(1):85–88

    Article  CAS  Google Scholar 

  13. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100

    Article  CAS  Google Scholar 

  14. Hueso KB, Armand M, Rojo T (2013) High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 6(3):734–749

    Article  CAS  Google Scholar 

  15. Su D, Wang C, Ahn HJ, Wang G (2013) Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem Eur J 19(33):10884–10889

    Article  CAS  Google Scholar 

  16. Wang J, Cao D, Yang G, Yang Y, Wang H (2017) Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. J Solid State Electrochem 21(10):3047–3055

    Article  CAS  Google Scholar 

  17. Yang X, Zhang J, Wang Z, Wang H, Zhi C, Yu DYW, Rogach AL (2018) Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small 14(7):1702669

    Article  Google Scholar 

  18. Yang X, Wang H, Yu Denis YW, Rogach Andrey L (2018) Vacuum calcination induced conversion of selenium/carbon wires to tubes for high-performance sodium–selenium batteries. Adv Funct Mater 28(8):1706609

    Article  Google Scholar 

  19. Bodenes L, Darwiche A, Monconduit L, Martinez H (2015) The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources 273:14–24

    Article  CAS  Google Scholar 

  20. Li W, Wang K, Cheng S, Jiang K (2017) A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. J Mater Chem A 5(3):1160–1167

    Article  CAS  Google Scholar 

  21. Nam DH, Hong KS, Lim SJ, Kim MJ, Kwon HS (2015) High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 11(24):2885–2892

    Article  CAS  Google Scholar 

  22. Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y (2015) Large-scale highly ordered Sb nanorod arrays anode with high capacity and rate capability for sodium-ion batteries. Energy Environ Sci 8(10):2954–2962

    Article  CAS  Google Scholar 

  23. Wang N, Bai Z, Qian Y, Yang J (2016) Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv Mater 28(21):4126–4133

    Article  CAS  Google Scholar 

  24. Hu MJ, Jiang YZ, Sun WP, Wang HT, Jin CH, Yan M (2014) Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl Mater Interfaces 6(21):19449–19455

    Article  CAS  Google Scholar 

  25. Liu J, Yu LT, Wu C, Wen YR, Yin KB, Chiang FK, Hu RZ, Liu JW, Sun LT, Gu L, Maier J, Yu Y, Zhu M (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17(3):2034–2042

    Article  CAS  Google Scholar 

  26. Wang H, Wang J, Cao D, Gu H, Li B, Lu X, Han X, Rogach AL, Niu C (2017) Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance. J Mater Chem A 5(15):6817–6824

    Article  CAS  Google Scholar 

  27. Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T (2019) Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A 7(7):3024–3030

    Article  CAS  Google Scholar 

  28. Wang P, Xie S, She Y, Fan W, Leung MKH, Wang H (2019) Microwave-hydrothermal synthesis of hierarchical Sb2WO6 nanostructures as a new anode material for sodium storage. ChemistrySelect 4(3):1078–1083

    Article  CAS  Google Scholar 

  29. Lu X, Wang Z, Liu K, Luo J, Wang P, Niu C, Wang H, Li W (2019) Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Storage Mater 17:101–110

    Article  Google Scholar 

  30. Pan J, Zhang Y, Li L, Cheng Z, Li Y, Yang X, Yang J, Qian Y (2019) Polyanions enhance conversion reactions for lithium/sodium-ion batteries: the case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods:1900231

  31. Landa-Cánovas A, Nilsson J, Hansen S, Ståhl K, Andersson A (1995) On the nonstoichiometry in rutile-type ≈SbVO4. J Solid State Chem 116(2):369–377

    Article  Google Scholar 

  32. Cavani F, Ligi S, Masetti S, Trifirò F (1998) SbVO4: the chemistry of preparation. In: Delmon B, Jacobs PA, Maggi R, Martens JA, Grange P, Poncelet G (eds) Studies in surface science and catalysis, Elsevier, p 377–384. Vol. 118

  33. Lu X, Wang P, Liu K, Niu C, Wang H (2018) Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage. Chem Eng J 336:701–709

    Article  CAS  Google Scholar 

  34. Lu X, Wang Z, Lu L, Yang G, Niu C, Wang H (2016) Synthesis of hierarchical Sb2MoO6 architectures and their electrochemical behaviors as anode materials for Li-ion batteries. Inorg Chem 55(14):7012–7019

    Article  CAS  Google Scholar 

  35. Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ (2014) Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A 2(43):18208–18214

    Article  CAS  Google Scholar 

  36. Liu S, Tong Z, Zhao J, Liu X, Wang J, Ma X, Chi C, Yang Y, Liu X, Li Y (2016) Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys Chem Chem Phys 18(36):25645–25654

    Article  CAS  Google Scholar 

  37. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087

    Article  CAS  Google Scholar 

  38. Ramam K, Shaikh AM, Reddy BS, Viswamitra MA (1975) Crystal structure of ferroelectric sodium meta vanadate, NaVO3. Ferroelectrics 9(1):49–56

    Article  Google Scholar 

  39. Xiong X, Wang G, Lin Y, Wang Y, Ou X, Zheng F, Yang C, Wang JH, Liu M (2016) Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12):10953–10959

    Article  CAS  Google Scholar 

  40. Wu X, Yao S (2017) Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42:143–150

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Basis Research Plan in Shaanxi Province (No. 2018JM5085), Tang Scholar Program from the Cyrus Tang Foundation, and the Natural Science Foundation for Youths of Hunan Provincial of China (No. 2019JJ50206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, P., Zhang, J. et al. Microwave hydrothermal synthesis of SbVO4 nanospheres as anode materials for sodium ion batteries. Ionics 26, 1267–1273 (2020). https://doi.org/10.1007/s11581-019-03308-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03308-7

Keywords

Navigation