Skip to main content

Advertisement

Log in

Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony (Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications (LIBs or SIBs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    Article  Google Scholar 

  2. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.

    Article  Google Scholar 

  3. Mai L, Tian X, Xu X, Chang L, Xu L. Nanowire electrodes for electrochemical energy storage devices. Chem Rev. 2014;114(23):11828.

    Article  Google Scholar 

  4. Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(26):947.

    Article  Google Scholar 

  5. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.

    Article  Google Scholar 

  6. Palomares V, Serras P, Villaluenga I, Hueso KB, Carreterogonzález J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5(3):5884.

    Article  Google Scholar 

  7. Wang X, Niu C, Meng J, Ping H, Xu X, Wei X, Zhou L, Zhao K, Luo W, Yan M, Mai L. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater. 2015;5(17):939.

    Article  Google Scholar 

  8. Han MH, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxide: powerful cathode for Na-ion battery. Energy Environ Sci. 2014;8(1):81.

    Article  Google Scholar 

  9. Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries. A look into the future. Energy Environ Sci. 2011;4(9):3287.

    Article  Google Scholar 

  10. Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 2012;5(7):7854.

    Article  Google Scholar 

  11. Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D. Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano. 2014;8(5):4415.

    Article  Google Scholar 

  12. Luo W, Zhang P, Wang X, Li Q, Dong Y, Hua J, Zhou L, Mai L. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J Power Sources. 2016;304:340.

    Article  Google Scholar 

  13. Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv. 2015;5(39):30793.

    Article  Google Scholar 

  14. Ji L, Zhou W, Chabot V, Yu A, Xiao X. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium ion batteries. ACS Appl Mater Interfaces. 2015;7(44):24895.

    Article  Google Scholar 

  15. Liu J, Yang Z, Wang J, Gu L, Maier J, Yu Y. Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy. 2015;16:389.

    Article  Google Scholar 

  16. Tran CCH, Autret C, Damas C, Claude-Montigny B, Santos-Peña J. An electrochemical study of Fe1.18Sb1.82 as negative electrode for sodium ion batteries. Electrochim Acta. 2015;182(9):11.

    Article  Google Scholar 

  17. Yang J. Sub-microcrystalline Sn and Sn–SnSb powders as lithium storage materials for lithium-ion batteries. Electrochem Solid State Lett. 1999;2(4):161.

    Article  Google Scholar 

  18. Yang J, Takeda Y, Imanishi N, Yamamoto O. Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries. J Electrochem Soc. 1999;146(146):4009.

    Article  Google Scholar 

  19. Li H, Shi L, Lu W, Huang X, Chen L. Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries. J Electrochem Soc. 2001;148(8):A915.

    Article  Google Scholar 

  20. Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. ChemInform. 2012;24(24):1903.

    Google Scholar 

  21. Wang Y, Cao G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater. 2008;20(12):2251.

    Article  Google Scholar 

  22. Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci. 2011;4(8):2682.

    Article  Google Scholar 

  23. Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. ChemInform. 2010;39(42):3115.

    Google Scholar 

  24. Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev. 2014;114(23):11444.

    Article  Google Scholar 

  25. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources. 2011;196(1):13.

    Article  Google Scholar 

  26. Xie J, Cao GS, Zhao XB, Zhong YD, Zhao MJ. Electrochemical performances of nanosized intermetallic compound CoSb2 prepared by the solvothermal route. J Electrochem Soc. 2004;151(11):A1905.

    Article  Google Scholar 

  27. Xie J, Zhao XB, Cao GS, Zhong YD, Zhao MJ, Tu JP. Solvothermal synthesis of nanosized CoSb2 alloy anode for Li-ion batteries. Electrochim Acta. 2005;50(9):1903.

    Article  Google Scholar 

  28. Xie J, Zhao XB, Cao GS, Zhao MJ, Su SF. Solvothermal synthesis and electrochemical performances of nanosized CoSb3 as anode materials for Li-ion batteries. J Power Sources. 2005;140(2):350.

    Article  Google Scholar 

  29. Xie J, Zhao XB, Cao GS, Zhao MJ. Electrochemical performance of CoSb3/MWNTs nanocomposite prepared by in situ solvothermal synthesis. Electrochim Acta. 2005;50(13):2725.

    Article  Google Scholar 

  30. Xie J, Zhao XB, Yu HM, Qi H, Cao GS, Tu JP. Low temperature solvothermal synthesis of nanosized NiSb as a Li-ion battery anode material. J Alloy Compd. 2007;441(1–2):231.

    Article  Google Scholar 

  31. Xie J, Zhao XB, Cao GS, Zhao MJ, Su SF. Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route. J Alloy Compd. 2005;393(1):283.

    Article  Google Scholar 

  32. He Y, Huang L, Li X, Xiao Y, Xu GL, Li JT, Sun SG. Facile synthesis of hollow Cu2Sb@C core–shell nanoparticles as a superior anode material for lithium ion batteries. J Mater Chem. 2011;21(46):18517.

    Article  Google Scholar 

  33. Sarakonsri T, Johnson CS. Solution route synthesis of InSb, Cu6Sn5 and Cu2Sb electrodes for lithium batteries. J Power Sources. 2006;153(2):319.

    Article  Google Scholar 

  34. Ren J, He X, Pu W, Jiang C, Wan C. Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li-ion batteries. Electrochim Acta. 2006;52(4):1538.

    Article  Google Scholar 

  35. Wang F, Zhao M, Song X. The improved electrochemical performance of SnSb-based alloy anode materials for Li-ion batteries. J Alloy Compd. 2009;472(1):55.

    Article  Google Scholar 

  36. Shi L, Li H, Wang Z, Huang X, Chen L. Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. J Mater Chem. 2001;11(5):1502.

    Article  Google Scholar 

  37. Li H, Wang Q, Shi L, Chen L, Huang X. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. Chem Mater. 2001;14(1):103.

    Article  Google Scholar 

  38. Chen WX, Lee JY, Liu Z. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon. 2003;41(5):959.

    Article  Google Scholar 

  39. Wachtler M, Wagner MR, Schroettner H. Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ionics. 2004;168(1):51.

    Google Scholar 

  40. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater. 2007;19(10):2406.

    Article  Google Scholar 

  41. Li J, Ru Q, Hu S, Sun D, Zhang B, Hou X. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim Acta. 2013;113(4):505.

    Article  Google Scholar 

  42. Fan S, Sun T, Rui X, Yan Q, Hng HH. Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries. J Power Sources. 2012;201(1):288.

    Article  Google Scholar 

  43. Tang X, Yan F, Wei Y, Zhang M, Wang T, Zhang T. Encapsulating Sn x Sb nanoparticles in multichannel graphene-carbon fibers as flexible anodes to store lithium ions with high capacities. ACS Appl Mater Interfaces. 2015;7(39):21890.

    Article  Google Scholar 

  44. Nithyadharseni P, Reddy MV, Nalini B, Ravindran TR, Pillai BC, Kalpana M, Chowdari BVR. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries. Mater Res Bull. 2015;70:478.

    Article  Google Scholar 

  45. Zhang P, Wang Y, Wang Y, Ren X, Liu K, Chen S. Electrochemical lithiation and delithiation performance of SnSb–Ag/carbon nanotube composites for lithium-ion batteries. J Power Sources. 2013;233(4):166.

    Article  Google Scholar 

  46. Li H, Wang Q, Shi L, Chen L, Huang X. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. ChemInform. 2002;14(13):103.

    Google Scholar 

  47. Seng KH, Guo ZP, Chen ZX, Liu HK. SnSb/Graphene composite as anode materials for lithium ion batteries. J Comput Theor Nanos. 2010;4(1):18.

    Google Scholar 

  48. Song S, Huo P, Fan W, Shi W, Yan Y. The facile synthesis of SnSb/graphene composites and their enhanced electrochemical performance for lithium-ion batteries. Sci Adv Mater. 2013;5(12):1801.

    Article  Google Scholar 

  49. Walter M, Doswald S, Kovalenko MV. Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J Mater Chem A. 2016;4(18):7053.

    Article  Google Scholar 

  50. He M, Walter M, Kravchyk KV, Erni R, Widmer R, Kovalenko MV. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale. 2014;7(2):455.

    Article  Google Scholar 

  51. Zhang DL. Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci. 2004;49(3–4):537.

    Article  Google Scholar 

  52. Zhao XB, Cao GS. A study of Zn4Sb3 as a negative electrode for secondary lithium cells. Electrochim Acta. 2001;46(6):891.

    Article  Google Scholar 

  53. Park CM, Sohn HJ. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Adv Mater. 2010;22(1):47.

    Article  Google Scholar 

  54. Park CM, Jeon KJ. Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun. 2010;47(7):2122.

    Article  Google Scholar 

  55. Park CM, Sohn HJ. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochim Acta. 2009;54(26):6367.

    Article  Google Scholar 

  56. Leibowitz J, Allcorn E, Manthiram A. SnSb–TiC–C nanocomposite alloy anodes for lithium-ion batteries. J Power Sources. 2015;279:549.

    Article  Google Scholar 

  57. Darwiche A, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem Commun. 2013;32(32):18.

    Article  Google Scholar 

  58. Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.

    Article  Google Scholar 

  59. Kim IT, Kim SO, Manthiram A. Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries. J Power Sources. 2014;269(3):848.

    Article  Google Scholar 

  60. Tian Q, Zhang Z, Yang L, Hirano SI. Fabrication of mesoporous titanium dioxide/tin dioxide/carbon hollow microspheres as high performance anode for lithium-ion batteries. J Power Sources. 2015;279:528.

    Article  Google Scholar 

  61. Wang M, Zhao H, He J, Wang R, Chen J, Chen N. Preparation and electrochemical performance of CoSb alloy anode material for Li-ion batteries. J Alloy Compd. 2009;484(1–2):864.

    Article  Google Scholar 

  62. Park CM, Sohn HJ. Electrochemical characteristics of TiSb2 and Sb/TiC/C nanocomposites as anodes for rechargeable Li-Ion batteries. J Electrochem Soc. 2010;157(1):A46.

    Article  Google Scholar 

  63. Simonin L, Lafont U, Kelder EM. SnSb micron-sized particles for Li-ion batteries. J Power Sources. 2008;180(2):859.

    Article  Google Scholar 

  64. Guo H, Zhao H, Jia X, Qiu W, Cui F. Synthesis and electrochemical characteristics of Sn–Sb–Ni alloy composite anode for Li-ion rechargeable batteries. Mater Res Bull. 2007;42(5):836.

    Article  Google Scholar 

  65. Yang T, Wang H, Xu J, Wang L, Song WC, Mao Y, Ma J. Preparation of a Sb/Cu2Sb/C composite as an anode material for lithium-ion batteries. RSC Adv. 2016;6(82):78959.

    Article  Google Scholar 

  66. Yang YW, Liu F, Li TY, Chen YB, Wu YC, Kong MG. Electrochemical performance of template-synthesized CoSb nanowires array as an anode material for lithium ion batteries. Scripta Mater. 2012;66(7):495.

    Article  Google Scholar 

  67. Yang YW, Li TY, Liu F, Zhu WB, Li XL, Wu YC, Kong MG. Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries. Microelectron Eng. 2013;104:1.

    Article  Google Scholar 

  68. Saadat S, Zhu J, Shahjamali MM, Maleksaeedi S, Tay YY, Tay BY, Hng HH, Ma J, Yan Q. Template free electrochemical deposition of ZnSb nanotubes for Li ion battery anodes. Chem Commun. 2011;47(35):9849.

    Article  Google Scholar 

  69. Bryngelsson H, Eskhult J, Nyholm L, Edström K. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim Acta. 2008;53(24):7226.

    Article  Google Scholar 

  70. Mosby JM, Prieto AL. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. J Am Chem Soc. 2008;130(32):10656.

    Article  Google Scholar 

  71. Sun Y, Xia Y. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003;3(11):1569.

    Article  Google Scholar 

  72. Au L, Lu X, Xia Y. A comparative study of galvanic replacement reactions involving ag nanocubes and AuCl2− or AuCl4−. Adv Mater. 2008;20(13):2517.

    Article  Google Scholar 

  73. Oh MH, Hyeon T. Galvanic replacement reactions in metal oxide nanocrystals. Science. 2013;340(6135):964.

    Article  Google Scholar 

  74. Hou H, Cao X, Yang Y, Fang L, Pan C, Yang X, Song W, Ji X. NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. Chem Commun. 2014;50(60):8201.

    Article  Google Scholar 

  75. Chen J, Yin Z, Sim D, Tay YY, Zhang H, Ma J, Hng HH, Yan Q. Controlled CVD growth of Cu–Sb alloy nanostructures. Nanotechnology. 2011;22(32):325602.

    Article  Google Scholar 

  76. Xu J, Wu H, Wang F, Xia Y, Zheng G. Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability. Adv Energy Mater. 2013;3(3):286.

    Article  Google Scholar 

  77. Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014;7(10):1466.

    Article  Google Scholar 

  78. Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun. 2015;6:7402.

    Article  Google Scholar 

  79. Ren W, Zheng Z, Luo Y, Chen W, Niu C, Zhao K, Yan M, Zhang L, Meng J, Mai L. An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A. 2015;3(39):19850.

    Article  Google Scholar 

  80. Shiva K, Rajendra HB, Bhattacharyya AJ. Electrospun SnSb crystalline nanoparticles inside porous carbon fibers as a high stability and rate capability anode for rechargeable batteries. Chem Plus Chem. 2014;80(3):516.

    Google Scholar 

  81. Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C, Zhang J, Liu J. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901.

    Article  Google Scholar 

  82. Niu X, Zhou H, Li Z, Shan X, Xia X. Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J Alloy Compd. 2015;620:308.

    Article  Google Scholar 

  83. Caillat T, Fleurial JP, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn4Sb3. J Phys Chem Solids. 1997;58(7):1119.

    Article  Google Scholar 

  84. Zhao X, Cao G, Li T. Electrochemical properties of Zn4Sb3 as anode materials for lithium-ion batteries. J Mater Sci Lett. 2000;19(10):851.

    Article  Google Scholar 

  85. Zhao X, Cao G, Lv C, Zhang L, Hu S, Zhu T, Zhou B. Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries. J Alloy Compd. 2001;315(1):265.

    Article  Google Scholar 

  86. Baggetto L, Marszewski M, Górka J, Jaroniec M, Veith GM. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sources. 2013;243(1):699.

    Article  Google Scholar 

  87. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2013;1(37):11163.

    Article  Google Scholar 

  88. Yang J, Takeda Y, Imanishi N, Ichikawa T, Yamamoto O. SnSb x based composite electrodes for lithium ion cells. Solid State Ionics. 2000;135(1):175.

    Article  Google Scholar 

  89. Yang J, Takeda Y, Imanishi N, Xie JY, Yamamoto O. Intermetallic SnSb x compounds for lithium insertion hosts. Solid State Ionics. 2000;133(3–4):189.

    Article  Google Scholar 

  90. Yoshida K, Sano Y, Tomii Y. Study on microstructural deformation of working Sn and SnSb anode particles for Li-ion batteries by in situ transmission X-ray microscopy. J Phys Chem C. 2011;115(44):22040.

    Article  Google Scholar 

  91. Baggetto L, Hah HY, Jumas JC, Johnson CE, Johnson JA, Keum JK, Bridges CA, Veith GM. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies. J Power Sources. 2014;267(267):329.

    Article  Google Scholar 

  92. Xie J, Song W, Zheng Y, Liu S, Zhu T, Cao G, Zhao X. Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. Int J Smart Nano Mater. 2011;2(4):1.

    Article  Google Scholar 

  93. Birrozzi A, Maroni F, Raccichini R, Tossici R, Marassi R, Nobili F. Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application. J Power Sources. 2015;294:248.

    Article  Google Scholar 

  94. Tang X, Wei Y, Zhang H, Yan F, Zhuo M, Chen C, Xiao P, Liang J, Zhang M. The positive influence of graphene on the mechanical and electrochemical properties of Sn x Sb-graphene-carbon porous mats as binder-free electrodes for Li+ storage. Electrochim Acta. 2015;186:223.

    Article  Google Scholar 

  95. Saadat S, Tay YY, Zhu J, Teh PF, Maleksaeedi S, Shahjamali MM, Shakerzadeh M, Srinivasan M, Tay BY, Hng HH, Ma J, Yan Q. Template-free electrochemical deposition of interconnected ZnSb nanoflakes for li-ion battery anodes. Chem Mater. 2011;23(4):1032.

    Article  Google Scholar 

  96. Fransson LML, Vaughey JT, Benedek R, Edström K, Thomas JO, Thackeray MM. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study. Electrochem Commun. 2001;3(7):317.

    Article  Google Scholar 

  97. Larcher D. In situ X-ray study of the electrochemical reaction of Li with Cu6Sn5. J Electrochem Soc. 2000;147(5):1658.

    Article  Google Scholar 

  98. Johnson CS, Vaughey JT, Thackeray MM, Sarakonsri T, Hackney SA, Fransson L, Edströmc K, Thomas JO. Electrochemistry and in situ X-ray diffraction of InSb in lithium batteries. Electrochem Commun. 2000;2(8):595.

    Article  Google Scholar 

  99. Morcrette M, Larcher D, Tarascon JM, Edström K, Vaughey JT, Thackeray MM. Influence of electrode microstructure on the reactivity of Cu2Sb with lithium. Electrochim Acta. 2007;52(17):5339.

    Article  Google Scholar 

  100. Applestone DS. Cu2Sb–Al2O3–C nanocomposite alloy anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2014;6(14):10886.

    Article  Google Scholar 

  101. He Y, Huang L, Li JT, Sun SG. Facile Synthesis of Sb-Cu2Sb@C core-shell nanocomposite as a superior anode material for lithium ion batteries. J Interfaces Cytok Res. 2013;34(3):148.

    Google Scholar 

  102. Alcántara R, Fernández-Madrigal FJ, Lavela P, Tirado JL, Jumas JC, Olivier-Fourcade J. Electrochemical reaction of lithium with the CoSb3 skutterudite. J Mater Chem. 1999;9(10):2517.

    Article  Google Scholar 

  103. Xie J, Zhao X, Cao G, Zhong Y, Zhao M. Ex-situ XRD studies of CoSb3 compound as the anode material for lithium ion batteries. J Electroanal Chem. 2003;542(2):1.

    Article  Google Scholar 

  104. Tarascon JM, Morcrette M, Dupont L, Chabre Y, Payen C, Larcher D, Pralong V. On the electrochemical reactivity mechanism of CoSb3 vs. lithium. J Electrochem Soc. 2003;150(6):A732.

    Article  Google Scholar 

  105. Park MG, Song JH, Sohn JS, Lee CK, Park CM. Co–Sb intermetallic compounds and their disproportionated nanocomposites as high-performance anodes for rechargeable Li-ion batteries. J Mater Chem A. 2014;2(29):11391.

    Article  Google Scholar 

  106. Zhu J, Sun T, Chen J, Shi W, Zhang X, Lou X, Mhaisalkar S, Hng HH, Boey F, Ma J, Yan Q. Controlled synthesis of Sb nanostructures and their conversion to CoSb3 nanoparticle chains for li-ion battery electrodes. Chem Mater. 2010;22(18):5333.

    Article  Google Scholar 

  107. Villevieille C, Ionica-Bousquet CM, Ducourant B, Jumas JC, Monconduit L. NiSb2 as negative electrode for Li-ion batteries: an original conversion reaction. J Power Sources. 2007;172(1):388.

    Article  Google Scholar 

  108. Villevieille C, Ionica-Bousquet CM, Jumas JC, Monconduit L. 121Sb Mössbauer study of the electrochemical reaction of NiSb2 vs lithium. Hyperfine Interact. 2008;187(1):71.

    Article  Google Scholar 

  109. Baggetto L, Allcorn E, Unocic R, Manthiram A, Veith G. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2013;1(37):11163.

    Article  Google Scholar 

  110. Fransson L, Vaughey J, Edström K, Thackeray M. Structural transformations in intermetallic electrodes for lithium batteries an in situ X-ray diffraction study of lithiated MnSb and Mn2Sb. J Electrochem Soc. 2003;150(1):A86.

    Article  Google Scholar 

  111. Ionica CM, Lippens PE, Fourcade JO, Jumas JC. Study of Li insertion mechanisms in transition metal antimony compounds as negative electrodes for Li-ion battery. J Power Sources. 2005;146(1):478.

    Article  Google Scholar 

  112. Ionica-Bousquet CM, Womes M, Lippens PE, Olivier-Fourcade J, Ducourant B, Chadwick AV. Evaluation of structural and electrochemical properties of the MnSb-Li system as anode for Li-ion batteries. Heidelberg: ICAME 2005; 2006. 773.

    Google Scholar 

  113. Hewitt K, Beaulieu L, Dahn J. Electrochemistry of InSb as a Li insertion host: problems and prospects. J Electrochem Soc. 2001;148(5):A402.

    Article  Google Scholar 

  114. Johnson C, Vaughey J, Thackeray M, Sarakonsri T, Hackney S, Fransson L, Edströmc K, Thomas JO. Electrochemistry and in situ X-ray diffraction of InSb in lithium batteries. Electrochem Commun. 2000;2(8):595.

    Article  Google Scholar 

  115. Kropf A, Tostmann H, Johnson C, Vaughey J, Thackeray M. An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries. Electrochem Commun. 2001;3(5):244.

    Article  Google Scholar 

  116. Tostmann H, Kropf A, Johnson C, Vaughey J, Thackeray M. In situ X-ray absorption studies of electrochemically induced phase changes in lithium-doped InSb. Phys Rev B. 2002;66(1):014106.

    Article  Google Scholar 

  117. Vaughey J, Fransson L, Swinger H, Edström K, Thackeray M. Alternative anode materials for lithium-ion batteries: a study of Ag3Sb. J Power Sources. 2003;119:64.

    Article  Google Scholar 

  118. Zhao M, Zheng Q, Wang F, Qin Y, Song X. Nano-sized SnSbAg x alloy anodes prepared by reductive co-precipitation method used as lithium-ion battery materials. J Nanos Nanotechnol. 2010;10(11):7025.

    Article  Google Scholar 

  119. Yin J, Wada M, Tanase S, Sakai T. Electrode properties and lithiation/delithiation reactions of Ag–Sb–Sn nanocomposite anodes in Li-ion batteries. J Electrochem Soc. 2004;151(6):A867.

    Article  Google Scholar 

  120. Rönnebro E, Yin J, Kitano A, Wada M, Tanase S, Sakai T. Reaction mechanism of a Ag36.4Sb15.6Sn48 nanocomposite electrode for advanced Li-ion batteries. J Electrochem Soc. 2005;152(1):A152.

    Article  Google Scholar 

  121. Gnanapoongothai T, Murugan R, Palanivel B. First-principle study on lithium intercalated antimonides Ag3Sb and Mg3Sb2. Ionics. 2015;21(5):1351.

    Article  Google Scholar 

  122. Honda H, Sakaguchi H, Tanaka I, Esaka T. Anode behaviors of magnesium–antimony intermetallic compound for lithium secondary battery. J Power Sources. 2003;123(2):216.

    Article  Google Scholar 

  123. Gómez-Cámer JL, Novák P. Polyacrylate bound TiSb2 electrodes for Li-ion batteries. J Power Sources. 2015;273:174.

    Article  Google Scholar 

  124. Marino C, Sougrati MT, Gerke B, Pottgen R, Huo H, Ménétrier M, Grey CP, Monconduit L. Role of structure and interfaces in the performance of TiSnSb as an electrode for Li-ion batteries. Chem Mater. 2012;24(24):4735.

    Article  Google Scholar 

  125. Sougrati MT, Fullenwarth J, Debenedetti A, Fraisse B, Jumas JC, Monconduit L. TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations by operando-XRD and Mössbauer techniques. J Mater Chem. 2011;21(27):10069.

    Article  Google Scholar 

  126. Larcher D, Beaulieu L, Mao O, George A, Dahn J. Study of the reaction of lithium with isostructural A2B and various Al x B alloys. J Electrochem Soc. 2000;147(5):1703.

    Article  Google Scholar 

  127. Fernández-Madrigal FJ, Lavela P, Pérez-Vicente C, Tirado JL. Electrochemical reactions of polycrystalline CrSb2 in lithium batteries. J Electroanal Chem. 2001;501(1):205.

    Article  Google Scholar 

  128. Park CM, Sohn HJ. Antimonides (FeSb2, CrSb2) with orthorhombic structure and their nanocomposites for rechargeable Li-ion batteries. Electrochim Acta. 2010;55(17):4987.

    Article  Google Scholar 

  129. Villevieille C, Fraisse B, Womes M, Jumas JC, Monconduit L. A new ternary Li4FeSb2 structure formed upon discharge of the FeSb2/Li cell. J Power Sources. 2009;189(1):324.

    Article  Google Scholar 

  130. Baggetto L, Hah H-Y, Johnson CE, Bridges CA, Johnson JA, Veith GM. The reaction mechanism of FeSb2 as anode for sodium-ion batteries. Phys Chem Chem Phys. 2014;16(20):9538.

    Article  Google Scholar 

  131. Villevieille C, Ionica-Bousquet C, Fraisse B, Zitoun D, Womes M, Jumas JC, Monconduit L. Comparative study of NiSb2 and FeSb2 as negative electrodes for Li-ion batteries. Solid State Ionics. 2011;192(1):351.

    Article  Google Scholar 

  132. Zhao Y, Manthiram A. Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem Commun. 2015;51(67):13205.

    Article  Google Scholar 

  133. Luo W, Calas A, Tang C, Li F, Zhou L, Mai L. Ultralong Sb2Se3 nanowire based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl Mater Interfaces. 2016;8(51):35219.

    Article  Google Scholar 

  134. Zhou X, Liu X, Xu Y, Dai Z, Bao J. An SbO x /reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries. J Phys Chem C. 2014;118(41):23527.

    Article  Google Scholar 

  135. Sun Q, Ren Q, Li H, Fu Z. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem Commun. 2011;13(12):1462.

    Article  Google Scholar 

  136. Chen X, Ru Q, Wang Z, Hou X, Hu S. Ternary Sn–Sb–Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes. Mater Lett. 2017;191:218.

    Google Scholar 

  137. Pang XJ, Tan CH, Dai XH, Wang X, Qi GW, Zhang SY. Performance enhancement of Sn–Sb–Co alloy film anode for lithium-ion batteries via post electrodissolution treatment. J Appl Electrochem. 2015;45(2):115.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Program of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (No. 51521001), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the Fundamental Research Funds for the Central Universities (Nos. 2016III001 and 2016-JL-004), and the China Scholarship Council (No. 201606955096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qiang Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Gaumet, JJ. & Mai, LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 36, 321–338 (2017). https://doi.org/10.1007/s12598-017-0899-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0899-4

Keywords

Navigation