Skip to main content

Advertisement

Log in

Bone Material Properties in Bone Diseases Affecting Children

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders.

Recent Findings

We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies.

Summary

Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis Lancet. 2019;393(10182):1745–59. https://doi.org/10.1016/S0140-6736(19)30417-9.

    Article  CAS  PubMed  Google Scholar 

  2. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–76. https://doi.org/10.1016/S0140-6736(18)32112-3.

    Article  CAS  PubMed  Google Scholar 

  3. Tatangelo G, Watts J, Lim K, Connaughton C, Abimanyi-Ochom J, Borgstrom F, et al. The cost of osteoporosis, osteopenia, and associated fractures in Australia in 2017. J Bone Miner Res. 2019;34(4):616–25. https://doi.org/10.1002/jbmr.3640.

    Article  PubMed  Google Scholar 

  4. Makitie O, Zillikens MC. Early-onset osteoporosis. Calcif Tissue Int. 2022;110(5):546–61. https://doi.org/10.1007/s00223-021-00885-6.

    Article  CAS  PubMed  Google Scholar 

  5. Sakka SD. Osteoporosis in children and young adults. Best Pract Res Clin Rheumatol. 2022;36(3):101776. https://doi.org/10.1016/j.berh.2022.101776.

    Article  PubMed  Google Scholar 

  6. Ciancia S, Hogler W, Sakkers RJB, Appelman-Dijkstra NM, Boot AM, Sas TCJ, Renes JS. Osteoporosis in children and adolescents: how to treat and monitor? Eur J Pediatr. 2023;182(2):501–11. https://doi.org/10.1007/s00431-022-04743-x.

    Article  PubMed  Google Scholar 

  7. Di Marcello F, Di Donato G, d’Angelo DM, Breda L, Chiarelli F. Bone health in children with rheumatic disorders: focus on molecular mechanisms, diagnosis, and management. Int J Mol Sci. 2022;23(10):5725. https://doi.org/10.3390/ijms23105725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costantini A, Makitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, et al. Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I collagen. J Bone Miner Res. 2022;37(9):1623–41. https://doi.org/10.1002/jbmr.4668.

    Article  CAS  PubMed  Google Scholar 

  9. Bakkaloglu SA, Bacchetta J, Lalayiannis AD, Leifheit-Nestler M, Stabouli S, Haarhaus M, et al. Bone evaluation in paediatric chronic kidney disease: clinical practice points from the European Society for Paediatric Nephrology CKD-MBD and Dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol Dial Transplant. 2021;36(3):413–25. https://doi.org/10.1093/ndt/gfaa210.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Rostami Haji Abadi M, Ghafouri Z, Meira Goes S, Johnston JJD, Nour M, Kontulainen S. Bone deficits in children and youth with type 1 diabetes: a systematic review and meta-analysis. Bone. 2022;163:116509. https://doi.org/10.1016/j.bone.2022.116509.

    Article  PubMed  Google Scholar 

  11. Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. https://doi.org/10.1038/nrdp.2017.52.

    Article  PubMed  Google Scholar 

  12. Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016;31(4):699–708. https://doi.org/10.1002/jbmr.2835.

    Article  CAS  PubMed  Google Scholar 

  13. •• Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, et al. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol. 2022;18(8):473–89. https://doi.org/10.1038/s41574-022-00682-7. (This review summarizes current knowledge about principal regulators of mineralization and crystallization and the role of their alteration in disorders of bone mineralization and ectopic mineralization.)

  14. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    Article  CAS  Google Scholar 

  15. Burr DB. Bone quality: understanding what matters. J Musculoskelet Neuronal Interact. 2004;4(2):184–6.

    CAS  PubMed  Google Scholar 

  16. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61. https://doi.org/10.1056/NEJMra053077.

    Article  CAS  PubMed  Google Scholar 

  17. Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153–66. https://doi.org/10.1007/s00198-012-2228-y.

    Article  CAS  PubMed  Google Scholar 

  18. Fratzl P, Gupta H, Paschalis E, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  19. Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815–26. https://doi.org/10.1016/j.actbio.2014.05.024.

    Article  PubMed  Google Scholar 

  20. Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12. https://doi.org/10.1007/s00223-015-9978-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97(3):308–26. https://doi.org/10.1007/s00223-015-9971-y.

    Article  CAS  PubMed  Google Scholar 

  22. Burr DB. Repair mechanisms for microdamage in bone. J Bone Miner Res. 2014;29(12):2534–6. https://doi.org/10.1002/jbmr.2366.

    Article  PubMed  Google Scholar 

  23. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37. https://doi.org/10.1210/edrv.21.2.0395.

    Article  CAS  PubMed  Google Scholar 

  24. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … and more. Endocr Rev. 2013;34(5):658–90. https://doi.org/10.1210/er.2012-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. https://doi.org/10.1146/annurev-physiol-021119-034332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone. 1993;14(4):681–91. https://doi.org/10.1016/8756-3282(93)90092-o.

    Article  CAS  PubMed  Google Scholar 

  27. Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, et al. Pediatric reference Raman data for material characteristics of iliac trabecular bone. Bone. 2014;69:89–97. https://doi.org/10.1016/j.bone.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  28. Gamsjaeger S, Rauch F, Glorieux FH, Paschalis EP. Cortical bone material / compositional properties in growing children and young adults aged 1.5–23 years, as a function of gender, age, metabolic activity, and growth spurt. Bone. 2022;165:116548. https://doi.org/10.1016/j.bone.2022.116548.

    Article  CAS  PubMed  Google Scholar 

  29. Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93. https://doi.org/10.1016/j.bone.2018.10.010.

    Article  CAS  PubMed  Google Scholar 

  30. Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, et al. Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res. 1992;7(3):329–34. https://doi.org/10.1002/jbmr.5650070313.

    Article  CAS  PubMed  Google Scholar 

  31. Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991;48(6):407–13. https://doi.org/10.1007/BF02556454.

    Article  CAS  PubMed  Google Scholar 

  32. Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, et al. Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol. 2001;136(2):126–36. https://doi.org/10.1006/jsbi.2001.4427.

    Article  CAS  PubMed  Google Scholar 

  33. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40(5):1308–19. https://doi.org/10.1016/j.bone.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  34. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18(6):1012–9. https://doi.org/10.1359/jbmr.2003.18.6.1012.

    Article  CAS  PubMed  Google Scholar 

  35. Misof BM, Roschger P, Zhou H, Nieves JW, Bostrom M, Cosman F, et al. No evidence for alteration in early secondary mineralization by either alendronate, teriparatide or combination of both in transiliac bone biopsy samples from postmenopausal osteoporotic patients. Bone Rep. 2020;12:100253. https://doi.org/10.1016/j.bonr.2020.100253.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zou Z, Tang T, Macias-Sanchez E, Sviben S, Landis WJ, Bertinetti L, Fratzl P. Three-dimensional structural interrelations between cells, extracellular matrix, and mineral in normally mineralizing avian leg tendon. Proc Natl Acad Sci U S A. 2020;117(25):14102–9. https://doi.org/10.1073/pnas.1917932117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raguin E, Weinkamer R, Schmitt C, Curcuraci L, Fratzl P. Logistics of bone mineralization in the chick embryo studied by 3D cryo FIB-SEM imaging. Adv Sci (Weinh). 2023;10(22):e2301231. https://doi.org/10.1002/advs.202301231.

    Article  CAS  PubMed  Google Scholar 

  38. Ping H, Wagermaier W, Horbelt N, Scoppola E, Li C, Werner P, et al. Mineralization generates megapascal contractile stresses in collagen fibrils. Science. 2022;376(6589):188–92. https://doi.org/10.1126/science.abm2664.

    Article  CAS  PubMed  Google Scholar 

  39. Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91. https://doi.org/10.1007/s00198-017-4019-y.

    Article  CAS  PubMed  Google Scholar 

  40. Munoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: what can be done about it? Curr Osteoporos Rep. 2021;19(5):510–31. https://doi.org/10.1007/s11914-021-00696-6.

    Article  PubMed  Google Scholar 

  41. Depalle B, Duarte AG, Fiedler IAK, Pujo-Menjouet L, Buehler MJ, Berteau JP. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone. 2018;110:107–14. https://doi.org/10.1016/j.bone.2018.01.024.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu S, Divine G, Warner E, Rao SD. Reference intervals for bone histomorphometric measurements based on data from healthy premenopausal women. Calcif Tissue Int. 2020;107(6):543–50. https://doi.org/10.1007/s00223-020-00748-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hartmann MA, Blouin S, Misof BM, Fratzl-Zelman N, Roschger P, Berzlanovich A, et al. Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source. Calcif Tissue Int. 2021;109(2):190–202. https://doi.org/10.1007/s00223-021-00832-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Recker RR, Lappe JM, Davies M, Kimmel D. Perimenopausal bone histomorphometry before and after menopause. Bone. 2018;108:55–61. https://doi.org/10.1016/j.bone.2017.12.016.

    Article  PubMed  Google Scholar 

  45. Szulc P, Seeman E. Thinking inside and outside the envelopes of bone: dedicated to PDD. Osteoporos Int. 2009;20(8):1281–8. https://doi.org/10.1007/s00198-009-0994-y.

    Article  CAS  PubMed  Google Scholar 

  46. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(3):219–33. https://doi.org/10.1615/critreveukargeneexpr.v19.i3.40.

    Article  CAS  PubMed  Google Scholar 

  47. Ramchand SK, Seeman E. The influence of cortical porosity on the strength of bone during growth and advancing age. Curr Osteoporos Rep. 2018;16(5):561–72. https://doi.org/10.1007/s11914-018-0478-0.

    Article  PubMed  Google Scholar 

  48. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–36. https://doi.org/10.1016/S0140-6736(10)60320-0.

    Article  PubMed  Google Scholar 

  49. Paschalis EP, Dempster DW, Gamsjaeger S, Rokidi S, Hassler N, Brozek W, et al. Mineral and organic matrix composition at bone forming surfaces in postmenopausal women with osteoporosis treated with either teriparatide or zoledronic acid. Bone. 2021;145:115848. https://doi.org/10.1016/j.bone.2021.115848.

    Article  CAS  PubMed  Google Scholar 

  50. Paschalis EP, Gamsjaeger S, Klaushofer K, Shane E, Cohen A, Stepan J, et al. Treatment of postmenopausal osteoporosis patients with teriparatide for 24 months reverts forming bone quality indices to premenopausal healthy control values. Bone. 2022;162:116478. https://doi.org/10.1016/j.bone.2022.116478.

    Article  CAS  PubMed  Google Scholar 

  51. Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone. 2023;176:116880. https://doi.org/10.1016/j.bone.2023.116880.

  52. Ng AH, Omelon S, Variola F, Allo B, Willett TL, Alman BA, Grynpas MD. Adynamic bone decreases bone toughness during aging by affecting mineral and matrix. J Bone Miner Res. 2016;31(2):369–79. https://doi.org/10.1002/jbmr.2702.

    Article  CAS  PubMed  Google Scholar 

  53. •• Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, Calder A, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191(5):1164–209. https://doi.org/10.1002/ajmg.a.63132. (The recently updated nosology of genetic skeletal disorders contains 771 entries associated with 552 genes, comprises cross-references to the MIM catalog, and represents an important tool for differential diagnosis for pediatricians.)

    Article  PubMed  Google Scholar 

  54. Turner CH. Determinants of skeletal fragility and bone quality. J Musculoskelet Neuronal Interact. 2002;2(6):527–8.

    CAS  PubMed  Google Scholar 

  55. Seeman E. Bone quality. Osteoporos Int. 2003;14(Suppl 5):S3-7. https://doi.org/10.1007/s00198-003-1465-5.

    Article  PubMed  Google Scholar 

  56. Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457–62. https://doi.org/10.1007/s00467-006-0025-6.

    Article  PubMed  Google Scholar 

  57. Rauch F. Bone biopsy: indications and methods. Endocr Dev. 2009;16:49–57. https://doi.org/10.1159/000223688.

    Article  PubMed  Google Scholar 

  58. Mahr M, Blouin S, Misof BM, Paschalis EP, Hartmann MA, Zwerina J, Fratzl-Zelman N. Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology? Wien Med Wochenschr. 2021;171(5–6):111–9. https://doi.org/10.1007/s10354-021-00818-w.

    Article  PubMed  Google Scholar 

  59. Chavassieux P, Chapurlat R. Interest of bone histomorphometry in bone pathophysiology investigation: foundation, present, and future. Front Endocrinol (Lausanne). 2022;13:907914. https://doi.org/10.3389/fendo.2022.907914.

    Article  PubMed  Google Scholar 

  60. Bortel EL, Duda GN, Mundlos S, Willie BM, Fratzl P, Zaslansky P. Long bone maturation is driven by pore closing: a quantitative tomography investigation of structural formation in young C57BL/6 mice. Acta Biomater. 2015;22:92–102. https://doi.org/10.1016/j.actbio.2015.03.027.

    Article  PubMed  Google Scholar 

  61. Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E, et al. Mechanical competence and bone quality develop during skeletal growth. J Bone Miner Res. 2019;34(8):1461–72. https://doi.org/10.1002/jbmr.3730.

    Article  CAS  PubMed  Google Scholar 

  62. Eckstein KN, Thomas SM, Scott AK, Neu CP, Hadley-Miller NA, Payne KA, Ferguson VL. The heterogeneous mechanical properties of adolescent growth plate cartilage: a study in rabbit. J Mech Behav Biomed Mater. 2022;128:105102. https://doi.org/10.1016/j.jmbbm.2022.105102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roschger A, Wagermaier W, Gamsjaeger S, Hassler N, Schmidt I, Blouin S, et al. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater. 2020;104:221–30. https://doi.org/10.1016/j.actbio.2020.01.004.

    Article  CAS  PubMed  Google Scholar 

  64. Rashid H, Chen H, Javed A. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biol Plus. 2021;12:100088. https://doi.org/10.1016/j.mbplus.2021.100088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hallett SA, Ono W, Ono N. The hypertrophic chondrocyte: to be or not to be. Histol Histopathol. 2021;36(10):1021–36. https://doi.org/10.14670/HH-18-355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A. 2014;111(33):12097–102. https://doi.org/10.1073/pnas.1302703111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10(12):e1004820. https://doi.org/10.1371/journal.pgen.1004820.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matsushita Y, Ono W, Ono N. Growth plate skeletal stem cells and their transition from cartilage to bone. Bone. 2020;136:115359. https://doi.org/10.1016/j.bone.2020.115359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334. https://doi.org/10.1101/cshperspect.a008334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maes C. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: seminars in cell and developmental biology: the biology and pathology of cartilage. Semin Cell Dev Biol. 2017;62:16–33. https://doi.org/10.1016/j.semcdb.2016.05.007.

    Article  CAS  PubMed  Google Scholar 

  71. Tsang KY, Chan D, Cheah KS. Fate of growth plate hypertrophic chondrocytes: death or lineage extension? Dev Growth Differ. 2015;57(2):179–92. https://doi.org/10.1111/dgd.12203.

    Article  CAS  PubMed  Google Scholar 

  72. Wang K, Ma C, Feng JQ, Jing Y. The emerging role of cell transdifferentiation in skeletal development and diseases. Int J Mol Sci. 2022;23(11):5974. https://doi.org/10.3390/ijms23115974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Odgren PR, Witwicka H, Reyes-Gutierrez P. The cast of clasts: catabolism and vascular invasion during bone growth, repair, and disease by osteoclasts, chondroclasts, and septoclasts. Connect Tissue Res. 2016;57(3):161–74. https://doi.org/10.3109/03008207.2016.1140752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khan NM, Clifton KB, Lorenzo J, Hansen MF, Drissi H. Comparative transcriptomic analysis identifies distinct molecular signatures and regulatory networks of chondroclasts and osteoclasts. Arthritis Res Ther. 2020;22(1):168. https://doi.org/10.1186/s13075-020-02259-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tosun B, Wolff LI, Houben A, Nutt S, Hartmann C. Osteoclasts and macrophages-their role in bone marrow cavity formation during mouse embryonic development. J Bone Miner Res. 2022;37(9):1761–74. https://doi.org/10.1002/jbmr.4629.

    Article  CAS  PubMed  Google Scholar 

  76. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab. 2004;89(4):1538–47. https://doi.org/10.1210/jc.2003-031055.

    Article  CAS  PubMed  Google Scholar 

  77. Butscheidt S, Rolvien T, Kornak U, Schmidt FN, Schinke T, Amling M, Oheim R. Clinical significance of DXA and HR-pQCT in autosomal dominant osteopetrosis (ADO II). Calcif Tissue Int. 2018;102(1):41–52. https://doi.org/10.1007/s00223-017-0332-x.

    Article  CAS  PubMed  Google Scholar 

  78. Philbrick KA, Martin SA, Colagiovanni AR, Branscum AJ, Turner RT, Iwaniec UT. Effects of hypothalamic leptin gene therapy on osteopetrosis in leptin-deficient mice. J Endocrinol. 2018;236(2):57–68. https://doi.org/10.1530/JOE-17-0524.

    Article  CAS  PubMed  Google Scholar 

  79. Howaldt A, Hennig AF, Rolvien T, Rossler U, Stelzer N, Knaus A, et al. Adult osteosclerotic metaphyseal dysplasia with progressive osteonecrosis of the jaws and abnormal bone resorption pattern due to a LRRK1 splice site mutation. J Bone Miner Res. 2020;35(7):1322–32. https://doi.org/10.1002/jbmr.3995.

    Article  CAS  PubMed  Google Scholar 

  80. Hofstaetter JG, Atkins GJ, Kato H, Kogawa M, Blouin S, Misof BM, et al. A mild case of autosomal recessive osteopetrosis masquerading as the dominant form involving homozygous deep intronic variations in the CLCN7 Gene. Calcif Tissue Int. 2022;111(4):430–44. https://doi.org/10.1007/s00223-022-00988-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Whyte MP. Osteopetrosis: discovery and early history of “marble bone disease.” Bone. 2023;171:116737. https://doi.org/10.1016/j.bone.2023.116737.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanovich A, Schoeberl T, et al. Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J Struct Biol. 2005;149(2):138–48. https://doi.org/10.1016/j.jsb.2004.10.010.

    Article  CAS  PubMed  Google Scholar 

  83. Long JT, Leinroth A, Liao Y, Ren Y, Mirando AJ, Nguyen T, et al. Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. Elife. 2022;11:e76932. https://doi.org/10.7554/eLife.76932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bisseret D, Kaci R, Lafage-Proust MH, Alison M, Parlier-Cuau C, Laredo JD, Bousson V. Periosteum: characteristic imaging findings with emphasis on radiologic-pathologic comparisons. Skeletal Radiol. 2015;44(3):321–38. https://doi.org/10.1007/s00256-014-1976-5.

    Article  PubMed  Google Scholar 

  85. Seeman E. Periosteal bone formation–a neglected determinant of bone strength. N Engl J Med. 2003;349(4):320–3. https://doi.org/10.1056/NEJMp038101.

    Article  PubMed  Google Scholar 

  86. Epker BN, Frost HM. Periosteal appositional bone growth from age two to age seventy in man. A tetracycline evaluation. Anat Rec. 1966;154(3):573–7. https://doi.org/10.1002/ar.1091540307.

    Article  CAS  PubMed  Google Scholar 

  87. Rauch F. Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact. 2005;5(3):194–201.

    CAS  PubMed  Google Scholar 

  88. Currey JD. The many adaptations of bone. J Biomech. 2003;36(10):1487–95. https://doi.org/10.1016/s0021-9290(03)00124-6.

    Article  CAS  PubMed  Google Scholar 

  89. Shapiro F, Wu JY. Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups. Eur Cell Mater. 2019;38:137–67. https://doi.org/10.22203/eCM.v038a11.

    Article  CAS  PubMed  Google Scholar 

  90. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000;27(4):487–94. https://doi.org/10.1016/s8756-3282(00)00353-7.

    Article  CAS  PubMed  Google Scholar 

  91. Rauch F, Travers R, Glorieux FH. Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res. 2006;21(4):513–9. https://doi.org/10.1359/jbmr.060108.

    Article  PubMed  Google Scholar 

  92. Rauch F, Travers R, Glorieux FH. Intracortical remodeling during human bone development–a histomorphometric study. Bone. 2007;40(2):274–80. https://doi.org/10.1016/j.bone.2006.09.012. (S8756-3282(06)00695-8 [pii]).

    Article  PubMed  Google Scholar 

  93. Rauch F. Bone accrual in children: adding substance to surfaces. Pediatrics. 2007;119(Suppl 2):S137–40. https://doi.org/10.1542/peds.2006-2023E.

    Article  PubMed  Google Scholar 

  94. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–9 (S8756-3282(00)00269-6 [pii]).

    Article  CAS  PubMed  Google Scholar 

  95. • Jandl NM, von Kroge S, Sturznickel J, Baranowsky A, Stockhausen KE, Mushumba H, et al. Large osteocyte lacunae in iliac crest infantile bone are not associated with impaired mineral distribution or signs of osteocytic osteolysis. Bone. 2020;135:115324. https://doi.org/10.1016/j.bone.2020.115324. (This work shows the human postnatal development of different aspects of trabecular and cortical bone material up to the age of 25 years in the iliac crest including mineralization and osteocyte lacunae characteristics in primary woven and lamellar bone.)

    Article  CAS  PubMed  Google Scholar 

  96. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone. 2009;44(6):1043–8. https://doi.org/10.1016/j.bone.2009.02.021.

    Article  CAS  PubMed  Google Scholar 

  97. Nawrot-Wawrzyniak K, Varga F, Nader A, Roschger P, Sieghart S, Zwettler E, et al. Effects of tumor-induced osteomalacia on the bone mineralization process. Calcif Tissue Int. 2009;84(4):313–23. https://doi.org/10.1007/s00223-009-9216-z.

    Article  CAS  PubMed  Google Scholar 

  98. Boivin G, Meunier PJ. The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int. 2003;14(Suppl 3):S19-24. https://doi.org/10.1007/s00198-002-1347-2.

    Article  PubMed  Google Scholar 

  99. Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, et al. Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol. 2003;141(3):208–17. https://doi.org/10.1016/s1047-8477(02)00635-4.

    Article  CAS  PubMed  Google Scholar 

  100. • Mahr M, Blouin S, Behanova M, Misof BM, Glorieux FH, Zwerina J, et al. Increased osteocyte lacunae density in the hypermineralized bone matrix of children with osteogenesis imperfecta type I. Int J Mol Sci. 2021;22(9):4508. https://doi.org/10.3390/ijms22094508. (This is a systematic analysis of osteocyte lacunae characteristics and bone matrix mineralization in a relatively large cohort of young patients with classical type I osteogenesis imperfecta, which serves as a benchmark for comparison to novel forms of OI.)

    Article  PubMed  PubMed Central  Google Scholar 

  101. Misof BM, Roschger P, Klaushofer K, Rauch F, Ma J, Mack DR, Ward LM. Increased bone matrix mineralization in treatment-naive children with inflammatory bowel disease. Bone. 2017;105:50–6. https://doi.org/10.1016/j.bone.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  102. Nawrot-Wawrzyniak K, Misof BM, Roschger P, Panczyk-Tomaszewska M, Ziolkowska H, Klaushofer K, Fratzl-Zelman N. Changes in bone matrix mineralization after growth hormone treatment in children and adolescents with chronic kidney failure treated by dialysis: a paired biopsy study. Am J Kidney Dis. 2013;61(5):767–77. https://doi.org/10.1053/j.ajkd.2012.12.010.

    Article  CAS  PubMed  Google Scholar 

  103. Pereira RC, Salusky IB, Roschger P, Klaushofer K, Yadin O, Freymiller EG, et al. Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy. Kidney Int. 2018;94(5):1002–12. https://doi.org/10.1016/j.kint.2018.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, Ward LM. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired transiliac biopsy study. J Bone Miner Res. 2016;31(5):1060–9. https://doi.org/10.1002/jbmr.2756.

    Article  CAS  PubMed  Google Scholar 

  105. Fratzl-Zelman N, Valta H, Pereira RC, Misof BM, Roschger P, Jalanko H, et al. Abnormally high and heterogeneous bone matrix mineralization after childhood solid organ transplantation: a complex pathology of low bone turnover and local defects in mineralization. J Bone Miner Res. 2017;32(5):1116–25. https://doi.org/10.1002/jbmr.3087.

    Article  CAS  PubMed  Google Scholar 

  106. Harrington J, Holmyard D, Silverman E, Sochett E, Grynpas M. Bone histomorphometric changes in children with rheumatic disorders on chronic glucocorticoids. Pediatr Rheumatol Online J. 2016;14(1):58. https://doi.org/10.1186/s12969-016-0119-z.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hogler W, Ward L. Osteoporosis in children with chronic disease. Endocr Dev. 2015;28:176–95. https://doi.org/10.1159/000381045.

    Article  CAS  PubMed  Google Scholar 

  108. Ward LM. Glucocorticoid-induced osteoporosis: why kids are different. Front Endocrinol (Lausanne). 2020;11:576. https://doi.org/10.3389/fendo.2020.00576.

    Article  PubMed  Google Scholar 

  109. Bacchetta J, Schmitt CP, Bakkaloglu SA, Cleghorn S, Leifheit-Nestler M, Prytula A, et al. Diagnosis and management of mineral and bone disorders in infants with CKD: clinical practice points from the ESPN CKD-MBD and Dialysis working groups and the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol. 2023. https://doi.org/10.1007/s00467-022-05825-6.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cianferotti L, Cipriani C, Corbetta S, Corona G, Defeudis G, Lania AG, et al. Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest. 2023. https://doi.org/10.1007/s40618-023-02056-w.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Misof BM, Roschger P, Dempster DW, Zhou H, Bilezikian JP, Klaushofer K, Rubin MR. PTH(1–84) Administration in hypoparathyroidism transiently reduces bone matrix mineralization. J Bone Miner Res. 2016;31(1):180–9. https://doi.org/10.1002/jbmr.2588.

    Article  CAS  PubMed  Google Scholar 

  112. Ovejero D, Misof BM, Gafni RI, Dempster D, Zhou H, Klaushofer K, et al. Bone matrix mineralization in patients with gain-of-function calcium-sensing receptor mutations is distinctly different from that in postsurgical hypoparathyroidism. J Bone Miner Res. 2019;34(4):661–8. https://doi.org/10.1002/jbmr.3638.

    Article  CAS  PubMed  Google Scholar 

  113. Theman TA, Collins MT, Dempster DW, Zhou H, Reynolds JC, Brahim JS, et al. PTH(1–34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res. 2009;24(5):964–73. https://doi.org/10.1359/jbmr.081233.

    Article  CAS  PubMed  Google Scholar 

  114. Theman TA, Collins MT. The role of the calcium-sensing receptor in bone biology and pathophysiology. Curr Pharm Biotechnol. 2009;10(3):289–301. https://doi.org/10.2174/138920109787847538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lefevre E, Farlay D, Bala Y, Subtil F, Wolfram U, Rizzo S, et al. Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula. Sci Rep. 2019;9(1):17629. https://doi.org/10.1038/s41598-019-54016-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rauchenzauner M, Schneider J, Colleselli V, Ruepp M, Cortina G, Hogler W, et al. Comparing modalities of conducting the six-minute walk test in healthy children and adolescents. Minerva Pediatr. 2019;71(3):229–34.

    Article  PubMed  Google Scholar 

  117. van Coeverden SC, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA. Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf). 2002;57(1):107–16. https://doi.org/10.1046/j.1365-2265.2002.01573.x.

    Article  PubMed  Google Scholar 

  118. Ladang A, Rauch F, Delvin E, Cavalier E. Bone turnover markers in children: from laboratory challenges to clinical interpretation. Calcif Tissue Int. 2023;112(2):218–32. https://doi.org/10.1007/s00223-022-00964-2.

    Article  CAS  PubMed  Google Scholar 

  119. Banica T, Vandewalle S, Zmierczak HG, Goemaere S, De Buyser S, Fiers T, et al. The relationship between circulating hormone levels, bone turnover markers and skeletal development in healthy boys differs according to maturation stage. Bone. 2022;158:116368. https://doi.org/10.1016/j.bone.2022.116368.

    Article  CAS  PubMed  Google Scholar 

  120. Rand MS, Diemar SS, Mollehave LT, Heidemann M, Thuesen BH, Petersen JH, et al. Z-scores of bone turnover markers calculated from new established sex- and age-specific reference curves are associated to future change in BMD in children and adolescents. Bone. 2023;167:116641. https://doi.org/10.1016/j.bone.2022.116641.

    Article  CAS  PubMed  Google Scholar 

  121. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81. https://doi.org/10.1359/JBMR.040902.

    Article  PubMed  Google Scholar 

  122. Montero-Lopez R, Laurer E, Tischlinger K, Nagy D, Scala M, Kranewitter W, et al. Spontaneous reshaping of vertebral fractures in an adolescent with osteogenesis imperfecta. Bone Rep. 2022;16:101595. https://doi.org/10.1016/j.bonr.2022.101595.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66. https://doi.org/10.1016/j.bone.2007.10.021.

    Article  CAS  PubMed  Google Scholar 

  124. Tauer JT, Robinson ME, Rauch F. Osteogenesis imperfecta: new perspectives from clinical and translational research. JBMR Plus. 2019;3(8):e10174. https://doi.org/10.1002/jbm4.10174.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Etich J, Lessmeier L, Rehberg M, Sill H, Zaucke F, Netzer C, Semler O. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr. 2020;7(1):9. https://doi.org/10.1186/s40348-020-00101-9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal. 2020;76:109789. https://doi.org/10.1016/j.cellsig.2020.109789.

    Article  CAS  PubMed  Google Scholar 

  127. Arshad F, Bishop N. Osteogenesis imperfecta in children. Bone. 2021;148:115914. https://doi.org/10.1016/j.bone.2021.115914.

    Article  CAS  PubMed  Google Scholar 

  128. El-Gazzar A, Hogler W. Mechanisms of bone fragility: from osteogenesis imperfecta to secondary osteoporosis. Int J Mol Sci. 2021;22(2):625. https://doi.org/10.3390/ijms22020625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rossi V, Lee B, Marom R. Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr. 2019;31(6):708–15. https://doi.org/10.1097/MOP.0000000000000813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020;183(4):R95–106. https://doi.org/10.1530/EJE-20-0299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev. 2022;43(1):61–90. https://doi.org/10.1210/endrev/bnab017.

    Article  PubMed  Google Scholar 

  132. Song IW, Nagamani SC, Nguyen D, Grafe I, Sutton VR, Gannon FH, et al. Targeting TGF-beta for treatment of osteogenesis imperfecta. J Clin Invest. 2022;132(7):e152571. https://doi.org/10.1172/JCI152571.

  133. Kang H, Aryal Ac S, Barnes AM, Martin A, David V, Crawford SE, Marini JC. Antagonism between PEDF and TGF-beta contributes to type VI osteogenesis imperfecta bone and vascular pathogenesis. J Bone Miner Res. 2022;37(5):925–37. https://doi.org/10.1002/jbmr.4540.

    Article  CAS  PubMed  Google Scholar 

  134. Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, et al. Collagen transport and related pathways in osteogenesis imperfecta. Hum Genet. 2021;140(8):1121–41. https://doi.org/10.1007/s00439-021-02302-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. El-Gazzar A, Voraberger B, Rauch F, Mairhofer M, Schmidt K, Guillemyn B, et al. Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress. EMBO Mol Med. 2023;15(4):e16834. https://doi.org/10.15252/emmm.202216834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. El-Gazzar A, Kang H, Fratzl-Zelman N, Webb E, Barnes AM, Jovanovic M, et al. SMAD3 mutation in LDS3 causes bone fragility by impairing the TGF-beta pathway and enhancing osteoclastogenesis. Bone Rep. 2022;17:101603. https://doi.org/10.1016/j.bonr.2022.101603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang JS, Tokavanich N, Wein MN. SP7: from bone development to skeletal disease. Curr Osteoporos Rep. 2023;21(2):241–52. https://doi.org/10.1007/s11914-023-00778-7.

    Article  PubMed  Google Scholar 

  138. Lui JC, Raimann A, Hojo H, Dong L, Roschger P, Kikani B, et al. A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder. Nat Commun. 2022;13(1):700. https://doi.org/10.1038/s41467-022-28318-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ludwig K, Ward LM, Khan N, Robinson ME, Miranda V, Bardai G, et al. Dominant osteogenesis imperfecta with low bone turnover caused by a heterozygous SP7 variant. Bone. 2022;160:116400. https://doi.org/10.1016/j.bone.2022.116400.

    Article  CAS  PubMed  Google Scholar 

  140. El-Gazzar A, Mayr JA, Voraberger B, Brugger K, Blouin S, Tischlinger K, et al. A novel cryptic splice site mutation in COL1A2 as a cause of osteogenesis imperfecta. Bone Rep. 2021;15:101110. https://doi.org/10.1016/j.bonr.2021.101110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int. 2013;93(4):338–47. https://doi.org/10.1007/s00223-013-9723-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gistelinck C, Kwon RY, Malfait F, Symoens S, Harris MP, Henke K, et al. Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc Natl Acad Sci U S A. 2018;115(34):E8037–46. https://doi.org/10.1073/pnas.1722200115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gistelinck C, Weis M, Rai J, Schwarze U, Niyazov D, Song KM, et al. Abnormal bone collagen cross-linking in osteogenesis imperfecta/Bruck syndrome caused by compound heterozygous PLOD2 mutations. JBMR Plus. 2021;5(3):e10454. https://doi.org/10.1002/jbm4.10454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Heritier C, Biggiogera M, et al. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol. 2023. https://doi.org/10.1016/j.matbio.2023.06.003.

    Article  PubMed  Google Scholar 

  145. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81. https://doi.org/10.1002/ajmg.a.36545.

    Article  PubMed  Google Scholar 

  146. Fratzl-Zelman N, Misof BM, Klaushofer K, Roschger P. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):271–7. https://doi.org/10.1007/s10354-015-0369-2.

    Article  PubMed  Google Scholar 

  147. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82(4):263–70. https://doi.org/10.1007/s00223-008-9113-x.

    Article  CAS  PubMed  Google Scholar 

  148. Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 2010;46(3):820–6. https://doi.org/10.1016/j.bone.2009.10.037.

    Article  CAS  PubMed  Google Scholar 

  149. Fratzl-Zelman N, Barnes AM, Weis M, Carter E, Hefferan TE, Perino G, et al. Non-lethal type VIII osteogenesis imperfecta has elevated bone matrix mineralization. J Clin Endocrinol Metab. 2016;101(9):3516–25. https://doi.org/10.1210/jc.2016-1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kok DH, Sakkers RJ, Pruijs HE, Joosse P, Castelein RM. Bone mineral density in developing children with osteogenesis imperfecta: a longitudinal study with 9 years of follow-up. Acta Orthop. 2013;84(4):431–6. https://doi.org/10.3109/17453674.2013.831321.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Robinson ME, Trejo P, Palomo T, Glorieux FH, Rauch F. Osteogenesis imperfecta: skeletal outcomes after bisphosphonate discontinuation at final height. J Bone Miner Res. 2019;34(12):2198–204. https://doi.org/10.1002/jbmr.3833.

    Article  CAS  PubMed  Google Scholar 

  152. Indermaur M, Casari D, Kochetkova T, Peruzzi C, Zimmermann E, Rauch F, et al. Compressive strength of iliac bone ECM is not reduced in osteogenesis imperfecta and increases with mineralization. J Bone Miner Res. 2021;36(7):1364–75. https://doi.org/10.1002/jbmr.4286.

    Article  CAS  PubMed  Google Scholar 

  153. Misof BM, Roschger P, Mahr M, Fratzl-Zelman N, Glorieux FH, Hartmann MA, et al. Accelerated mineralization kinetics in children with osteogenesis imperfecta type 1. Bone. 2023;166:116580. https://doi.org/10.1016/j.bone.2022.116580.

    Article  CAS  PubMed  Google Scholar 

  154. Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, et al. Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1050–9. https://doi.org/10.1002/jbmr.2780.

    Article  CAS  PubMed  Google Scholar 

  155. Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8. https://doi.org/10.1016/j.bone.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  156. Fratzl-Zelman N, Schmidt I, Roschger P, Roschger A, Glorieux FH, Klaushofer K, et al. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41. https://doi.org/10.1016/j.bone.2014.12.023.

    Article  CAS  PubMed  Google Scholar 

  157. Shapiro F, Maguire K, Swami S, Zhu H, Flynn E, Wang J, Wu JY. Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Bone Rep. 2021;14:100734. https://doi.org/10.1016/j.bonr.2020.100734.

    Article  CAS  PubMed  Google Scholar 

  158. Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res. 2000;15(9):1650–8. https://doi.org/10.1359/jbmr.2000.15.9.1650.

    Article  CAS  PubMed  Google Scholar 

  159. Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC, Rauch F. Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92. https://doi.org/10.1002/jbmr.3180.

    Article  CAS  PubMed  Google Scholar 

  160. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res. 2002;17(1):30–8. https://doi.org/10.1359/jbmr.2002.17.1.30.

    Article  PubMed  Google Scholar 

  161. Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res. 2014;29(6):1402–11. https://doi.org/10.1002/jbmr.2173.

    Article  CAS  PubMed  Google Scholar 

  162. Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, et al. Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone. 2022;162:116451. https://doi.org/10.1016/j.bone.2022.116451.

    Article  CAS  PubMed  Google Scholar 

  163. Albert C, Jameson J, Smith P, Harris G. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta. Bone. 2014;66:121–30. https://doi.org/10.1016/j.bone.2014.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014;61:116–24. https://doi.org/10.1016/j.bone.2013.12.020.

    Article  CAS  PubMed  Google Scholar 

  165. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014;29(6):1392–401. https://doi.org/10.1002/jbmr.2172.

    Article  CAS  PubMed  Google Scholar 

  166. Zebaze R, Ebeling PR. Disorganization and musculoskeletal diseases: novel insights into the enigma of unexplained bone abnormalities and fragility fractures. Curr Osteoporos Rep. 2023;21(2):154–66. https://doi.org/10.1007/s11914-022-00759-2.

    Article  PubMed  Google Scholar 

  167. Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, et al. High bone mass disorders: new insights from connecting the clinic and the bench. J Bone Miner Res. 2023;38(2):229–47. https://doi.org/10.1002/jbmr.4715.

    Article  PubMed  Google Scholar 

  168. Whyte MP. Carbonic anhydrase II deficiency. Bone. 2023;169:116684. https://doi.org/10.1016/j.bone.2023.116684.

    Article  CAS  PubMed  Google Scholar 

  169. Pillai NR, Aggarwal A, Orchard P. Phenotype-autosomal recessive osteopetrosis. Bone. 2022;165:116577. https://doi.org/10.1016/j.bone.2022.116577.

    Article  CAS  PubMed  Google Scholar 

  170. Polgreen LE, Imel EA, Econs MJ. Autosomal dominant osteopetrosis. Bone. 2023;170:116723. https://doi.org/10.1016/j.bone.2023.116723.

    Article  CAS  PubMed  Google Scholar 

  171. Stauber T, Wartosch L, Vishnolia S, Schulz A, Kornak U. CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Bone. 2023;168:116639. https://doi.org/10.1016/j.bone.2022.116639.

    Article  CAS  PubMed  Google Scholar 

  172. Hald JD, Beck-Nielsen S, Gregersen PA, Gjorup H, Langdahl B. Pycnodysostosis in children and adults. Bone. 2023;169:116674. https://doi.org/10.1016/j.bone.2023.116674.

    Article  PubMed  Google Scholar 

  173. Helfrich MH, Aronson DC, Everts V, Mieremet RH, Gerritsen EJ, Eckhardt PG, et al. Morphologic features of bone in human osteopetrosis. Bone. 1991;12(6):411–9. https://doi.org/10.1016/8756-3282(91)90030-m.

    Article  CAS  PubMed  Google Scholar 

  174. Barvencik F, Kurth I, Koehne T, Stauber T, Zustin J, Tsiakas K, et al. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J Bone Miner Res. 2014;29(4):982–91. https://doi.org/10.1002/jbmr.2100.

    Article  CAS  PubMed  Google Scholar 

  175. Nakayama H, Takakuda K, Matsumoto HN, Miyata A, Baba O, Tabata MJ, et al. Effects of altered bone remodeling and retention of cement lines on bone quality in osteopetrotic aged c-Src-deficient mice. Calcif Tissue Int. 2010;86(2):172–83. https://doi.org/10.1007/s00223-009-9331-x.

    Article  CAS  PubMed  Google Scholar 

  176. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8. https://doi.org/10.1126/science.273.5279.1236.

    Article  CAS  PubMed  Google Scholar 

  177. Li B, Wang Y, Fan Y, Ouchi T, Zhao Z, Li L. Cranial suture mesenchymal stem cells: insights and advances. Biomolecules. 2021;11(8):1129. https://doi.org/10.3390/biom11081129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chai W, Hao W, Liu J, Han Z, Chang S, Cheng L, et al. Visualizing cathepsin K-Cre expression at the single-cell level with GFP reporters. JBMR Plus. 2023;7(1):e10706. https://doi.org/10.1002/jbm4.10706.

    Article  CAS  PubMed  Google Scholar 

  179. Mijanovic O, Jakovleva A, Brankovic A, Zdravkova K, Pualic M, Belozerskaya TA, et al. Cathepsin K in pathological conditions and new therapeutic and diagnostic perspectives. Int J Mol Sci. 2022;23(22):13762. https://doi.org/10.3390/ijms232213762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: the action in and beyond bone. Front Cell Dev Biol. 2020;8:433. https://doi.org/10.3389/fcell.2020.00433.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bizaoui V, Michot C, Baujat G, Amouroux C, Baron S, Capri Y, et al. Pycnodysostosis: natural history and management guidelines from 27 French cases and a literature review. Clin Genet. 2019;96(4):309–16. https://doi.org/10.1111/cge.13591.

    Article  CAS  PubMed  Google Scholar 

  182. Doherty MA, Langdahl BL, Vogel I, Haagerup A. Clinical and genetic evaluation of Danish patients with pycnodysostosis. Eur J Med Genet. 2021;64(2):104135. https://doi.org/10.1016/j.ejmg.2021.104135.

    Article  CAS  PubMed  Google Scholar 

  183. Sait H, Srivastava P, Gupta N, Kabra M, Kapoor S, Ranganath P, et al. Phenotypic and genotypic spectrum of CTSK variants in a cohort of twenty-five Indian patients with pycnodysostosis. Eur J Med Genet. 2021;64(7):104235. https://doi.org/10.1016/j.ejmg.2021.104235.

    Article  CAS  PubMed  Google Scholar 

  184. Taka TM, Lung B, Stepanyan H, So D, Yang S. Orthopedic treatment of pycnodysostosis: a systematic review. Cureus. 2022;14(4):e24275. https://doi.org/10.7759/cureus.24275.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Omer Sulaiman H, Thalange NKS. Pycnodysostosis: a growth hormone responsive skeletal dysplasia. AACE Clin Case Rep. 2021;7(4):231–5. https://doi.org/10.1016/j.aace.2021.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev. 2017;38(4):325–50. https://doi.org/10.1210/er.2015-1114.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, et al. Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res. 1999;14(11):1902–8. https://doi.org/10.1359/jbmr.1999.14.11.1902.

    Article  CAS  PubMed  Google Scholar 

  188. Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res. 2002;17(1):77–90. https://doi.org/10.1359/jbmr.2002.17.1.77.

    Article  CAS  PubMed  Google Scholar 

  189. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18(5):859–67. https://doi.org/10.1359/jbmr.2003.18.5.859.

    Article  CAS  PubMed  Google Scholar 

  190. Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003;61(6):504–13. https://doi.org/10.1002/jemt.10374.

    Article  CAS  PubMed  Google Scholar 

  191. Pirapaharan DC, Olesen JB, Andersen TL, Christensen SB, Kjaersgaard-Andersen P, Delaisse JM, Soe K. Catabolic activity of osteoblast lineage cells contributes to osteoclastic bone resorption in vitro. J Cell Sci. 2019;132(10):jcs229351. https://doi.org/10.1242/jcs.229351.

    Article  CAS  PubMed  Google Scholar 

  192. Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med. 2020;12(529):eaaw6143. https://doi.org/10.1126/scitranslmed.aaw6143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jansen IDC, Papapoulos SE, Bravenboer N, de Vries TJ, Appelman-Dijkstra NM. Increased bone resorption during lactation in pycnodysostosis. Int J Mol Sci. 2021;22(4):1810. https://doi.org/10.3390/ijms22041810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Everts V, Jansen IDC, de Vries TJ. Mechanisms of bone resorption. Bone. 2022;163:116499. https://doi.org/10.1016/j.bone.2022.116499.

    Article  CAS  PubMed  Google Scholar 

  195. Kaur P, Panigrahi I, Kaur H, Singh T, Chaudhry C. Overlapping phenotypes in osteopetrosis and pycnodysostosis in Asian-Indians. Case Rep Genet. 2021;2021:7133508. https://doi.org/10.1155/2021/7133508.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhao D, Sun L, Zheng W, Hu J, Zhou B, Wang O, et al. Novel mutation in LRP5 gene cause rare osteosclerosis: cases studies and literature review. Mol Genet Genomics. 2023;298(3):683–92. https://doi.org/10.1007/s00438-023-02008-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Whyte MP, McAlister WH, Zhang F, Bijanki VN, Nenninger A, Gottesman GS, et al. New explanation for autosomal dominant high bone mass: mutation of low-density lipoprotein receptor-related protein 6. Bone. 2019;127:228–43. https://doi.org/10.1016/j.bone.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  198. van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017;96:51–62. https://doi.org/10.1016/j.bone.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  199. Whyte MP, Mumm S, Baker JC, Zhang F, Sedighi H, Duan S, Cundy T. LRP6 high bone mass characterized in two generations harboring a unique mutation of low-density lipoprotein receptor-related protein 6. JBMR Plus. 2023;7(4):e10717. https://doi.org/10.1002/jbm4.10717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. van Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PC, van der Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009;88(6):569–74. https://doi.org/10.1177/0022034509338340.

    Article  CAS  PubMed  Google Scholar 

  201. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, Papapoulos SE. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11. https://doi.org/10.1002/jbmr.474.

    Article  CAS  PubMed  Google Scholar 

  202. Roetzer KM, Uyanik G, Brehm A, Zwerina J, Zandieh S, Czech T, et al. Novel familial mutation of LRP5 causing high bone mass: genetic analysis, clinical presentation, and characterization of bone matrix mineralization. Bone. 2018;107:154–60. https://doi.org/10.1016/j.bone.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  203. Stein SA, Witkop C, Hill S, Fallon MD, Viernstein L, Gucer G, et al. Sclerosteosis: neurogenetic and pathophysiologic analysis of an American kinship. Neurology. 1983;33(3):267–77. https://doi.org/10.1212/wnl.33.3.267.

    Article  CAS  PubMed  Google Scholar 

  204. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43. https://doi.org/10.1093/hmg/10.5.537.

    Article  CAS  PubMed  Google Scholar 

  205. Hassler N, Roschger A, Gamsjaeger S, Kramer I, Lueger S, van Lierop A, et al. Sclerostin deficiency is linked to altered bone composition. J Bone Miner Res. 2014;29(10):2144–51. https://doi.org/10.1002/jbmr.2259.

    Article  CAS  PubMed  Google Scholar 

  206. Kotwal A, Clarke BL. Melorheostosis: a rare sclerosing bone dysplasia. Curr Osteoporos Rep. 2017;15(4):335–42. https://doi.org/10.1007/s11914-017-0375-y.

    Article  PubMed  Google Scholar 

  207. Kang H, Jha S, Deng Z, Fratzl-Zelman N, Cabral WA, Ivovic A, et al. Somatic activating mutations in MAP2K1 cause melorheostosis. Nat Commun. 2018;9(1):1390. https://doi.org/10.1038/s41467-018-03720-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jha S, Fratzl-Zelman N, Roschger P, Papadakis GZ, Cowen EW, Kang H, et al. Distinct clinical and pathological features of melorheostosis associated with somatic MAP2K1 mutations. J Bone Miner Res. 2019;34(1):145–56. https://doi.org/10.1002/jbmr.3577.

    Article  CAS  PubMed  Google Scholar 

  209. Jha S, Cowen EW, Lehky TJ, Alter K, Flynn L, Reynolds JC, et al. Clinical evaluation of melorheostosis in the context of a natural history clinical study. JBMR Plus. 2019;3(8):e10214. https://doi.org/10.1002/jbm4.10214.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, et al. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-beta/SMAD pathway. J Exp Med. 2020;217(5):e20191499. https://doi.org/10.1084/jem.20191499.

  211. Fratzl-Zelman N, Roschger P, Kang H, Jha S, Roschger A, Blouin S, et al. Melorheostotic bone lesions caused by somatic mutations in MAP2K1 have deteriorated microarchitecture and periosteal reaction. J Bone Miner Res. 2019;34(5):883–95. https://doi.org/10.1002/jbmr.3656.

    Article  CAS  PubMed  Google Scholar 

  212. Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM. Rickets. Nat Rev Dis Primers. 2017;3:17101. https://doi.org/10.1038/nrdp.2017.101.

    Article  PubMed  Google Scholar 

  213. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415. https://doi.org/10.1210/jc.2015-2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cianferotti L. Osteomalacia is not a single disease. Int J Mol Sci. 2022;23(23):14896. https://doi.org/10.3390/ijms232314896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol. 2022;37(9):2013–36. https://doi.org/10.1007/s00467-021-05328-w.

    Article  PubMed  Google Scholar 

  216. •• Fischer PR, Sempos CT, Pettifor JM, Fraser DR, Munns CF, Durazo-Arvizu RA, Thacher TD. Serum 1,25-dihydroxyvitamin D levels in the diagnosis and pathogenesis of nutritional rickets - a multivariable re-analysis of a case-control study. Am J Clin Nutr. 2023;117(5):998–1004. https://doi.org/10.1016/j.ajcnut.2023.02.011. (This study shows the metabolic link between low-calcium intake, rachitic bone lesions, and serum levels of FGF23 and phosphate.)

    Article  PubMed  Google Scholar 

  217. Thacher TD, Pettifor JM, Tebben PJ, Creo AL, Skrinar A, Mao M, et al. Rickets severity predicts clinical outcomes in children with X-linked hypophosphatemia: utility of the radiographic Rickets Severity Score. Bone. 2019;122:76–81. https://doi.org/10.1016/j.bone.2019.02.010.

    Article  PubMed  Google Scholar 

  218. Rothenbuhler A, Linglart A. Hypophosphatasia in children and adolescents: clinical features and treatment. Arch Pediatr. 2017;24(5S2):5S66–70. https://doi.org/10.1016/S0929-693X(18)30017-4.

    Article  CAS  PubMed  Google Scholar 

  219. •• Schnitzler CM, Pettifor JM. Calcium deficiency rickets in African adolescents: cortical bone histomorphometry. JBMR Plus. 2019;3(6):e10169. https://doi.org/10.1002/jbm4.10169. (This study demonstrates that at the bone tissue level, calcium deficiency results in a similar histologic picture as in X-linked hypophosphatamia with peri-osteocytic lesions due to osteocytic osteolysis.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis. 2019;14(1):58. https://doi.org/10.1186/s13023-019-1014-8.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Uday S, Manaseki-Holland S, Bowie J, Mughal MZ, Crowe F, Hogler W. The effect of vitamin D supplementation and nutritional intake on skeletal maturity and bone health in socio-economically deprived children. Eur J Nutr. 2021;60(6):3343–53. https://doi.org/10.1007/s00394-021-02511-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Uday S, Fratzl-Zelman N, Roschger P, Klaushofer K, Chikermane A, Saraff V, et al. Cardiac, bone and growth plate manifestations in hypocalcemic infants: revealing the hidden body of the vitamin D deficiency iceberg. BMC Pediatr. 2018;18(1):183. https://doi.org/10.1186/s12887-018-1159-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Uday S, Hogler W. The burden of vitamin D deficiency in household members of children presenting with symptomatic vitamin D deficiency. Front Endocrinol (Lausanne). 2022;13:958422. https://doi.org/10.3389/fendo.2022.958422.

    Article  PubMed  Google Scholar 

  224. Taylor SN. Vitamin D in toddlers, preschool children, and adolescents. Ann Nutr Metab. 2020;76(Suppl 2):30–41. https://doi.org/10.1159/000505635.

    Article  CAS  PubMed  Google Scholar 

  225. Millan JL, Whyte MP. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int. 2016;98(4):398–416. https://doi.org/10.1007/s00223-015-0079-1.

    Article  CAS  PubMed  Google Scholar 

  226. Whyte MP, Leung E, Wilcox WR, Liese J, Argente J, Martos-Moreno GA, et al. Natural history of perinatal and infantile hypophosphatasia: a retrospective study. J Pediatr. 2019;209:116–214. https://doi.org/10.1016/j.jpeds.2019.01.049.

    Article  PubMed  Google Scholar 

  227. • Rolvien T, Schmidt T, Schmidt FN, von Kroge S, Busse B, Amling M, Barvencik F. Recovery of bone mineralization and quality during asfotase alfa treatment in an adult patient with infantile-onset hypophosphatasia. Bone. 2019;127:67–74. https://doi.org/10.1016/j.bone.2019.05.036. (This study shows the direct effect from asfotase alfa on osteomalacia in a bone biopsy sample in a patient with hypophosphatasia.)

    Article  PubMed  Google Scholar 

  228. Whyte MP, Simmons JH, Moseley S, Fujita KP, Bishop N, Salman NJ, et al. Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial. Lancet Diabetes Endocrinol. 2019;7(2):93–105. https://doi.org/10.1016/S2213-8587(18)30307-3.

    Article  CAS  PubMed  Google Scholar 

  229. Mannes I, Rothenbuhler A, Merzoug V, Di Rocco F, Linglart A, Adamsbaum C. Imaging patterns in pediatric hypophosphatasia. Pediatr Radiol. 2022;52(5):998–1006. https://doi.org/10.1007/s00247-021-05232-3.

    Article  PubMed  Google Scholar 

  230. Ward LM, Glorieux FH, Whyte MP, Munns CF, Portale AA, Hogler W, et al. Effect of burosumab compared with conventional therapy on younger vs older children with X-linked hypophosphatemia. J Clin Endocrinol Metab. 2022;107(8):e3241–53. https://doi.org/10.1210/clinem/dgac296.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Ewert A, Rehberg M, Schlingmann KP, Hiort O, John-Kroegel U, Metzing O, et al. Effects of burosumab treatment on mineral metabolism in children and adolescents with X-linked hypophosphatemia. J Clin Endocrinol Metab. 2023. https://doi.org/10.1210/clinem/dgad223.

    Article  PubMed  Google Scholar 

  232. Kishnani PS, Rockman-Greenberg C, Rauch F, Bhatti MT, Moseley S, Denker AE, et al. Five-year efficacy and safety of asfotase alfa therapy for adults and adolescents with hypophosphatasia. Bone. 2019;121:149–62. https://doi.org/10.1016/j.bone.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  233. Agoro R, White KE. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol. 2023;19(3):185–93. https://doi.org/10.1038/s41581-022-00665-x.

    Article  CAS  PubMed  Google Scholar 

  234. • Meaux MN, Alioli C, Linglart A, Lemoine S, Vignot E, Bertholet-Thomas A, et al. X-linked hypophosphatemia, not only a skeletal disease but also a chronic inflammatory state. J Clin Endocrinol Metab. 2022;107(12):3275–86. https://doi.org/10.1210/clinem/dgac543. (Although no data are given on bone material properties, this study demonstrates that X-linked hypophosphatemia is a systemic disorder and not solely a defect of bone mineralization. Thus, bone tissue abnormalities should in future also be considered as potentially resulting from chronic inflammation.)

    Article  PubMed  Google Scholar 

  235. Buss DJ, Reznikov N, McKee MD. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J Struct Biol. 2020;212(2):107603. https://doi.org/10.1016/j.jsb.2020.107603.

    Article  CAS  PubMed  Google Scholar 

  236. Beck-Nielsen SS, Brixen K, Gram J, Molgaard C. High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int. 2013;24(8):2215–21. https://doi.org/10.1007/s00198-013-2286-9.

    Article  CAS  PubMed  Google Scholar 

  237. Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, Rauch F. Cortical and trabecular bone density in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98(5):E954–61. https://doi.org/10.1210/jc.2012-4133.

    Article  PubMed  Google Scholar 

  238. Robinson ME, AlQuorain H, Murshed M, Rauch F. Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol. 2020;35(10):1843–54. https://doi.org/10.1007/s00467-019-04290-y.

    Article  PubMed  Google Scholar 

  239. Nguyen-Khac V, Bonnet-Lebrun A, Skalli W, Adamsbaum C, Linglart A, Wicart P. Changes in adipose bone marrow and bone morphology in X-linked hypophosphatemic rickets. Orthop Traumatol Surg Res. 2023;109(3):103529. https://doi.org/10.1016/j.otsr.2022.103529.

    Article  PubMed  Google Scholar 

  240. Fratzl-Zelman N, Gamsjaeger S, Blouin S, Kocijan R, Plasenzotti P, Rokidi S, et al. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J Struct Biol. 2020;211(3):107556. https://doi.org/10.1016/j.jsb.2020.107556.

    Article  CAS  PubMed  Google Scholar 

  241. Fratzl-Zelman N, Hartmann MA, Gamsjaeger S, Rokidi S, Paschalis EP, Blouin S, Zwerina J. Bone matrix mineralization and response to burosumab in adult patients with X-linked hypophosphatemia: results from the phase 3, single-arm international trial. J Bone Miner Res. 2022;37(9):1665–78. https://doi.org/10.1002/jbmr.4641.

    Article  CAS  PubMed  Google Scholar 

  242. Marie PJ, Glorieux FH. Histomorphometric study of bone remodeling in hypophosphatemic vitamin D-resistant rickets. Metab Bone Dis Relat Res. 1981;3(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  243. Marie PJ, Glorieux FH. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int. 1983;35(4–5):443–8.

    Article  CAS  PubMed  Google Scholar 

  244. Boukpessi T, Hoac B, Coyac BR, Leger T, Garcia C, Wicart P, et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone. 2017;95:151–61. https://doi.org/10.1016/j.bone.2016.11.019.

    Article  CAS  PubMed  Google Scholar 

  245. Prentice A, Ceesay M, Nigdikar S, Allen SJ, Pettifor JM. FGF23 is elevated in Gambian children with rickets. Bone. 2008;42(4):788–97. https://doi.org/10.1016/j.bone.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  246. Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol. 2016;14(4):e1002427. https://doi.org/10.1371/journal.pbio.1002427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009;44(1):11–6. https://doi.org/10.1016/j.bone.2008.09.017.

    Article  CAS  PubMed  Google Scholar 

  248. Yuan Y, Jagga S, Martins JS, Rana R, Pajevic PD, Liu ES. Impaired 1,25 dihydroxyvitamin D3 action and hypophosphatemia underlie the altered lacuno-canalicular remodeling observed in the Hyp mouse model of XLH. PLoS One. 2021;16(5):e0252348. https://doi.org/10.1371/journal.pone.0252348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Insogna KL, Rauch F, Kamenicky P, Ito N, Kubota T, Nakamura A, et al. Burosumab improved histomorphometric measures of osteomalacia in adults with X-linked hypophosphatemia: a phase 3, single-arm, international trial. J Bone Miner Res. 2019;34(12):2183–91. https://doi.org/10.1002/jbmr.3843.

    Article  CAS  PubMed  Google Scholar 

  250. Fratzl-Zelman N, Wesseling-Perry K, Makitie RE, Blouin S, Hartmann MA, Zwerina J, et al. Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations. Bone. 2021;146:115900. https://doi.org/10.1016/j.bone.2021.115900.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Social Health Insurance Fund (OEGK), the Austrian Workers’ Compensation Board (AUVA), and the Vienna Bone and Growth Center (VBGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Fratzl-Zelman.

Ethics declarations

Conflict of Interest

AR received research funding and non-related honoraria for consultancy and scientific presentations from Kyowa Kirin. BMM, PF, and NFZ received no funding and declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimann, A., Misof, B.M., Fratzl, P. et al. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 21, 787–805 (2023). https://doi.org/10.1007/s11914-023-00822-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00822-6

Keywords

Navigation