Skip to main content

Advertisement

Log in

Mineralized tissues in hypophosphatemic rickets

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Hypophosphatemic rickets is caused by renal phosphate wasting that is most commonly due to X-linked dominant mutations in PHEX. PHEX mutations cause hypophosphatemia indirectly, through the increased expression of fibroblast growth factor 23 (FGF23) by osteocytes. FGF23 decreases renal phosphate reabsorption and thereby increases phosphate excretion. The lack of phosphate leads to a mineralization defect at the level of growth plates (rickets), bone tissue (osteomalacia), and teeth, where the defect facilitates the formation of abscesses. The bone tissue immediately adjacent to osteocytes often remains unmineralized (“periosteocytic lesions”), highlighting the osteocyte defect in this disorder. Common clinical features of XLH include deformities of the lower extremities, short stature, enthesopathies, dental abscesses, as well as skull abnormalities such as craniosynostosis and Chiari I malformation. For the past four decades, XLH has been treated by oral phosphate supplementation and calcitriol, which improves rickets and osteomalacia and the dental manifestations, but often does not resolve all aspects of the mineralization defects. A newer treatment approach using inactivating FGF23 antibodies leads to more stable control of serum inorganic phosphorus levels and seems to heal rickets more reliably. However, the long-term benefits of FGF23 antibody treatment remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388. https://doi.org/10.1002/jbmr.340

    Article  PubMed  PubMed Central  Google Scholar 

  2. Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prie D, Rothenbuhler A, Wicart P, Harvengt P (2014) Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 3:R13–R30. https://doi.org/10.1530/ec-13-0103

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bitzan M, Goodyer PR (2019) Hypophosphatemic rickets. Pediatr Clin N Am 66:179–207. https://doi.org/10.1016/j.pcl.2018.09.004

    Article  Google Scholar 

  4. HYP-Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136. https://doi.org/10.1038/ng1095-130

    Article  Google Scholar 

  5. Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabedian M, Jehan F (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125:401–411. https://doi.org/10.1007/s00439-009-0631-z

    Article  PubMed  Google Scholar 

  6. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497. https://doi.org/10.1530/eje-08-0818

    Article  CAS  PubMed  Google Scholar 

  7. Ruppe MD, Brosnan PG, Au KS, Tran PX, Dominguez BW, Northrup H (2011) Mutational analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets. Clin Endocrinol 74:312–318. https://doi.org/10.1111/j.1365-2265.2010.03919.x

    Article  CAS  Google Scholar 

  8. Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K (2012) Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet 57:453–458. https://doi.org/10.1038/jhg.2012.56

    Article  CAS  PubMed  Google Scholar 

  9. Rafaelsen S, Johansson S, Raeder H, Bjerknes R (2016) Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol 174:125–136. https://doi.org/10.1530/eje-15-0515

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita Y, Fukumoto S (2018) X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr Rev 39:274–291. https://doi.org/10.1210/er.2017-00220

    Article  PubMed  Google Scholar 

  11. Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Makitie O (2019) FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 14:58. https://doi.org/10.1186/s13023-019-1014-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Christov M, Juppner H (2018) Phosphate homeostasis disorders. Best Pract Res Clin Endocrinol Metab 32:685–706. https://doi.org/10.1016/j.beem.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  13. Murshed M (2018) Mechanism of bone mineralization. Cold Spring Harb Perspect Med 8(12):a031229. https://doi.org/10.1101/cshperspect.a031229

    Article  CAS  PubMed  Google Scholar 

  14. Jacquillet G, Unwin RJ (2019) Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 471:83–98. https://doi.org/10.1007/s00424-018-2231-z

    Article  CAS  PubMed  Google Scholar 

  15. Chande S, Bergwitz C (2018) Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 14:637–655. https://doi.org/10.1038/s41574-018-0076-3

    Article  CAS  PubMed  Google Scholar 

  16. Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, Carmona AK, McKee MD (2013) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28:688–699. https://doi.org/10.1002/jbmr.1766

    Article  CAS  PubMed  Google Scholar 

  17. Melrose J, Shu C, Whitelock JM, Lord MS (2016) The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation. Matrix Biol 52-54:363–383. https://doi.org/10.1016/j.matbio.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  18. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A 102:9637–9642. https://doi.org/10.1073/pnas.0502249102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuente R, Gil-Pena H, Claramunt-Taberner D, Hernandez-Frias O, Fernandez-Iglesias A, Hermida-Prado F, Anes-Gonzalez G, Rubio-Aliaga I, Lopez JM, Santos F (2018) Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone 116:187–195. https://doi.org/10.1016/j.bone.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS (2004) Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 34:134–139

    Article  CAS  Google Scholar 

  21. Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401. https://doi.org/10.1007/s00774-009-0079-1

    Article  PubMed  Google Scholar 

  22. Liu ES, Martins JS, Raimann A, Chae BT, Brooks DJ, Jorgetti V, Bouxsein ML, Demay MB (2016) 1,25-dihydroxyvitamin D alone improves skeletal growth, microarchitecture, and strength in a murine model of XLH, despite enhanced FGF23 expression. J Bone Miner Res 31:929–939. https://doi.org/10.1002/jbmr.2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leifheit-Nestler M, Kucka J, Yoshizawa E, Behets G, D'Haese P, Bergen C, Meier M, Fischer DC, Haffner D (2017) Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia. Bone 103:224–232. https://doi.org/10.1016/j.bone.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko I, Segawa H, Ikuta K, Hanazaki A, Fujii T, Tatsumi S, Kido S, Hasegawa T, Amizuka N, Saito H, Miyamoto KI (2018) Eldecalcitol causes FGF23 resistance for Pi reabsorption and improves rachitic bone phenotypes in the male Hyp mouse. Endocrinology 159:2741–2758. https://doi.org/10.1210/en.2018-00109

    Article  CAS  PubMed  Google Scholar 

  25. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  CAS  Google Scholar 

  26. Rauch F (2006) Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol 21:457–462

    Article  Google Scholar 

  27. Tokarz D, Martins JS, Petit ET, Lin CP, Demay MB, Liu ES (2018) Hormonal regulation of osteocyte perilacunar and canalicular remodeling in the Hyp mouse model of X-linked hypophosphatemia. J Bone Miner Res 33:499–509. https://doi.org/10.1002/jbmr.3327

    Article  CAS  PubMed  Google Scholar 

  28. Boukpessi T, Hoac B, Coyac BR, Leger T, Garcia C, Wicart P, Whyte MP, Glorieux FH, Linglart A, Chaussain C, McKee MD (2016) Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95:151–161. https://doi.org/10.1016/j.bone.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  29. Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG (2016) Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol 14:e1002427. https://doi.org/10.1371/journal.pbio.1002427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K (2007) Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab 25:407–413. https://doi.org/10.1007/s00774-007-0776-6

    Article  PubMed  Google Scholar 

  31. Gazit D, Tieder M, Liberman UA, Passi-Even L, Bab IA (1991) Osteomalacia in hereditary hypophosphatemic rickets with hypercalciuria: a correlative clinical-histomorphometric study. J Clin Endocrinol Metab 72:229–235

    Article  CAS  Google Scholar 

  32. Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6:142–146

    CAS  PubMed  Google Scholar 

  33. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192. https://doi.org/10.1038/nm.3074

    Article  CAS  PubMed  Google Scholar 

  34. Chesney RW, Mazess RB, Rose P, Hamstra AJ, DeLuca HF, Breed AL (1983) Long-term influence of calcitriol (1,25-dihydroxyvitamin D) and supplemental phosphate in X-linked hypophosphatemic rickets. Pediatrics 71:559–567

    CAS  PubMed  Google Scholar 

  35. Block JE, Piel CF, Selvidge R, Genant HK (1989) Familial hypophosphatemic rickets: bone mass measurements in children following therapy with calcitriol and supplemental phosphate. Calcif Tissue Int 44:86–92

    Article  CAS  Google Scholar 

  36. Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69

    Article  CAS  Google Scholar 

  37. Shore RM, Langman CB, Poznanski AK (2000) Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skelet Radiol 29:90–93

    Article  CAS  Google Scholar 

  38. Rosenthall L (1993) DEXA bone densitometry measurements in adults with X-linked hypophosphatemia. Clin Nucl Med 18:564–566

    Article  CAS  Google Scholar 

  39. Beck-Nielsen SS, Brusgaard K, Rasmussen LM, Brixen K, Brock-Jacobsen B, Poulsen MR, Vestergaard P, Ralston SH, Albagha OM, Poulsen S, Haubek D, Gjorup H, Hintze H, Andersen MG, Heickendorff L, Hjelmborg J, Gram J (2010) Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int 87:108–119. https://doi.org/10.1007/s00223-010-9373-0

    Article  CAS  PubMed  Google Scholar 

  40. Beck-Nielsen SS, Brixen K, Gram J, Molgaard C (2013) High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int 24:2215–2221. https://doi.org/10.1007/s00198-013-2286-9

    Article  CAS  PubMed  Google Scholar 

  41. Colares Neto GP, Pereira RM, Alvarenga JC, Takayama L, Funari MF, Martin RM (2017) Evaluation of bone mineral density and microarchitectural parameters by DXA and HR-pQCT in 37 children and adults with X-linked hypophosphatemic rickets. Osteoporos Int 28:1685–1692. https://doi.org/10.1007/s00198-017-3949-8

    Article  CAS  PubMed  Google Scholar 

  42. Marie PJ, Glorieux FH (1982) Bone histomorphometry in asymptomatic adults with hereditary hypophosphatemic vitamin D-resistant osteomalacia. Metab Bone Dis Relat Res 4:249–253

    Article  CAS  Google Scholar 

  43. Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, Rauch F (2013) Cortical and trabecular bone density in x-linked hypophosphatemic rickets. J Clin Endocrinol Metab 98:E954–E961. https://doi.org/10.1210/jc.2012-4133

    Article  PubMed  Google Scholar 

  44. Shanbhogue VV, Hansen S, Folkestad L, Brixen K, Beck-Nielsen SS (2015) Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with hypophosphatemic rickets. J Bone Miner Res 30:176–183. https://doi.org/10.1002/jbmr.2310

    Article  PubMed  Google Scholar 

  45. Zivicnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schroder C, Bramswig J, Haffner D (2011) Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231. https://doi.org/10.1007/s00467-010-1705-9

    Article  PubMed  Google Scholar 

  46. Econs MJ, Samsa GP, Monger M, Drezner MK, Feussner JR (1994) X-Linked hypophosphatemic rickets: a disease often unknown to affected patients. Bone Miner 24:17–24

    Article  CAS  Google Scholar 

  47. Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171:403–414

    Article  CAS  Google Scholar 

  48. Insogna KL, Briot K, Imel EA, Kamenicky P, Ruppe MD, Portale AA, Weber T, Pitukcheewanont P, Cheong HI, Jan de Beur S, Imanishi Y, Ito N, Lachmann RH, Tanaka H, Perwad F, Zhang L, Chen CY, Theodore-Oklota C, Mealiffe M, San Martin J, Carpenter TO (2018) A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res 33:1383–1393. https://doi.org/10.1002/jbmr.3475

    Article  CAS  PubMed  Google Scholar 

  49. Yamashita H, Kitagawa M (1996) Histomorphometric study of ribs with looser zones in Itai-itai disease. Calcif Tissue Int 58:170–176

    Article  CAS  Google Scholar 

  50. Wilkie AOM, Johnson D, Wall SA (2017) Clinical genetics of craniosynostosis. Curr Opin Pediatr 29:622–628. https://doi.org/10.1097/mop.0000000000000542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gjorup H, Kjaer I, Sonnesen L, Haubek D, Beck-Nielsen SS, Hintze H, Poulsen S (2011) Craniofacial morphology in patients with hypophosphatemic rickets: a cephalometric study focusing on differences between bone of cartilaginous and intramembranous origin. Am J Med Genet A 155A:2654–2660. https://doi.org/10.1002/ajmg.a.34242

    Article  PubMed  Google Scholar 

  52. Rothenbuhler A, Fadel N, Debza Y, Bacchetta J, Diallo MT, Adamsbaum C, Linglart A, Di Rocco F (2019) High incidence of cranial synostosis and Chiari I malformation in children with X-linked hypophosphatemic rickets (XLHR). J Bone Miner Res 34:490–496. https://doi.org/10.1002/jbmr.3614

    Article  CAS  PubMed  Google Scholar 

  53. Jaszczuk P, Rogers GF, Guzman R, Proctor MR (2016) X-linked hypophosphatemic rickets and sagittal craniosynostosis: three patients requiring operative cranial expansion: case series and literature review. Childs Nerv Syst 32:887–891. https://doi.org/10.1007/s00381-015-2934-9

    Article  PubMed  Google Scholar 

  54. Davies M, Kane R, Valentine J (1984) Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann Intern Med 100:230–232

    Article  CAS  Google Scholar 

  55. Meister M, Johnson A, Popelka GR, Kim GS, Whyte MP (1986) Audiologic findings in young patients with hypophosphatemic bone disease. Ann Otol Rhinol Laryngol 95:415–420. https://doi.org/10.1177/000348948609500418

    Article  CAS  PubMed  Google Scholar 

  56. O’Malley SP, Adams JE, Davies M, Ramsden RT (1988) The petrous temporal bone and deafness in X-linked hypophosphataemic osteomalacia. Clin Radiol 39:528–530

    Article  Google Scholar 

  57. Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M (2007) Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis 13:482–489. https://doi.org/10.1111/j.1601-0825.2006.01326.x

    Article  CAS  PubMed  Google Scholar 

  58. Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M (2003) Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331. https://doi.org/10.1067/mpd.2003.119

    Article  CAS  PubMed  Google Scholar 

  59. Opsahl Vital S, Gaucher C, Bardet C, Rowe PS, George A, Linglart A, Chaussain C (2012) Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 50:989–997. https://doi.org/10.1016/j.bone.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  60. Coyac BR, Falgayrac G, Penel G, Schmitt A, Schinke T, Linglart A, McKee MD, Chaussain C, Bardet C (2018) Impaired mineral quality in dentin in X-linked hypophosphatemia. Connect Tissue Res 59(sup1):91–96. https://doi.org/10.1080/03008207.2017.1417989

    Article  CAS  PubMed  Google Scholar 

  61. Coyac BR, Hoac B, Chafey P, Falgayrac G, Slimani L, Rowe PS, Penel G, Linglart A, McKee MD, Chaussain C, Bardet C (2018) Defective mineralization in X-linked hypophosphatemia dental pulp cell cultures. J Dent Res 97:184–191. https://doi.org/10.1177/0022034517728497

    Article  CAS  PubMed  Google Scholar 

  62. Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6. https://doi.org/10.1056/nejm198507043130101

    Article  CAS  PubMed  Google Scholar 

  63. Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM (2009) Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif Tissue Int 85:235–246. https://doi.org/10.1007/s00223-009-9270-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Che H, Roux C, Etcheto A, Rothenbuhler A, Kamenicky P, Linglart A, Briot K (2016) Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur J Endocrinol 174:325–333. https://doi.org/10.1530/eje-15-0661

    Article  CAS  PubMed  Google Scholar 

  65. Forestier-Zhang L, Watts L, Turner A, Teare H, Kaye J, Barrett J, Cooper C, Eastell R, Wordsworth P, Javaid MK, Pinedo-Villanueva R (2016) Health-related quality of life and a cost-utility simulation of adults in the UK with osteogenesis imperfecta, X-linked hypophosphatemia and fibrous dysplasia. Orphanet J Rare Dis 11:160. https://doi.org/10.1186/s13023-016-0538-4

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gjorup H, Kjaer I, Beck-Nielsen SS, Poulsen MR, Haubek D (2016) A radiological study on intra- and extra-cranial calcifications in adults with X-linked hypophosphatemia and associations with other mineralizing enthesopathies and childhood medical treatment. Orthod Craniofacial Res 19:114–125. https://doi.org/10.1111/ocr.12120

    Article  CAS  Google Scholar 

  67. Chesher D, Oddy M, Darbar U, Sayal P, Casey A, Ryan A, Sechi A, Simister C, Waters A, Wedatilake Y, Lachmann RH, Murphy E (2018) Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis 41:865–876. https://doi.org/10.1007/s10545-018-0147-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee SH, Agashe MV, Suh SW, Yoon YC, Song SH, Yang JH, Lee H, Song HR (2012) Paravertebral ligament ossification in vitamin D-resistant rickets: incidence, clinical significance, and genetic evaluation. Spine (Phila Pa 1976) 37:E792–E796. https://doi.org/10.1097/BRS.0b013e31824a3dc8

    Article  Google Scholar 

  69. Shiba M, Mizuno M, Kuraishi K, Suzuki H (2015) Cervical ossification of posterior longitudinal ligament in x-linked hypophosphatemic rickets revealing homogeneously increased vertebral bone density. Asian Spine J 9:106–109. https://doi.org/10.4184/asj.2015.9.1.106

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu ES, Martins JS, Zhang W, Demay MB (2018) Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development 145(15):dev163519. https://doi.org/10.1242/dev.163519

    Article  PubMed  PubMed Central  Google Scholar 

  71. Glorieux FH, Marie PJ, Pettifor JM, Delvin EE (1980) Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med 303:1023–1031

    Article  CAS  Google Scholar 

  72. Marie PJ, Glorieux FH (1983) Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int 35:443–448

    Article  CAS  Google Scholar 

  73. Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K (1992) A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 75:879–885

    CAS  PubMed  Google Scholar 

  74. Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, Simpson CA, Sterpka J, Dubrow R, Zhang JH, Carpenter TO (2015) Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab 100:3625–3632. https://doi.org/10.1210/jc.2015-2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597

    Article  CAS  Google Scholar 

  76. Carpenter TO, Whyte MP, Imel EA, Boot AM, Hogler W, Linglart A, Padidela R, Van’t Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378:1987–1998. https://doi.org/10.1056/NEJMoa1714641

    Article  CAS  PubMed  Google Scholar 

  77. Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A (1972) Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med 287:481–487

    Article  CAS  Google Scholar 

  78. Horn A, Wright J, Bockenhauer D, Van’t Hoff W, Eastwood DM (2017) The orthopaedic management of lower limb deformity in hypophosphataemic rickets. J Child Orthop 11:298–305. https://doi.org/10.1302/1863-2548.11.170003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gizard A, Rothenbuhler A, Pejin Z, Finidori G, Glorion C, de Billy B, Linglart A, Wicart P (2017) Outcomes of orthopedic surgery in a cohort of 49 patients with X-linked hypophosphatemic rickets (XLHR). Endocr Connect 6:566–573. https://doi.org/10.1530/ec-17-0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharkey MS, Grunseich K, Carpenter TO (2015) Contemporary medical and surgical management of X-linked hypophosphatemic rickets. J Am Acad Orthop Surg 23:433–442. https://doi.org/10.5435/jaaos-d-14-00082

    Article  PubMed  Google Scholar 

  81. Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, Holder M, Billing H, Fischer DC, Rabl W, Schumacher M, Hiort O, Haffner D (2011) Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 96:E2097–E2105. https://doi.org/10.1210/jc.2011-0399

    Article  CAS  PubMed  Google Scholar 

  82. Rothenbuhler A, Esterle L, Gueorguieva I, Salles JP, Mignot B, Colle M, Linglart A (2017) Two-year recombinant human growth hormone (rhGH) treatment is more effective in pre-pubertal compared to pubertal short children with X-linked hypophosphatemic rickets (XLHR). Growth Hormon IGF Res 36:11–15. https://doi.org/10.1016/j.ghir.2017.08.001

    Article  CAS  Google Scholar 

  83. Meyerhoff N, Haffner D, Staude H, Wuhl E, Marx M, Beetz R, Querfeld U, Holder M, Billing H, Rabl W, Schroder C, Hiort O, Bramswig JH, Richter-Unruh A, Schnabel D, Zivicnjak M (2018) Effects of growth hormone treatment on adult height in severely short children with X-linked hypophosphatemic rickets. Pediatr Nephrol 33:447–456. https://doi.org/10.1007/s00467-017-3820-3

    Article  PubMed  Google Scholar 

  84. Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, Kawakami T, Ito T, Zhang X, Humphrey J, Insogna KL, Peacock M (2014) Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest 124:1587–1597. https://doi.org/10.1172/jci72829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Imel EA, Zhang X, Ruppe MD, Weber TJ, Klausner MA, Ito T, Vergeire M, Humphrey JS, Glorieux FH, Portale AA, Insogna K, Peacock M, Carpenter TO (2015) Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J Clin Endocrinol Metab 100:2565–2573. https://doi.org/10.1210/jc.2015-1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whyte MP, Carpenter TO, Gottesman GS, Mao M, Skrinar A, San Martin J, Imel EA (2019) Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol 7:189–199. https://doi.org/10.1016/S2213-8587(18)30338-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shriners of North America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rauch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers

1. c; 2. b; 3. d; 4. c; 5. a

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, ME., AlQuorain, H., Murshed, M. et al. Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol 35, 1843–1854 (2020). https://doi.org/10.1007/s00467-019-04290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04290-y

Keywords

Navigation