Skip to main content

Advertisement

Log in

Poor bone matrix quality: What can be done about it?

  • Biomechanics (J Nyman and C Hernandez, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the review

Bone’s ability to withstand load resisting fracture and adapting to it highly depends on the quality of its matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic targets for skeletal fragility in aging and disease.

Recent findings

The highly organized, hierarchical composite structure of bone extracellular matrix together with its (re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted therapies are being developed to restore bone’s mechanical integrity. However, their current limitations include low tissue selectivity and adverse side effects.

Summary

Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-therapeutics for bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Carriero A, Javaheri B, Bassir Kazeruni N, Pitsillides A, Shefelbine S. Age and sex differences in load-induced tibial cortical bone surface strain maps: JBMR Plus; 2021. This article quantifies how the mechanical environment on bone varies with age and sex in C57BL6 mice.

  2. • Ritchie RO. How does human bone resist fracture? Ann N Y Acad Sci. 2010;1192:72.

  3. Skedros JG, Keenan KE, Williams TJ, Kiser CJ. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude. J Struct Biol. 2013;181(2):95–107.

    Article  PubMed  Google Scholar 

  4. Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21(5):453–9.

    Article  CAS  PubMed  Google Scholar 

  5. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014;29(6):1392–401.

    Article  CAS  PubMed  Google Scholar 

  6. Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014;61:116–24.

    Article  CAS  PubMed  Google Scholar 

  7. Jameson JR, Albert CI, Busse B, Smith PA, Harris GF. 3D micron-scale imaging of the cortical bone canal network in human osteogenesis imperfecta (OI). Medical imaging 2013: Biomedical applications in molecular, structural, and functional imaging; 2013: International Society for Optics and Photonics.

  8. Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep. 2015;4.

  9. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387–98.

    Article  PubMed  Google Scholar 

  10. Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, et al. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone. 2020;130:115126.

    Article  CAS  PubMed  Google Scholar 

  11. Razi H, Predan J, Fischer FD, Kolednik O, Fratzl P. Damage tolerance of lamellar bone. Bone. 2020;130:115102.

    Article  PubMed  Google Scholar 

  12. Reznikov N, Shahar R, Weiner S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone. 2014;59:93–104.

    Article  CAS  PubMed  Google Scholar 

  13. • Grandfield K, Vuong V, Schwarcz HP. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the TEM. Calcif Tissue Int. 2018;103(6):606–16. This article demonstrates the presence of curved mineral lamellae and presents a better insight into how bone is organized at the nanometer scale.

  14. Carriero A, Zimmermann EA, Shefelbine SJ, Ritchie RO. A methodology for the investigation of toughness and crack propagation in mouse bone. J Mech Behav Biomed Mater. 2014;39:38–47.

    Article  PubMed  Google Scholar 

  15. • Docaj A, Jeong MS, Zimmermann EA, Ritchie RO, Carriero A. Age effect on bone toughness in osteogenesis imperfecta. Trans Ann Meet Orthopaedic Res Soc; 2020. This conference proceeding abstract presents changes in bone fracture toughness during skeletal growth in healthy and osteogenesis imperfecta mice.

  16. Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shapiro F, Maguire K, Swami S, Zhu H, Flynn E, Wang J, et al. Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Bone Rep. 2021;14:100734.

    Article  PubMed  Google Scholar 

  18. Docaj A, Carriero A. Site-specific changes in collagen orientation in osteogenesis imperfecta mouse bone. Eur Soc Biomechan. 2021.

  19. Heveran CM, Schurman CA, Acevedo C, Livingston EW, Howe D, Schaible EG, et al. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.

    Article  PubMed  PubMed Central  Google Scholar 

  20. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density — Is there a role for mechanosensing? Bone. 2009;45(2):321–9.

    Article  PubMed  Google Scholar 

  21. De Paolis A, Jeong S, Cardoso L, Carriero A. Lacuna morphology affects strains in the cell body and dendrites, and on the bone tissue. Eur Soc Biomechan. 2019.

  22. Ebacher V, Guy P, Oxland TR, Wang R. Sub-lamellar microcracking and roles of canaliculi in human cortical bone. Acta Biomater. 2012;8(3):1093–100.

    Article  PubMed  Google Scholar 

  23. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012;109(47):19178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarcz H, Binkley D, Luo L, Grandfield K. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination. Bone. 2020;135:115304.

    Article  CAS  PubMed  Google Scholar 

  25. Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mechan Behav Biomed Mater. 2021:104377. This article demonstrates a decrease in intrafibrillar mineralization in the osteogenesis imperfecta murine model, and suggest this as one of the causes of its reduced toughness.

  26. Lin L, Samuel J, Zeng X, Wang X. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J Mech Behav Biomed Mater. 2017;65:224–35.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Ural A. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. J Mech Behav Biomed Mater. 2019;100:103361.

    Article  CAS  PubMed  Google Scholar 

  28. Nair AK, Gautieri A, Buehler MJ. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules. 2014;15(7):2494–500.

    Article  CAS  PubMed  Google Scholar 

  29. Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maghsoudi-Ganjeh M, Wang X, Zeng X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater. 2020;101:103454.

    Article  CAS  PubMed  Google Scholar 

  31. • Von Euw S, Chan-Chang T-H-C, Paquis C, Haye B, Pehau-Arnaudet G, Babonneau F, et al. Organization of bone mineral: the role of mineral-water interactions. Geosciences. 2018;8:466. This article demonstrates that structural water contained in apatite serve the mineral particles to organize themselves and increase mineralization.

  32. Qin Z, Gautieri A, Nair AK, Inbar H, Buehler MJ. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen–hydroxyapatite interface. Langmuir. 2012;28(4):1982–92.

    Article  CAS  PubMed  Google Scholar 

  33. Shahar R, Weiner S. Open questions on the 3D structures of collagen containing vertebrate mineralized tissues: A perspective. J Struct Biol. 2018;201(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  34. • Xi L, De Falco P, Barbieri E, Karunaratne A, Bentley L, Esapa C, et al. Bone matrix development in steroid-induced osteoporosis is associated with a consistently reduced fibrillar stiffness linked to altered bone mineral quality. Acta Biomater. 2018;76:295–307. This article demonstrates that mineralized fibrils exhibit strain-rate dependent stiffness in healthy mouse bones but not in steroid-induced osteoporotic bone having small mineral platelets.

  35. Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81.

    Article  CAS  PubMed  Google Scholar 

  36. Xu M, An B. An analysis of fracture in staggered mineralized collagen fibril arrays. Int J Solids Struct. 2020;193–194:535–49.

    Article  CAS  Google Scholar 

  37. Unal M, Akkus O. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone. 2015;81:315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Wang X, Hua R, Ahsan A, Ni Q, Huang Y, Gu S, et al. Age-related deterioration of bone toughness is related to diminishing amount of matrix glycosaminoglycans (Gags). JBMR Plus. 2018;2(3):164–73. This article demonstrates that loss of glycosaminoglycans and the subsequent loss of bound water are one of the origins of age-related deterioration of bone quality.

  39. Fielder M, Nair AK. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomech Model Mechanobiol. 2019;18(1):57–68.

    Article  PubMed  Google Scholar 

  40. McNerny EM, Gong B, Morris MD, Kohn DH. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res. 2015;30(3):455–64.

    Article  PubMed  CAS  Google Scholar 

  41. Gauthier R, Follet H, Langer M, Gineyts E, Rongiéras F, Peyrin F, et al. Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations. Bone. 2018;112:202–11.

    Article  PubMed  Google Scholar 

  42. Hunt HB, Pearl JC, Diaz DR, King KB, Donnelly E. Bone tissue collagen maturity and mineral content increase with sustained hyperglycemia in the KK-Ay murine model of type 2 diabetes. J Bone Miner Res. 2018;33(5):921–9.

    Article  CAS  PubMed  Google Scholar 

  43. Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Site-specific quantitative analysis of overglycosylation of collagen in osteogenesis imperfecta using hydrazide chemistry and SILAC. J Proteome Res. 2013;12(5):2225–32.

    Article  CAS  PubMed  Google Scholar 

  44. Terajima M, Perdivara I, Sricholpech M, Deguchi Y, Pleshko N, Tomer KB, et al. Glycosylation and cross-linking in bone type i collagen. J Biol Chem. 2014;289(33):22636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Hudson DM, Archer M, King KB, Eyre DR. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase–mediated cross-linking. J Biol Chem. 2018;293(40):15620–7. This article demonstrates that glycation products and enzymatic cross-link precursors target the same amino acids in the triple helical region of tropocollagen molecules.

  47. Allen MR, Newman CL, Chen N, Granke M, Nyman JS, Moe SM. Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease. Osteoporos Int. 2015;26(3):977–85.

    Article  CAS  PubMed  Google Scholar 

  48. Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, et al. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol. 2017;59:95–108.

    Article  CAS  PubMed  Google Scholar 

  49. • Chen NX, Srinivasan S, O'Neill K, Nickolas TL, Wallace JM, Allen MR, et al. Effect of Advanced Glycation End-Products (AGE) Lowering drug ALT-711 on biochemical, vascular, and bone parameters in a rat model of CKD-MBD. J Bone Miner Res. 2020;35(3):608–17. This article demonstrates that alagebrium administration decreases total AGE cross-link levels, yet the mechanical properties are not normalized in the Cy/+ rat model of chronic kidney disease.

  50. • Allen MR, Wallace J, McNerney E, Nyman J, Avin K, Chen N, et al. N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS One. 2020;15(3):e0230379 This article demonstrates that N-acetylcysteine administration reduces TBARS oxidative stress markers and AGE cross-link levels in the Cy/+ rat model of chronic kidney disease.

  51. Abar O, Dharmar S, Tang SY. The effect of aminoguanidine (AG) and pyridoxamine (PM) on ageing human cortical bone. Bone Joint Res. 2018;7(1):105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas CJ, Cleland TP, Sroga GE, Vashishth D. Accumulation of carboxymethyl-lysine (CML) in human cortical bone. Bone. 2018;110:128–33. This article demonstrates that carboxymethyl-lysine is a non-cross-linking AGE that is abundant in bone and impairs bone mechanical properties.

  53. • Creecy A, Brown KL, Rose KL, Voziyan P, Nyman JS. Post-translational modifications in collagen type I of bone in a mouse model of aging. Bone. 2021;143:115763. This article demonstrates how aging affects post-translational modifications in bone, with particular emphasis on the deamidation of specific residues, and how this relates to bone fracture toughness.

  54. • Morsali R, Dai Z, Wang Y, Qian D, Minary-Jolandan M. Deformation mechanisms of "two-part" natural adhesive in bone interfibrillar nano-interfaces. ACS Biomater Sci Eng. 2019;5(11):5916–24. This article presents new insights into the deformation mechanism between OC and OPN at the interfibrillar interface in bone.

  55. Tavakol M, Vaughan TJ. The structural role of osteocalcin in bone biomechanics and its alteration in type-2 diabetes. Sci Rep. 2020;10(1):17321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Z, Vashishth D, Picu RC. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol. 2018;17(4):1093–106.

    Article  CAS  PubMed  Google Scholar 

  57. Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 2010;46(6):1564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hua R, Ni Q, Eliason TD, Han Y, Gu S, Nicolella DP, et al. Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol. 2020;94:95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. • Sroga GE, Vashishth D. Phosphorylation of extracellular bone matrix proteins and its contribution to bone fragility. J Bone Miner Res. 2018;33(12):2214–29. This article demonstrates that the total phosphorylation of bone matrix proteins decreases with age, with a significant impact on fracture toughness.

  60. Kläning E, Christensen B, Sørensen ES, Vorup-Jensen T, Jensen JK. Osteopontin binds multiple calcium ions with high affinity and independently of phosphorylation status. Bone. 2014;66:90–5.

    Article  PubMed  CAS  Google Scholar 

  61. Morgan S, Poundarik AA, Vashishth D. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties? Calcif Tissue Int. 2015;97(3):281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Depalle B, McGilvery CM, Nobakhti S, Aldegaither N, Shefelbine SJ, Porter AE. Osteopontin regulates type I collagen fibril formation in bone tissue. Acta Biomater. 2021;120:194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem. 2020;68(11):747–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng HX, Chen J, Zu YX, Wang EZ, Qi SS. Chondroitin sulfate prevents STZ Induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and OPG/RANKL expression regulation. Int J Mol Sci. 2020;21(15).

  65. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410(1):93–106.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75.

    Article  CAS  PubMed  Google Scholar 

  67. Adele B. Bone mineral crystal size. Osteoporos Int. 2003;14(5):16–21.

    Google Scholar 

  68. Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93.

    Article  CAS  PubMed  Google Scholar 

  69. Aido M, Kerschnitzki M, Hoerth R, Checa S, Spevak L, Boskey AL, et al. Effect of in vivo loading on bone composition varies with animal age. Exp Gerontol. 2015;63:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McCreadie BR, Morris MD, Chen T-C, Sudhaker Rao D, Finney WF, Widjaja E, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.

    Article  CAS  PubMed  Google Scholar 

  71. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.

    Article  CAS  PubMed  Google Scholar 

  72. Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci Rep. 2016;6(1):21072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brennan O, Kuliwaba JS, Lee TC, Parkinson IH, Fazzalari NL, McNamara LM, et al. Temporal changes in bone composition, architecture, and strength following estrogen deficiency in osteoporosis. Calcif Tissue Int. 2012;91(6):440–9.

    Article  CAS  PubMed  Google Scholar 

  74. Turunen MJ, Kaspersen JD, Olsson U, Guizar-Sicairos M, Bech M, Schaff F, et al. Bone mineral crystal size and organization vary across mature rat bone cortex. J Struct Biol. 2016;195(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  75. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Sahin NO, et al. Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin Rheumatol. 2007;26(3):380–4.

    Article  PubMed  Google Scholar 

  76. Mathavan N, Turunen MJ, Tägil M, Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif Tissue Int. 2015;97(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  77. Peng Z, Tuukkanen J, Zhang H, Jämsä T, Väänänen H. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone. 1994;15(5):523–32.

    Article  CAS  PubMed  Google Scholar 

  78. Morello R. Osteogenesis imperfecta and therapeutics. Matrix Biol. 2018;71:294–312.

    Article  PubMed  CAS  Google Scholar 

  79. Imbert L, Aurégan J-C, Pernelle K, Hoc T. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children. J MechanBehav Biomed Mater. 2015;46:261–70.

    Article  CAS  Google Scholar 

  80. Vardakastani V, Saletti D, Skalli W, Marry P, Allain J-M, Adam C. Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta. Bone. 2014;69:61–7.

    Article  CAS  PubMed  Google Scholar 

  81. Wronski TJ, Dann LM, Scott KS, Cintrón M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989;45(6):360–6.

    Article  CAS  PubMed  Google Scholar 

  82. Enderli TA, Burtch SR, Templet JN, Carriero A. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev. 2016;8:41–55.

    PubMed  PubMed Central  Google Scholar 

  83. Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med. 2013;5(193):193ra88–8.

  84. Zimmermann EA, Köhne T, Bale HA, Panganiban B, Gludovatz B, Zustin J, et al. Modifications to nano-and microstructural quality and the effects on mechanical integrity in Paget's disease of bone. J Bone Miner Res. 2015;30(2):264–73.

    Article  CAS  PubMed  Google Scholar 

  85. Seitz S, Priemel M, Zustin J, Beil FT, Semler J, Minne H, et al. Paget's disease of bone: histologic analysis of 754 patients. J Bone Miner Res. 2009;24(1):62–9.

    Article  PubMed  Google Scholar 

  86. Lekkala S, Taylor EA, Hunt HB, Donnelly E. Effects of diabetes on bone material properties. Curr Osteoporos Rep. 2019;17(6):455–64.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hunt HB, Miller NA, Hemmerling KJ, Koga M, Lopez KA, Taylor EA, et al. Bone tissue composition in postmenopausal women varies with glycemic control from normal glucose tolerance to type 2 diabetes mellitus. J Bone Miner Res. 2020.

  88. •• Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z, et al. The potential role of the osteopontin–osteocalcin–osteoprotegerin triad in the pathogenesis of prediabetes in humans. Acta Diabetol. 2018;55(2):139–48 This article demonstrates that hormones playing a role in bone remodeling also affect glucose metabolism.

    Article  CAS  PubMed  Google Scholar 

  89. Creecy A, Uppuganti S, Merkel AR, O’Neal D, Makowski AJ, Granke M, et al. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int. 2016;99(3):289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605.

    Article  CAS  PubMed  Google Scholar 

  91. Tami AE, Nasser P, Verborgt O, Schaffler MB, Tate MLK. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002;17(11):2030–7.

    Article  CAS  PubMed  Google Scholar 

  92. •• McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(5):1330–1347.e13 This article demonstrates the existence of osteomorphs, new bone cells that originate trough osteoclasts fission and capable to fuse back into osteoclasts for bone repair purposes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. •• Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther. 2020;207:107473 This review presents bone-targeting moieties and strategies for the development of novel therapies applicable to bone-related pathologies.

    Article  CAS  PubMed  Google Scholar 

  94. Bessueille L, Briolay A, Como J, Mebarek S, Mansouri C, Gleizes M, et al. Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone. 2020;133:115262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alliston T. Biological regulation of bone quality. Curr Osteoporos Rep. 2014;12(3):366–75.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vashishth D, Verborgt O, Divine G, Schaffler M, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26(4):375–80.

    Article  CAS  PubMed  Google Scholar 

  97. Seref-Ferlengez Z, Kennedy OD, Schaffler MB. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? BoneKEy Rep. 2015;4.

  98. •• Alvandi LM, Chen D, Majeska RJ, Florencio-Silva R, Seref-Ferlengez Z, Schaffler MB. Mineral deposition is required to repair diffuse damage in bone in vivo. Amer Soc Bone Mineral Res; 2019. This conference proceeding abstract demonstrates new insights into the process of spontaneous repair of diffuse damage through a physicochemical remineralization process without the need of osteocytes activity.

  99. Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact. 2018;18(3):292.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Poulet B, Liu K, Plumb D, Vo P, Shah M, Staines K, et al. Overexpression of TIMP-3 in chondrocytes produces transient reduction in growth plate length but permanently reduces adult bone quality and quantity. PLoS One. 2016;11(12):e0167971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Miller B, Spevak L, Lukashova L, Javaheri B, Pitsillides AA, Boskey A, et al. Altered bone mechanics, architecture and composition in the skeleton of TIMP-3-deficient mice. Calcif Tissue Int. 2017;100(6):631–40.

    Article  CAS  PubMed  Google Scholar 

  102. Kaya S, Basta-Pljakic J, Seref-Ferlengez Z, Majeska RJ, Cardoso L, Bromage TG, et al. Lactation-induced changes in the volume of osteocyte lacunar-canalicular space alter mechanical properties in cortical bone tissue. J Bone Miner Res. 2017;32(4):688–97.

    Article  CAS  PubMed  Google Scholar 

  103. Jáuregui EJ, Akil O, Acevedo C, Hall-Glenn F, Tsai BS, Bale HA, et al. Parallel mechanisms suppress cochlear bone remodeling to protect hearing. Bone. 2016;89:7–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. • De Paolis A, Miller BJ, Doube M, Bodey AJ, Rau C, Richter C-P, et al. Increased cochlear otic capsule thickness and intracortical canal porosity in the oim mouse model of osteogenesis imperfecta. J Struct Biol. 2021:107708. This article quantifies the morphological changes of the otic capsule in mice with osteogenesis imperfecta, and how it might be involved in their hearing loss.

  105. Brister EY, Vasi Z, Antipova O, Robinson A, Tan X, Agarwal A, et al. X-ray fluorescence microscopy: a method of measuring ion concentrations in the ear. Hear Res. 2020;391:107948.

    Article  PubMed  Google Scholar 

  106. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhao Y-p, Tian Q-y, Frenkel S, Liu C-j. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials. 2013;34(27):6412–21.

  108. Eguchi K, Akiba Y, Akiba N, Nagasawa M, Cooper LF, Uoshima K. Insulin-like growth factor binding Protein-3 suppresses osteoblast differentiation via bone morphogenetic protein-2. Biochem Biophys Res Commun. 2018;507(1):465–70.

    Article  CAS  PubMed  Google Scholar 

  109. Turner C, Garetto L, Dunipace A, Zhang W, Wilson M, Grynpas M, et al. Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif Tissue Int. 1997;61(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  110. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. New Engl J Med. 2004;351(10):987–97.

    Article  CAS  PubMed  Google Scholar 

  111. Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin N Am. 2012;41(2):323–vi.

    Article  CAS  Google Scholar 

  112. Tang S, Alliston T. Regulation of postnatal bone homeostasis by TGFbeta. Bonekey Rep. 2013;2:255.

  113. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TGF-β regulates the mechanical properties and composition of bone matrix. ProcNat Acad Sci. 2005;102(52):18813–8.

    Article  CAS  Google Scholar 

  114. Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES, Hvid I. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res. 2003;21(2):335–40.

    Article  CAS  PubMed  Google Scholar 

  115. Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone diseases: current approach and future perspectives in drug delivery systems for bone targeted therapeutics. Nanomaterials. 2020;10(5):875.

    Article  CAS  PubMed Central  Google Scholar 

  116. Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog Mol Biol Transl Sci. 2017;148:203–303.

    Article  CAS  PubMed  Google Scholar 

  117. Shay G, Tauro M, Loiodice F, Tortorella P, Sullivan DM, Hazlehurst LA, et al. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget. 2017;8(26):41827.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res. 2011;26(6):1252–60.

    Article  CAS  PubMed  Google Scholar 

  119. Tokuhara CK, Santesso MR, Oliveira GSN, Ventura TMDS, Doyama JT, Zambuzzi WF, et al. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci. 2019;27:e20180596.

    Article  CAS  PubMed  Google Scholar 

  120. Paiva KB, Granjeiro JM. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys. 2014;561:74–87.

    Article  CAS  PubMed  Google Scholar 

  121. Tang SY, Herber RP, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res. 2012;27(9):1936–50.

    Article  CAS  PubMed  Google Scholar 

  122. Lin T-H, Pajarinen J, Lu L, Nabeshima A, Cordova L, Yao Z, et al. NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv Protein Chem Struct Biol. 2017;107:117–54.

    Article  CAS  PubMed  Google Scholar 

  123. D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol. 2019;15:004–4.

  124. Polyzos SA, Makras P, Tournis S, Anastasilakis AD. Off-label uses of denosumab in metabolic bone diseases. Bone. 2019;129:115048.

    Article  CAS  PubMed  Google Scholar 

  125. Jähn-Rickert K, Wölfel EM, Jobke B, Riedel C, Hellmich M, Werner M, et al. Elevated bone hardness under denosumab treatment, with persisting lower osteocyte viability during discontinuation. Front Endocrinol (Lausanne). 2020;11:250.

    Article  Google Scholar 

  126. Plotkin LI, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10):593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang X, Yamauchi K, Mitsunaga T. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia. 2020;142:104482.

    Article  CAS  PubMed  Google Scholar 

  128. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46(3):666–72.

    Article  CAS  PubMed  Google Scholar 

  129. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55(2):495–500.

    Article  CAS  PubMed  Google Scholar 

  130. Fioramonti M, Santini D, Iuliani M, Ribelli G, Manca P, Papapietro N, et al. Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions. Oncotarget. 2017;8(12):20113.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nakai Y, Okamoto K, Terashima A, Ehata S, Nishida J, Imamura T, et al. Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res. 2019;7:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020;183(4):R95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. New Engl J Med. 2016;375(16):1532–43.

    Article  CAS  PubMed  Google Scholar 

  134. Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H, et al. Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. J Biol Chem. 2004;279(10):8592–601.

    Article  CAS  PubMed  Google Scholar 

  135. Jiang C, Xia W, Wu T, Pan C, Shan H, Wang F, et al. Inhibition of microRNA-222 up-regulates TIMP3 to promotes osteogenic differentiation of MSCs from fracture rats with type 2 diabetes mellitus. J Cell Mol Med. 2020;24(1):686–94.

    Article  CAS  PubMed  Google Scholar 

  136. Sleeman A, Clements JN. Abaloparatide: A new pharmacological option for osteoporosis. Am J Health Syst Pharm. 2019;76(3):130–5.

    Article  PubMed  Google Scholar 

  137. Bernhardsson M, Aspenberg P. Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthop. 2018;89(6):674–7.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ueland T, Stilgren L, Bollerslev J. Bone matrix levels of Dickkopf and Sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int J Mol Sci. 2019;20(12).

  139. Ross RD, Mashiatulla M, Robling AG, Miller LM, Sumner DR. Bone matrix composition following PTH treatment is not dependent on sclerostin status. Calcif Tissue Int. 2016;98(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  140. Gardinier JD, Al-Omaishi S, Rostami N, Morris MD, Kohn DH. Examining the influence of PTH(1-34) on tissue strength and composition. Bone. 2018;117:130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Makowski AJ, Uppuganti S, Wadeer SA, Whitehead JM, Rowland BJ, Granke M, et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone. 2014;62:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med. 2013;19(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  143. Molstad DH, Mattson AM, Begun DL, Westendorf JJ, Bradley EW. Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. J Biol Chem. 2020;295(51):17713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McGee-Lawrence ME, Bradley EW, Dudakovic A, Carlson SW, Ryan ZC, Kumar R, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52(1):296–307.

    Article  CAS  PubMed  Google Scholar 

  145. Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, et al. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One. 2010;5(7):e11492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Carpio LR, Bradley EW, McGee-Lawrence ME, Weivoda MM, Poston DD, Dudakovic A, et al. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Sci Signal. 2016;9(440):ra79–ra.

    Article  CAS  Google Scholar 

  147. Kim J-M, Yang Y-S, Park KH, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun 2020;11(1):1–17.

  148. Valenti MT, Mottes M, Cheri S, Deiana M, Micheletti V, Cosaro E, et al. Runx2 overexpression compromises bone quality in acromegalic patients. Endocr Relat Cancer. 2018;25(3):269–77.

    Article  CAS  PubMed  Google Scholar 

  149. Kim W-J, Shin H-L, Kim B-S, Kim H-J, Ryoo H-M. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med. 2020;52(8):1178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 2005;20(12):2254–63.

    Article  CAS  PubMed  Google Scholar 

  151. Ouyang N, Li H, Wang M, Shen H, Si J, Shen G. The transcription factor Foxc1 promotes osteogenesis by directly regulating Runx2 in response of intermittent parathyroid hormone (1–34) treatment. Front Pharmacol. 2020;11:592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Besio R, Garibaldi N, Leoni L, Cipolla L, Sabbioneda S, Biggiogera M, et al. Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. Dis Model Mech. 2019;12(6).

  153. Besio R, Iula G, Garibaldi N, Cipolla L, Sabbioneda S, Biggiogera M, et al. 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochimica et Biophysica Acta (BBA)-Molecul Basis Dis. 2018;1864(5):1642–52.

    Article  CAS  Google Scholar 

  154. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank A-M, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–84 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang Y, Zhao C, Liang J, Yu M, Qu X. Effect of dipeptidyl peptidase-4 inhibitors on bone metabolism and the possible underlying mechanisms. Front Pharmacol. 2017;8:487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yoshida T, Wang J, Stern PH. Gonadal hormones and bone. Handb Exp Pharmacol. 2020;262:65–91.

    Article  CAS  PubMed  Google Scholar 

  157. Powell KM, Skaggs C, Pulliam A, Berman A, Allen MR, Wallace JM. Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone. Bone. 2019;127:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB. Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology. 2007;148(8):3908–13.

    Article  CAS  PubMed  Google Scholar 

  159. Yoon SH, Grynpas M, Mitchell J. Intermittent PTH treatment improves bone and muscle in glucocorticoid treated Mdx mice: a model of duchenne muscular dystrophy. Bone. 2019;121:232–42.

    Article  CAS  PubMed  Google Scholar 

  160. Chiang CY, Zebaze RMD, Ghasem-Zadeh A, Iuliano-Burns S, Hardidge A, Seeman E. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone. 2013;52(1):360–5.

    Article  CAS  PubMed  Google Scholar 

  161. Varela A, Chouinard L, Lesage E, Guldberg R, Smith SY, Kostenuik PJ, et al. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats. Bone. 2017;95:143–50.

    Article  CAS  PubMed  Google Scholar 

  162. Javaheri B, Carriero A, Staines KA, Chang Y-M, Houston D, Oldknow KJ, et al. Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. Bone. 2015;81:277–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Carriero A, Bruse JL, Oldknow KJ, Millán JL, Farquharson C, Shefelbine SJ. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone. 2014;69:174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kiffer-Moreira T, Yadav MC, Zhu D, Narisawa S, Sheen C, Stec B, et al. Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification. J Bone Miner Res. 2013;28(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  165. Terkeltaub RA. Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol-Cell Physiol. 2001;281(1):C1–C11.

    Article  CAS  PubMed  Google Scholar 

  166. Rodriguez-Florez N, Carriero A, Shefelbine SJ. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation. Comput Meth Biomechan Biomed Eng. 2017;20(4):385–92.

    Article  Google Scholar 

  167. Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, et al. The interplay between bone and glucose metabolism. Front Endocrinol. 2020;11:122.

    Article  Google Scholar 

  168. Mu C-F, Shen J, Liang J, Zheng H-S, Xiong Y, Wei Y-H, et al. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials. 2018;155:191–202.

    Article  CAS  PubMed  Google Scholar 

  169. Skjødt MK, Frost M, Abrahamsen B. Side effects of drugs for osteoporosis and metastatic bone disease. Br J Clin Pharmacol. 2019;85(6):1063–71.

    Article  PubMed  Google Scholar 

  170. Feng Q, Xu J, Zhang K, Yao H, Zheng N, Zheng L, et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci. 2019;5(3):440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cai M, Yang L, Zhang S, Liu J, Sun Y, Wang X. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int J Nanomedicine. 2017;12:7469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lavrador P, Gaspar VM, Mano JF. Stimuli-responsive nanocarriers for delivery of bone therapeutics–Barriers and progresses. J Control Release. 2018;273:51–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CBET-1829310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Carriero.

Ethics declarations

Conflict of interest

All authors state that they have no conflicts of interest.

Human and animal rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, A., Docaj, A., Ugarteburu, M. et al. Poor bone matrix quality: What can be done about it?. Curr Osteoporos Rep 19, 510–531 (2021). https://doi.org/10.1007/s11914-021-00696-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00696-6

Keywords

Navigation