Skip to main content

Advertisement

Log in

Reference Intervals for Bone Histomorphometric Measurements Based on Data from Healthy Premenopausal Women

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This study has established the normal reference intervals for bone histomorphometric measurements derived from healthy premenopausal women, which is rarely available. We presented the static and dynamic bone histomorphometric data from trans-iliac bone biopsies in 62 healthy premenopausal women (19 blacks and 43 whites, ages 20–53 years). There were no significant differences in age and BMI between black and white women. Since there was no significant difference in bone remodeling between the two ethnic groups, we pooled data of all 62 premenopausal women to establish normal reference intervals for bone histomorphometry. The results provide normal reference intervals for both static and dynamic histomorphometric variables in cancellous and cortical bone of the ilium. None of the bone remodeling-related variables correlated with age or BMI. This study provides reference intervals for bone histomorphometric measurements in both cancellous and cortical bone of the ilium, which would be helpful in the evaluation of bone health in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  Google Scholar 

  2. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1997) Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12:498–508

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  CAS  PubMed  Google Scholar 

  4. Rao DS (1983) Practical approach to bone biopsy. In: Recker R (ed) Bone histomorphometry: techniques and interpretations. CRC Press, Boca Rston, pp 3–11

    Google Scholar 

  5. Parfitt M, Qiu S, Palnitkar S, Rao DS (2011) Abnormal bone remodeling in patients with spontaneous painful vertebral fracture. J Bone Miner Res 26:475–485

    Article  PubMed  Google Scholar 

  6. Parfitt AM, Podenphant J, Villanueva AR, Frame B (1985) Metabolic bone disease with and without osteomalacia after intestinal bypass surgery: a bone histomorphometric study. Bone 6:211–220

    Article  CAS  PubMed  Google Scholar 

  7. Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH (2000) Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 15:957–963

    Article  CAS  PubMed  Google Scholar 

  8. Ott SM (2009) Bone histomorphometry in renal osteodystrophy. Semin Nephrol 29:122–132

    Article  PubMed  Google Scholar 

  9. Weinstein RS, Parfitt AM, Marcus R, Greenwald M, Crans G, Muchmore DB (2003) Effects of raloxifene, hormone replacement therapy, and placebo on bone turnover in postmenopausal women. Osteoporos Int 14:814–822

    Article  CAS  PubMed  Google Scholar 

  10. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, Wagman RB, Yin X, Yue SV, Boivin G (2018) Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 103:2498–2509

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dempster DW, Zhou H, Recker RR, et al. (2012) Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) Study: A Randomized Controlled Trial. J Clin Endocrinol Metab

  12. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  CAS  PubMed  Google Scholar 

  13. Melsen F, Mosekilde L (1978) Tetracycline double-labeling of iliac trabecular bone in 41 normal adults. Calcif Tissue Res 26:99–102

    Article  CAS  PubMed  Google Scholar 

  14. Recker RR, Akhter MP, Lappe JM, Watson P (2018) Bone histomorphometry in transiliac biopsies from 48 normal, healthy men. Bone 111:109–115

    Article  PubMed  Google Scholar 

  15. Schnitzler CM, Pettifor JM, Mesquita JM, Bird MD, Schnaid E, Smyth AE (1990) Histomorphometry of iliac crest bone in 346 normal black and white South African adults. Bone Miner 10:183–199

    Article  CAS  PubMed  Google Scholar 

  16. Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF (1990) A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 11:217–235

    Article  CAS  PubMed  Google Scholar 

  17. Parfitt AM, Han ZH, Palnitkar S, Rao DS, Shih MS, Nelson D (1997) Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone. J Bone Miner Res 12:1864–1873

    Article  CAS  PubMed  Google Scholar 

  18. Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S (1988) Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 3:133–144

    Article  CAS  PubMed  Google Scholar 

  19. Recker RR, Lappe JM, Davies M, Kimmel D (2018) Perimenopausal bone histomorphometry before and after menopause. Bone 108:55–61

    Article  PubMed  Google Scholar 

  20. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1996) Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res 11:1967–1975

    Article  CAS  PubMed  Google Scholar 

  21. Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB (2011) Issues in modern bone histomorphometry. Bone 49:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foldes J, Shih MS, Parfitt AM (1990) Frequency distributions of tetracycline-based measurements: implications for the interpretation of bone formation indices in the absence of double-labeled surfaces. J Bone Miner Res 5:1063–1067

    Article  CAS  PubMed  Google Scholar 

  23. Hawkins RC, Badrick T (2013) Reference interval studies: what is the maximum number of samples recommended? Clin Chem Lab Med 51:2161–2165

    Article  CAS  PubMed  Google Scholar 

  24. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  CAS  PubMed  Google Scholar 

  25. Kleerekoper M, Nelson DA, Peterson EL, Flynn MJ, Pawluszka AS, Jacobsen G, Wilson P (1994) Reference data for bone mass, calciotropic hormones, and biochemical markers of bone remodeling in older (55–75) postmenopausal white and black women. J Bone Miner Res 9:1267–1276

    Article  CAS  PubMed  Google Scholar 

  26. Foldes J, Parfitt AM, Shih MS, Rao DS, Kleerekoper M (1991) Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 6:759–766

    Article  CAS  PubMed  Google Scholar 

  27. Parisien M, Cosman F, Morgan D et al (1997) Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J Bone Miner Res 12:948–957

    Article  CAS  PubMed  Google Scholar 

  28. Tong X, Burton IS, Jurvelin JS, Isaksson H, Kroger H (2017) Iliac crest histomorphometry and skeletal heterogeneity in men. Bone Rep 6:9–16

    Article  PubMed  Google Scholar 

  29. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2006) Independent and combined contributions of cancellous and cortical bone deficits to vertebral fracture risk in postmenopausal women. J Bone Miner Res 21:1791–1796

    Article  PubMed  Google Scholar 

  30. Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  31. Bala Y, Zebaze R, Seeman E (2015) Role of cortical bone in bone fragility. Curr Opin Rheumatol 27:406–413

    Article  PubMed  Google Scholar 

  32. Bernhard A, Milovanovic P, Zimmermann EA et al (2013) Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 24:2671–2680

    Article  CAS  PubMed  Google Scholar 

  33. Seeman E (2013) Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A 68:1218–1225

    Article  Google Scholar 

  34. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J (2009) Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1–84. Bone 44:113–119

    Article  CAS  PubMed  Google Scholar 

  35. Dempster DW, Cosman F, Zhou H, Nieves JW, Bostrom M, Lindsay R (2016) Effects of daily or cyclic teriparatide on bone formation in the iliac crest in women on no prior therapy and in women on alendronate. J Bone Miner Res 31:1518–1526

    Article  CAS  PubMed  Google Scholar 

  36. Heaney RP (2003) Remodeling and skeletal fragility. Osteoporos Int 14:12–15

    Article  Google Scholar 

  37. Odvina CV, Levy S, Rao S, Zerwekh JE, Rao DS (2010) Unusual mid-shaft fractures during long-term bisphosphonate therapy. Clin Endocrinol (Oxf) 72:161–168

    Article  CAS  Google Scholar 

  38. Qiu S, Divine GW, Palnitkar S, Kulkarni P, Guthrie TS, Honasoge M, Rao SD (2017) Bone structure and turnover status in postmenopausal women with atypical femur fracture after prolonged bisphosphonate therapy. Calcif Tissue Int 100:235–243

    Article  CAS  PubMed  Google Scholar 

  39. Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075

    Article  CAS  PubMed  Google Scholar 

  40. Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS (2012) Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 50:688–694

    Article  PubMed  Google Scholar 

  41. Reid IR, Miller PD, Brown JP et al (2010) Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 25:2256–2265

    Article  CAS  PubMed  Google Scholar 

  42. Khosla S, Bilezikian JP, Dempster DW, Lewiecki EM, Miller PD, Neer RM, Recker RR, Shane E, Shoback D, Potts JT (2012) Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab 97:2272–2282

    Article  CAS  PubMed  Google Scholar 

  43. Brandenburg VM, Floege J (2008) Adynamic bone disease-bone and beyond. NDT Plus 1:135–147

    PubMed  PubMed Central  Google Scholar 

  44. Kulak CA, Dempster DW (2010) Bone histomorphometry: a concise review for endocrinologists and clinicians. Arq Bras Endocrinol Metabol 54:87–98

    Article  PubMed  Google Scholar 

  45. Ciarelli TE, Tjhia C, Rao DS, Qiu S, Parfitt AM, Fyhrie DP (2009) Trabecular packet-level lamellar density patterns differ by fracture status and bone formation rate in white females. Bone 45:903–908

    Article  PubMed  Google Scholar 

  46. Rubin MR (2019) Skeletal manifestations of hypoparathyroidism. Bone 120:548–555

    Article  CAS  PubMed  Google Scholar 

  47. Khosla S, Melton LJ 3rd, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26:441–451

    Article  CAS  PubMed  Google Scholar 

  48. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, Blanco-Chavez J, American Society for Veterinary Clinical P (2012) ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol 41:441–453

    Article  PubMed  Google Scholar 

  49. Horn PS, Pesce AJ, Copeland BE (1998) A robust approach to reference interval estimation and evaluation. Clin Chem 44:622–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institutes of Health (AG10381 and AG/AR13918) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (AR062103).

Author information

Authors and Affiliations

Authors

Contributions

Study design: SQ and SR; Acquisition of data: SQ and EW; Data analysis and interpretation: SQ, GD and SR; Original draft: SQ; Review and editing: SQ and SR; Final approval of the version to be published: SQ, GD, EW and SR.

Corresponding author

Correspondence to Shijing Qiu.

Ethics declarations

Conflict of interest

Shijing Qiu, George Divine, Elizabeth Warner and Sudhaker Rao declare that they have no conflict of interest.

Ethical Approval

The study was conducted in accordance with the ethical standards of the institutional research committee of Henry Ford Hospital and the 1964 Helsinki Declaration and its later amendments.

Human and Animal Rights and Informed Consent

The study was approved by the Institutional Review Board of Henry Ford Hospital and written informed consent was provided by all the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Divine, G., Warner, E. et al. Reference Intervals for Bone Histomorphometric Measurements Based on Data from Healthy Premenopausal Women. Calcif Tissue Int 107, 543–550 (2020). https://doi.org/10.1007/s00223-020-00748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00748-6

Keywords

Navigation