Skip to main content

Advertisement

Log in

Bone Turnover Markers in Children: From Laboratory Challenges to Clinical Interpretation

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone turnover markers (BTMs) have been developed many years ago to study, in combination with imaging techniques, bone remodeling in adults. In children and adolescents, bone metabolism differs from adults since it implies both growth and bone remodeling, suggesting an age- and gender-dependent BTM concentration. Therefore, specific studies have evaluated BTMs in not only physiological but also pathological conditions. However, in pediatrics, the use of BTMs in clinical practice is still limited due to these many children-related specificities. This review will discuss about physiological levels of BTMs as well as their modifications under pathological conditions in children and adolescents. A focus is also given on analytical and clinical challenges that restrain BTM usefulness in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tuchman S, Thayu M, Shults J et al (2008) Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr 153:484–490. https://doi.org/10.1016/j.jpeds.2008.04.028

    Article  CAS  Google Scholar 

  2. Bayer M (2014) Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos Int 25:729–736. https://doi.org/10.1007/s00198-013-2485-4

    Article  CAS  Google Scholar 

  3. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923

    Article  Google Scholar 

  4. Ivaska KK, Gerdhem P, Åkesson K et al (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. https://doi.org/10.1359/jbmr.070505

    Article  Google Scholar 

  5. Camacho PM, Petak SM, Binkley N et al (2016) American association of clinical endocrinologists and american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-executive summary. Endocr Pract 22:1–42. https://doi.org/10.4158/EP161435.ESGL

    Article  Google Scholar 

  6. Bakkaloglu SA, Bacchetta J, Lalayiannis AD et al (2021) Bone evaluation in paediatric chronic kidney disease: clinical practice points from the european society for paediatric nephrology CKD-MBD and dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfaa210

    Article  Google Scholar 

  7. Simm PJ, Biggin A, Zacharin MR et al (2018) Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health 54:223–233

    Article  Google Scholar 

  8. Eapen E, Grey V, Don-Wauchope A, Atkinson SA (2008) Bone health in childhood: usefulness of biochemical biomarkers. EJIFCC 123–135

  9. Jürimäe J (2010) Interpretation and application of bone turnover markers in children and adolescents. Curr Opin Pediatr 22(4):494–500

    Article  Google Scholar 

  10. Tahmasebi H, Higgins V, Fung AWS, et al (2017) Pediatric reference intervals for biochemical markers: gaps and challenges, recent national initiatives and future perspectives. eJIFCC 82:43–63

  11. Rustad P, Felding P, Lahti A (2004) Proposal for guidelines to establish common biological reference intervals in large geographical areas for biochemical quantities measured frequently in serum and plasma. Clin Chem Lab Med 42:783–791. https://doi.org/10.1515/CCLM.2004.131

    Article  CAS  Google Scholar 

  12. Karbasy K, Ariadne P, Gaglione S et al (2014) Advances in pediatric reference intervals for biochemical markers: establishment of the caliper database in healthy children and adolescents/Napredak U Oblasti Pedijatrijskih Referentnih Intervala Za Biohemijske Markere: Izrada Baze Podataka Caliper Kod Z. J Med Biochem 34:23–30. https://doi.org/10.2478/jomb-2014-0063

    Article  Google Scholar 

  13. Estey MP, Cohen AH, Colantonio DA et al (2013) CLSI-based transference of the CALIPER database of pediatric reference intervals from abbott to beckman, ortho, roche and siemens clinical chemistry assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem 46:1197–1219. https://doi.org/10.1016/j.clinbiochem.2013.04.001

    Article  Google Scholar 

  14. Bauer D, Krege J, Lane N et al (2012) National bone health alliance bone turnover marker project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int. https://doi.org/10.1007/s00198-012-2049-z

    Article  Google Scholar 

  15. Vasikaran S, Cooper C, Eastell R et al (2011) International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. https://doi.org/10.1515/CCLM.2011.602

    Article  Google Scholar 

  16. Cavalier E, Eastell R, Rye Jørgensen N et al (2019) A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type i procollagen (PINP): a report from the IFCC-IOF joint committee for bone metabolism. Clin Chem Lab Med. https://doi.org/10.1515/cclm-2019-0174

    Article  Google Scholar 

  17. Vasikaran SD, Bhattoa HP, Eastell R et al (2020) Harmonization of commercial assays for PINP; the way forward. Osteoporos Int. https://doi.org/10.1007/s00198-020-05310-6

    Article  Google Scholar 

  18. Huang Y, Eapen E, Steele S, Grey V (2011) Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem 44:771–778. https://doi.org/10.1016/j.clinbiochem.2011.04.008

    Article  CAS  Google Scholar 

  19. Morovat A, Catchpole A, Meurisse A et al (2013) IDS iSYS automated intact procollagen-1-Nterminus pro-peptide assay: Method evaluation and reference intervals in adults and children. Clin Chem Lab Med 51:2009–2018. https://doi.org/10.1515/cclm-2012-0531

    Article  CAS  Google Scholar 

  20. Diemar SS, Lylloff L, Rønne MS et al (2021) Reference intervals in Danish children and adolescents for bone turnover markers carboxy-terminal cross-linked telopeptide of type I collagen (β-CTX), pro-collagen type I N-terminal propeptide (PINP), osteocalcin (OC) and bone-specific alkaline phosphatas. Bone 146:115879. https://doi.org/10.1016/j.bone.2021.115879

    Article  CAS  Google Scholar 

  21. Geserick M, Vogel M, Eckelt F et al (2020) Children and adolescents with obesity have reduced serum bone turnover markers and 25-hydroxyvitamin D but increased parathyroid hormone concentrations – Results derived from new pediatric reference ranges. Bone. https://doi.org/10.1016/j.bone.2019.115124

    Article  Google Scholar 

  22. Van Der Sluis IM, Hop WC, Van Leeuwen JPTM et al (2002) A cross-sectional study on biochemical parameters of bone turnover and vitamin D metabolites in healthy dutch children and young adults. Horm Res. https://doi.org/10.1159/000058378

    Article  Google Scholar 

  23. Jürimäe J, Pomerants T, Tillmann V, Jürimäe T (2009) Bone metabolism markers and ghrelin in boys at different stages of sexual maturity. Acta Paediatr Int J Paediatr 98:892–896. https://doi.org/10.1111/j.1651-2227.2008.01193.x

    Article  CAS  Google Scholar 

  24. Kajantie E, Dunkel L, Risteli J et al (2001) Markers of type I and III collagen turnover as indicators of growth velocity in very low birth weight infants. J Clin Endocrinol Metab 86:4299–4306. https://doi.org/10.1210/jcem.86.9.7869

    Article  CAS  Google Scholar 

  25. Van Coeverden SCCM, Netelenbos JC, De Ridder CM et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57:107–116. https://doi.org/10.1046/j.1365-2265.2002.01573.x

    Article  Google Scholar 

  26. Christo K, Prabhakaran R, Lamparello B et al (2008) Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics 121:1127–1136. https://doi.org/10.1542/peds.2007-2392

    Article  Google Scholar 

  27. Zürcher SJ, Borter N, Kränzlin M et al (2020) Relationship between bone mineral content and bone turnover markers, sex hormones and calciotropic hormones in pre- and early pubertal children. Osteoporos Int 31:335–349. https://doi.org/10.1007/s00198-019-05180-7

    Article  CAS  Google Scholar 

  28. Koivula MK, Ruotsalainen V, Björkman M et al (2010) Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 47:67–71. https://doi.org/10.1258/acb.2009.009110

    Article  CAS  Google Scholar 

  29. Cavalier E, Lukas P, Carlisi A, et al (2013) Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: The assay matters. Clin Chim Acta 425

  30. Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: national bone health alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556. https://doi.org/10.1007/s00198-017-4082-4

    Article  CAS  Google Scholar 

  31. Nizet A, Cavalier E, Stenvinkel P et al (2020) Bone alkaline phosphatase: an important biomarker in chronic kidney disease—mineral and bone disorder. Clin Chim Acta 501:198–206. https://doi.org/10.1016/j.cca.2019.11.012

    Article  CAS  Google Scholar 

  32. Haarhaus M, Monier-Faugere MC, Magnusson P, Malluche HH (2015) Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2015.02.323

    Article  Google Scholar 

  33. Haarhaus M, Fernström A, Magnusson M, Magnusson P (2009) Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfp300

    Article  Google Scholar 

  34. Lomashvili KA, Cobbs S, Hennigar RA et al (2004) Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J Am Soc Nephrol 15:1392–1401. https://doi.org/10.1097/01.ASN.0000128955.83129.9C

    Article  CAS  Google Scholar 

  35. Van Hoof VO, De Broe ME (1994) Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 31:197–293. https://doi.org/10.3109/10408369409084677

    Article  Google Scholar 

  36. Rauchenzauner M, Schmid A, Heinz-Erian P et al (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449. https://doi.org/10.1210/jc.2006-1706

    Article  CAS  Google Scholar 

  37. Ladang A, Rousselle O, Huyghebaert L et al (2020) Parathormone, bone alkaline phosphatase and 25-hydroxyvitamin D status in a large cohort of 1200 children and teenagers. Acta Clin Belgica Int J Clin Lab Med 22:1–6. https://doi.org/10.1080/17843286.2020.1769285

    Article  CAS  Google Scholar 

  38. Fischer DC, Mischek A, Wolf S et al (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49:546–553. https://doi.org/10.1258/acb.2012.011274

    Article  CAS  Google Scholar 

  39. Colantonio DA, Kyriakopoulou L, Chan MK et al (2012) Closing the gaps in pediatric laboratory reference intervals: a caliper database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 58:854–868. https://doi.org/10.1373/clinchem.2011.177741

    Article  CAS  Google Scholar 

  40. Topal İ, Gümüş B (2020) Can bone-specific alkaline phosphatase and osteocalcine levels be used to determine the age in children? Am J Forensic Med Pathol 41:182–187. https://doi.org/10.1097/PAF.0000000000000555

    Article  Google Scholar 

  41. Oladipo OO, DeCrescenzo AJ, Marquez CP, Okorodudu AO (2017) Increased alkaline phosphatase in a child. Clin Chem 63(6):1174–1175

    Article  CAS  Google Scholar 

  42. Otero JL, González-Peralta RP, Andres JM et al (2011) Elevated alkaline phosphatase in children: an algorithm to determine when a “Wait and See” approach is optimal. Clin Med Insights Pediatr 5:15–18. https://doi.org/10.4137/cmped.s6872

    Article  Google Scholar 

  43. Magnusson P, Häger A, Larsson L (1995) Serumosteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr Res 38:955–960. https://doi.org/10.1203/00006450-199512000-00021

    Article  CAS  Google Scholar 

  44. Chaplais E, Thivel D, Greene D et al (2015) Bone-adiposity cross-talk: implications for pediatric obesity: a narrative review of literature. J Bone Miner Metab 33:592–602. https://doi.org/10.1007/s00774-015-0654-6

    Article  Google Scholar 

  45. Gajewska J, Ambroszkiewicz J, Klemarczyk W et al (2018) The effect of weight loss on body composition, serum bone markers, and adipokines in prepubertal obese children after 1-year intervention. Endocr Res 43:80–89. https://doi.org/10.1080/07435800.2017.1403444

    Article  CAS  Google Scholar 

  46. Rizzoli R (2021) Dairy products and bone health. Aging Clin Exp Res. https://doi.org/10.1007/s40520-021-01970-4

    Article  Google Scholar 

  47. Landry BW, Driscoll SW (2012) Physical activity in children and adolescents. PM R 4:826–832. https://doi.org/10.1016/j.pmrj.2012.09.585

    Article  Google Scholar 

  48. Gajewska J, Weker H, Ambroszkiewicz J et al (2013) Alterations in markers of bone metabolism and adipokines following a 3-month lifestyle intervention induced weight loss in obese prepubertal children. Exp Clin Endocrinol Diabetes 121:498–504. https://doi.org/10.1055/s-0033-1347198

    Article  CAS  Google Scholar 

  49. Ambroszkiewicz J, Rowicka G, Chelchowska M et al (2014) Biochemical markers of bone metabolism in children with cow’s milk allergy. Arch Med Sci 10:1135–1141. https://doi.org/10.5114/aoms.2013.36906

    Article  Google Scholar 

  50. Ambroszkiewicz J, Klemarczyk W, Gajewska J et al (2007) Serum concentration of biochemical bone turnover markers in vegetarian children. Adv Med Sci 52:279–282

    CAS  Google Scholar 

  51. Hansen L, Tjønneland A, Køster B et al (2018) Vitamin D status and seasonal variation among danish children and adults: a descriptive study. Nutrients. https://doi.org/10.3390/nu10111801

    Article  Google Scholar 

  52. Cavalier E, Souberbielle JC, Gadisseur R et al (2014) Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem 47:1227–1230. https://doi.org/10.1016/j.clinbiochem.2014.04.007

    Article  CAS  Google Scholar 

  53. Magnusson P, Löfman O, Larsson L (1992) Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. J Chromatogr B Biomed Sci Appl 576:79–86. https://doi.org/10.1016/0378-4347(92)80177-R

    Article  CAS  Google Scholar 

  54. Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 62(2):464–474

    Article  Google Scholar 

  55. Cavalier E, Delanaye P, Collette J et al (2006) Evaluation of different bone markers in hemodialyzed patients. Clin Chim Acta 371:107–111. https://doi.org/10.1016/j.cca.2006.02.029

    Article  CAS  Google Scholar 

  56. Tobiume H, Kanzaki S, Hida S et al (1997) Serum bone alkaline phosphatase isoenzyme levels in normal children and children with growth hormone (GH) deficiency: a potential marker for bone formation and response to GH therapy. J Clin Endocrinol Metab 82:2056–2061. https://doi.org/10.1210/jc.82.7.2056

    Article  CAS  Google Scholar 

  57. Koshihara Y, Hoshi K (1997) Vitamin K(2) enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 12:431–438. https://doi.org/10.1359/jbmr.1997.12.3.431

    Article  CAS  Google Scholar 

  58. Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469. https://doi.org/10.1016/j.cell.2007.05.047

    Article  CAS  Google Scholar 

  59. Delmas PD, Demiaux B, Malaval L et al (1986) Serum bone gamma carboxyglutamic acid-containing protein in primary hyperparathyroidism and in malignant hypercalcemia. Comparison with bone histomorphometry. J Clin Invest 77:985–991. https://doi.org/10.1172/JCI112400

    Article  CAS  Google Scholar 

  60. Van Summeren M, Braam L, Noirt F et al (2007) Pronounced elevation of undercarboxylated osteocalcin in healthy children. Pediatr Res 61:366–370. https://doi.org/10.1203/pdr.0b013e318030d0b1

    Article  CAS  Google Scholar 

  61. Sokoll LJ, Sadowski JA (1996) Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 63:566–573. https://doi.org/10.1093/ajcn/63.4.566

    Article  CAS  Google Scholar 

  62. Hao G, Zhang B, Gu M, Chen C, Zhang Q, Zhang G, Cao XM (2017) Vitamin K intake and the risk of fractures A meta-analysis. Medicine 96:e6725

    Article  CAS  Google Scholar 

  63. Rodríguez-Olleros Rodríguez C, Díaz Curiel M (2019) Vitamin K and bone health: a review on the effects of vitamin K deficiency and supplementation and the effect of non-vitamin K antagonist oral anticoagulants on different bone parameters. J Osteoporos 20691476

  64. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294

    Article  CAS  Google Scholar 

  65. Im JA, Yu BP, Jeon JY, Kim SH (2008) Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 396:66–69. https://doi.org/10.1016/j.cca.2008.07.001

    Article  CAS  Google Scholar 

  66. Kindblom JM, Ohlsson C, Ljunggren O et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791. https://doi.org/10.1359/jbmr.081234

    Article  CAS  Google Scholar 

  67. Bin OhS, Lee WY, Nam HK et al (2019) Serum osteocalcin levels in overweight children. Ann Pediatr Endocrinol Metab 24:104–107. https://doi.org/10.6065/apem.2019.24.2.104

    Article  Google Scholar 

  68. Amin S, El Amrousy D, Elrifaey S et al (2018) Serum osteocalcin levels in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 66:117–121. https://doi.org/10.1097/MPG.0000000000001768

    Article  CAS  Google Scholar 

  69. Niimi H, Nishioka T, Kurayama H, Nakajima H (1988) Serum osteocalcin in normal children and children with glucocorticoid-induced osteoporosis. J Bone Miner Metab 6:38–42. https://doi.org/10.1007/BF02378738

    Article  Google Scholar 

  70. Rosenquist C, Qvist P, Bjarnason N, Christiansen C (1995) Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem 41:1439–1445. https://doi.org/10.1093/clinchem/41.10.1439

    Article  CAS  Google Scholar 

  71. Takahashi M, Kushida K, Nagano A, Inoue T (2000) Comparison of the analytical and clinical performance characteristics of an N-MID versus an intact osteocalcin immunoradiometric assay. Clin Chim Acta 294:67–76. https://doi.org/10.1016/S0009-8981(99)00251-X

    Article  CAS  Google Scholar 

  72. Nagasue K, Inaba M, Okuno S et al (2003) Serum N-terminal midfragment vs. intact osteocalcin immunoradiometric assay as markers for bone turnover and bone loss in hemodialysis patients. Biomed Pharmacother 57:98–104. https://doi.org/10.1016/S0753-3322(02)00344-X

    Article  CAS  Google Scholar 

  73. Garnero P, Ferreras M, Karsdal MA et al (2003) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. https://doi.org/10.1359/jbmr.2003.18.5.859

    Article  Google Scholar 

  74. Risteli J, Elomaa I, Niemi S et al (1993) Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 39:635–640. https://doi.org/10.1093/clinchem/39.4.635

    Article  CAS  Google Scholar 

  75. Chubb SAP, Mandelt CD, Vasikaran SD (2015) Comparison of results from commercial assays for plasma CTX: the need for harmonization. Clin Biochem 48:519–524. https://doi.org/10.1016/j.clinbiochem.2015.03.002

    Article  CAS  Google Scholar 

  76. Cavalier E, Eastell R, Jørgensen NR et al (2021) A multicenter study to evaluate harmonization of assays for C-terminal telopeptides of type I collagen (ß-CTX): a report from the IFCC-IOF committee for bone metabolism (C-BM). Calcif Tissue Int 108:785–797. https://doi.org/10.1007/s00223-021-00816-5

    Article  CAS  Google Scholar 

  77. Herrmann D, Intemann T, Lauria F et al (2014) Reference values of bone stiffness index and C-terminal telopeptide in healthy European children. Int J Obes 38:S76-85. https://doi.org/10.1038/ijo.2014.138

    Article  Google Scholar 

  78. Vincent A, Souberbielle JC, Brauner R (2018) Comparison of two bone markers with growth evolution in 74 girls with central precocious puberty. BMC Pediatr 18:224. https://doi.org/10.1186/s12887-018-1194-8

    Article  CAS  Google Scholar 

  79. Monjardino T, Silva P, Amaro J et al (2019) Bone formation and resorption markers at 7 years of age: relations with growth and bone mineralization. PLoS ONE 14:e0219423. https://doi.org/10.1371/journal.pone.0219423

    Article  CAS  Google Scholar 

  80. Thiering E, Brüske I, Kratzsch J et al (2015) Associations between serum 25-hydroxyvitamin D and bone turnover markers in a population based sample of German children. Sci Rep 5:18138. https://doi.org/10.1038/srep18138

    Article  CAS  Google Scholar 

  81. Marwaha RK, Garg MK, Mithal A et al (2019) Effect of Vitamin D supplementation on bone turnover markers in children and adolescents from North India. Indian J Endocrinol Metab 23:27–34. https://doi.org/10.4103/ijem.IJEM_149_18

    Article  CAS  Google Scholar 

  82. Radetti G, Franceschi R, Adami S et al (2014) Higher circulating parathormone is associated with smaller and weaker bones in obese children. Calcif Tissue Int 95:1–7. https://doi.org/10.1007/s00223-014-9853-8

    Article  CAS  Google Scholar 

  83. Dimitri P, Wales JK, Bishop N (2011) Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone 48:189–196. https://doi.org/10.1016/j.bone.2010.09.034

    Article  CAS  Google Scholar 

  84. Kurgan N, McKee K, Calleja M et al (2020) Cytokines, adipokines, and bone markers at rest and in response to plyometric exercise in obese vs normal weight adolescent females. Front Endocrinol. https://doi.org/10.3389/fendo.2020.531926

    Article  Google Scholar 

  85. Qvist P, Christgau S, Pedersen BJ et al (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61. https://doi.org/10.1016/S8756-3282(02)00791-3

    Article  CAS  Google Scholar 

  86. Mostafa YA, Meyer RA, Latorraca R (1982) A simple and rapid method for osteoclast identification using a histochemical method for acid phosphatase. Histochem J 14:409–413. https://doi.org/10.1007/BF01011853

    Article  CAS  Google Scholar 

  87. Halleen JM, Tiitinen SL, Ylipahkala H et al (2006) Tartrate-resistant acid phosphates 5b (TRACP 5b) as a marker of bone resorption. Clin Lab 52(9–10):499–509

    CAS  Google Scholar 

  88. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. https://doi.org/10.1007/s00223-007-9091-4

    Article  Google Scholar 

  89. Mira-Pascual L, Patlaka C, Desai S et al (2020) A Novel Sandwich ELISA for tartrate-resistant acid phosphatase 5a and 5b protein reveals that both isoforms are secreted by differentiating osteoclasts and correlate to the type i collagen degradation marker CTX-I in vivo and in vitro. Calcif Tissue Int 106:194–207. https://doi.org/10.1007/s00223-019-00618-w

    Article  CAS  Google Scholar 

  90. Halleen JM, Hentunen TA, Karp M et al (1998) Characterization of serum tartrate-resistant acid phosphatase and development of a direct two-site immunoassay. J Bone Miner Res. https://doi.org/10.1359/jbmr.1998.13.4.683

    Article  Google Scholar 

  91. Cavalier E (2018) Bone markers and chronic kidney diseases. J Lab Precis Med 3:62. https://doi.org/10.21037/jlpm.2018.07.03

  92. Shidara K, Inaba M, Okuno S et al (2008) Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287. https://doi.org/10.1007/s00223-008-9127-4

    Article  CAS  Google Scholar 

  93. Cavalier E, Eastell R, Jørgensen NR, et al (2018) Bone turnover markers. In: Encyclopedia of Endocrine Diseases. pp 4; 116–127

  94. Chen CJ, Chao TY, Janckila AJ et al (2005) Evaluation of the activity of tartrate-resistant acid phosphatase isoform 5b in normal Chinese children—A novel marker for bone growth. J Pediatr Endocrinol Metab 18:55–62. https://doi.org/10.1515/JPEM.2005.18.1.55

    Article  CAS  Google Scholar 

  95. Lau KHW, Onishi T, Wergedal JE et al (1987) Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem. https://doi.org/10.1093/clinchem/33.4.458

    Article  Google Scholar 

  96. Scarnecchia L, Minisola S, Pacitti MT et al (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase activity determination to evaluate bone turnover. Scand J Clin Lab Invest. https://doi.org/10.3109/00365519109104560

    Article  Google Scholar 

  97. Preussner R, Sauer-Eppel H, Oremek G (2014) Tartrate-resistant acid phosphatase 5b as a diagnostic marker of bone metastases in patients with renal cell carcinoma. Integr Cancer Sci Ther 1:35–38

    Google Scholar 

  98. Cavalier E, Lukas PDP (2021) Analytical evaluation of the Nittobo Medical tartrate resistant acid phosphatase isoform 5b (TRACP-5b) EIA and comparison with IDS iSYS in different clinically defined populations. Clin Chem Lab Med. https://doi.org/10.1515/cclm-2021-1190

    Article  Google Scholar 

  99. Szulc P (2018) Bone turnover: biology and assessment tools. Best Pract. Res Clin Endocrinol Metab 32

  100. Rauch F (2006) Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol 21

  101. Clark LC, Beck E (1950) Plasma “alkaline” phosphatase activity. I. Normative data for growing children. J Pediatr. https://doi.org/10.1016/S0022-3476(50)80103-8

    Article  Google Scholar 

  102. Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. https://doi.org/10.1016/S8756-3282(00)00269-6

    Article  Google Scholar 

  103. Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res. https://doi.org/10.1359/jbmr.091109

    Article  Google Scholar 

  104. Lund AM, Hansen M, Kollerup G et al (1998) Collagen-derived markers of bone metabolism in osteogenesis imperfecta. Acta Paediatr Int J Paediatr. https://doi.org/10.1111/j.1651-2227.1998.tb00920.x

    Article  Google Scholar 

  105. Barber LA, Abbott C, Nakhate V et al (2019) Longitudinal growth curves for children with classical osteogenesis imperfecta (types III and IV) caused by structural pathogenic variants in type I collagen. Genet Med. https://doi.org/10.1038/s41436-018-0307-y

    Article  Google Scholar 

  106. Wein MN, Kronenberg HM (2018) Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a031237

    Article  Google Scholar 

  107. Baecker N, Tomic A, Mika C et al (2003) Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00264.2003

    Article  Google Scholar 

  108. Buehlmeier J, Frings-Meuthen P, Mohorko N, et al (2017) Markers of bone metabolism during 14 days of bed rest in young and older men. J Musculoskelet Neuronal Interact 17

  109. Chotiyarnwong P, McCloskey E V. (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16

  110. Hartmann K, Koenen M, Schauer S et al (2016) Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev. https://doi.org/10.1152/physrev.00011.2015

    Article  Google Scholar 

  111. Hyams JS, Moore RE, Leichtner AM et al (1988) Relationship of type I procollagen to corticosteroid therapy in children with inflammatory bowel disease. J Pediatr. https://doi.org/10.1016/S0022-3476(88)80210-5

    Article  Google Scholar 

  112. Saarela T, Risteli J, Koivisto M (2003) Effects of short-term dexamethasone treatment on collagen synthesis and degradation markers in preterm infants with developing lung disease. Acta Paediatr Int J Paediatr. https://doi.org/10.1080/08035320310002687

    Article  Google Scholar 

  113. Crofton PM, Shrivastava A, Wade JC et al (2000) Effects of dexamethasone treatment on bone and collagen turnover in preterm infants with chronic lung disease. Pediatr Res. https://doi.org/10.1203/00006450-200008000-00007

    Article  Google Scholar 

  114. Vihinen MK, Kolho KL, Ashorn M et al (2008) Bone turnover and metabolism in paediatric patients with inflammatory bowel disease treated with systemic glucocorticoids. Eur J Endocrinol. https://doi.org/10.1530/EJE-08-0429

    Article  Google Scholar 

  115. Söderpalm AC, Magnusson P, Åhlander AC et al (2007) Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2007.05.008

    Article  Google Scholar 

  116. Crowley S, Trivedi P, Risteli L et al (1998) Collagen metabolism and growth in prepubertal children with asthma treated with inhaled steroids. J Pediatr. https://doi.org/10.1016/S0022-3476(98)70011-3

    Article  Google Scholar 

  117. Heuck C, Heickendorff L, Wolthers OD (2000) A randomised controlled trial of short term growth and collagen turnover in asthmatics treated with inhaled formoterol and budesonide. Arch Dis Child. https://doi.org/10.1136/adc.83.4.334

    Article  Google Scholar 

  118. Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49

  119. Rauch F, Plotkin H, Travers R et al (2003) Osteogenesis imperfecta types I, III, and IV: Effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2002-021371

    Article  Google Scholar 

  120. Ward LM, Rauch F, Whyte MP et al (2011) Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2010-0636

    Article  Google Scholar 

  121. Palomo T, Fassier F, Ouellet J et al (2015) Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res. https://doi.org/10.1002/jbmr.2567

    Article  Google Scholar 

  122. Rauch F, Munns C, Land C, Glorieux FH (2006) Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2005-2413

    Article  Google Scholar 

  123. Boyce AM (2017) Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep 15

  124. Hoyer-Kuhn H, Franklin J, Allo G, et al (2016) Safety and efficacy of denosumab in children with osteogenesis imperfecta - A first prospective trial. J Musculoskelet Neuronal Interact 16

  125. Trejo P, Rauch F, Ward L (2018) Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact 18

  126. Akel U, Robinson ME, Werier J et al (2019) Local tumor recurrence and escape from suppression of bone resorption with denosumab treatment in two adolescents with giant cell tumors of bone. JBMR Plus. https://doi.org/10.1002/jbm4.10196

    Article  Google Scholar 

  127. Hartwell D, Riis BJ, Christiansen C (1990) Serum bone gla protein: a Potential marker of growth hormone (GH) deficiency and the response to GH therapy. J Clin Endocrinol Metab. https://doi.org/10.1210/jcem-71-1-122

    Article  Google Scholar 

  128. Rauch F, Schnabel D, Seibel MJ et al (1995) Urinary excretion of galactosyl-hydroxylysine is a marker of growth in children. J Clin Endocrinol Metab. https://doi.org/10.1210/jcem.80.4.7714103

    Article  Google Scholar 

  129. Andersson B, Swolin-Eide D, Magnusson P, Albertsson-Wikland K (2015) Short-term changes in bone formation markers following growth hormone (GH) treatment in short prepubertal children with a broad range of GH secretion. Clin Endocrinol. https://doi.org/10.1111/cen.12499

    Article  Google Scholar 

  130. Swolin-Eide D, Andersson B, Hellgren G et al (2018) Variation of bone acquisition during growth hormone treatment in children can be explained by proteomic biomarkers, bone formation markers, body composition and nutritional factors. Bone. https://doi.org/10.1016/j.bone.2018.07.023

    Article  Google Scholar 

  131. Schönau E, Westermann F, Rauch F et al (2001) A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur J Endocrinol. https://doi.org/10.1530/eje.0.1440013

    Article  Google Scholar 

  132. Rauch F, Georg M, Stabrey A et al (2002) Collagen markers deoxypyridinoline and hydroxylysine glycosides: pediatric reference data and use for growth prediction in growth hormone-deficient children. Clin Chem. https://doi.org/10.1093/clinchem/48.2.315

    Article  Google Scholar 

  133. Crofton PM, Stirling HF, Schönau E, Kelnar CJH (1996) Bone alkaline phosphatase and collagen markers as early predictors of height velocity response to growth-promoting treatments in short normal children. Clin Endocrinol. https://doi.org/10.1046/j.1365-2265.1996.706cn527.x

    Article  Google Scholar 

  134. Vihervuori E, Turpeinen M, Siimes MA et al (1997) Collagen formation and degradation increase during growth hormone therapy in children. Bone. https://doi.org/10.1016/S8756-3282(96)00332-8

    Article  Google Scholar 

  135. Gascoin-Lachambre G, Trivin C, Brauner R, Souberbielle JC (2007) Serum procollagen type 1 amino-terminal propeptide (P1NP) as an early predictor of the growth response to growth hormone treatment: comparison of intrauterine growth retardation and idiopathic short stature. Growth Horm IGF Res. https://doi.org/10.1016/j.ghir.2007.01.008

    Article  Google Scholar 

  136. Loftus J, Lindberg A, Aydin F, et al (2017) Individualised growth response optimisation (iGRO) tool: an accessible and easy-to-use growth prediction system to enable treatment optimisation for children treated with growth hormone. J Pediatr Endocrinol Metab 30

  137. Baroncelli GI, Bertelloni S, Ceccarelli C et al (2000) Bone turnover in children with vitamin D deficiency rickets before and during treatment. Acta Paediatr Int J Paediatr. https://doi.org/10.1111/j.1651-2227.2000.tb00329.x

    Article  Google Scholar 

  138. Rauch F, Middelmann B, Cagnoli M et al (1997) Comparison of total alkaline phosphatase and three assays for bone- specific alkaline phosphatase in childhood and adolescence. Acta Paediatr Int J Paediatr. https://doi.org/10.1111/j.1651-2227.1997.tb08938.x

    Article  Google Scholar 

  139. de Castro MJ, de Lamas C, Sánchez-Pintos P, et al (2020) Bone status in patients with phenylketonuria: a systematic review. Nutrients 12

  140. Kryskiewicz E, Pawlowska J, Pludowski P et al (2012) Bone metabolism in cholestatic children before and after living-related liver transplantation-a long-term prospective study. J Clin Densitom. https://doi.org/10.1016/j.jocd.2011.09.007

    Article  Google Scholar 

  141. Branca F, Ferro-Luzzi A, Robins SP, Golden MHN (1992) Bone turnover in malnourished children. Lancet. https://doi.org/10.1016/0140-6736(92)92754-4

    Article  Google Scholar 

  142. Klein GL, Herndon DN, Goodman WG et al (1995) Histomorphometric and biochemical characterization of bone following acute severe burns in children. Bone. https://doi.org/10.1016/8756-3282(95)00279-1

    Article  Google Scholar 

  143. Pepmueller PH, Cassidy JT, Allen SH, Hillman LS (1996) Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum. https://doi.org/10.1002/art.1780390506

    Article  Google Scholar 

  144. Halton JM, Atkinson SA, Fraher L et al (1996) Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. https://doi.org/10.1002/jbmr.5650111122

    Article  Google Scholar 

  145. Crofton PM, Ahmed SF, Wade JC et al (1998) Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.83.9.3121

    Article  Google Scholar 

  146. Daly A, Högler W, Crabtree N et al (2021) A three-year longitudinal study comparing bone mass, density, and geometry measured by dxa, pqct, and bone turnover markers in children with pku taking l-amino acid or glycomacropeptide protein substitutes. Nutrients. https://doi.org/10.3390/nu13062075

    Article  Google Scholar 

  147. Shen Y, Shiau S, Strehlau R et al (2021) Persistently lower bone mass and bone turnover among South African children living with well controlled HIV. AIDS. https://doi.org/10.1097/qad.0000000000002990

    Article  Google Scholar 

  148. Steell L, Gray SR, Russell RK et al (2021) Pathogenesis of musculoskeletal deficits in children and adults with inflammatory bowel disease. Nutrients. https://doi.org/10.3390/nu13082899

    Article  Google Scholar 

  149. Ward LM, Rauch F, Matzinger MA et al (2010) Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. https://doi.org/10.1007/s00198-009-0969-z

    Article  Google Scholar 

  150. Ward LM, Ma J, Rauch F et al (2017) Musculoskeletal health in newly diagnosed children with Crohn’s disease. Osteoporos Int. https://doi.org/10.1007/s00198-017-4159-0

    Article  Google Scholar 

  151. Thayu M, Leonard MB, Hyams JS et al (2008) Improvement in biomarkers of bone formation during infliximab therapy in pediatric crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. https://doi.org/10.1016/j.cgh.2008.07.010

    Article  Google Scholar 

  152. Sorva R, Kivivuori SM, Turpeinen M et al (1997) Very low rate of type I collagen synthesis and degradation in newly diagnosed children with acute lymphoblastic leukemia. Bone. https://doi.org/10.1016/S8756-3282(96)00343-2

    Article  Google Scholar 

  153. Crofton PM, Ahmed SF, Wade JC et al (2000) Bone turnover and growth during and after continuing chemotherapy in children with acute lymphoblastic leukemia. Pediatr Res. https://doi.org/10.1203/00006450-200010000-00012

    Article  Google Scholar 

  154. Crofton PM, Ahmed SF, Wade JC et al (1999) Effects of a third intensification block of chemotherapy on bone and collagen turnover, insulin-like growth factor I, its binding proteins and short-term growth in children with acute lymphoblastic leukaemia. Eur J Cancer. https://doi.org/10.1016/S0959-8049(99)00060-X

    Article  Google Scholar 

  155. Delvin E, Alos N, Rauch F et al (2019) Vitamin D nutritional status and bone turnover markers in childhood acute lymphoblastic leukemia survivors: a PETALE study. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.02.006

    Article  Google Scholar 

  156. Santos F, Díaz-Anadón L, Ordóñez FA, Haffner D (2021) Bone Disease in CKD in Children. Calcif Tissue Int 108

  157. Swolin-Eide D, Hansson S, Magnusson P (2009) Children with chronic kidney disease: a 3-year prospective study of growth, bone mass and bone turnover. Acta Paediatr Int J Paediatr. https://doi.org/10.1111/j.1651-2227.2008.01073.x

    Article  Google Scholar 

  158. Meza K, Biswas S, Zhu YS et al (2021) Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol. https://doi.org/10.1007/s00467-020-04846-3

    Article  Google Scholar 

  159. Swolin-Eide D, Hansson S, Magnusson P (2013) Skeletal effects and growth in children with chronic kidney disease: a 5-year prospective study. J Bone Miner Metab. https://doi.org/10.1007/s00774-012-0412-y

    Article  Google Scholar 

  160. Swolin-Eide D, Hansson S, Magnusson P (2018) A 3-year longitudinal study of skeletal effects and growth in children after kidney transplantation. Pediatr Transplant. https://doi.org/10.1111/petr.13253

    Article  Google Scholar 

  161. Ferrari S, Bianchi ML, Eisman JA, et al (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int 23

  162. Bhattoa HP, Cavalier E, Eastell R et al (2021) Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin Chim Acta. https://doi.org/10.1016/j.cca.2020.12.023

    Article  Google Scholar 

  163. Wang X, Liu L, Li P et al (2017) Reference and influential factors of serum bone markers in chinese adolescents. Sci Rep. https://doi.org/10.1038/s41598-017-17670-x

    Article  Google Scholar 

  164. Paldánius PM, Ivaska KK, Mäkitie O, Viljakainen H (2021) Serum and urinary osteocalcin in healthy 7- to 19-year-old finnish children and adolescents. Front Pediatr. https://doi.org/10.3389/fped.2021.610227

    Article  Google Scholar 

  165. Choi JS, Park I, Lee SJ et al (2019) Serum procollagen type IN-terminal propeptide and osteocalcin levels in Korean children and adolescents. Yonsei Med J. https://doi.org/10.3349/ymj.2019.60.12.1174

    Article  Google Scholar 

  166. Chailurkit LO, Suthutvoravut U, Mahachoklertwattana P et al (2005) Biochemical markers of bone formation in Thai children and adolescents. Endocr Res. https://doi.org/10.1080/07435800500371607

    Article  Google Scholar 

  167. Callegari ET, Gorelik A, Garland SM et al (2017) Bone turnover marker reference intervals in young females. Ann Clin Biochem. https://doi.org/10.1177/0004563216665123

    Article  Google Scholar 

  168. Alberti C, Chevenne D, Mercat I et al (2011) Serum concentrations of insulin-like growth factor (IGF)-1 and IGF binding protein-3 (IGFBP-3), IGF-1/IGFBP-3 ratio, and markers of bone turnover: reference values for French children and adolescents and z-score comparability with other references. Clin Chem. https://doi.org/10.1373/clinchem.2011.169466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Ladang.

Ethics declarations

Conflict of interest

Aurélie Ladang and Edgard Delvin declare no conflict of interest. Frank Rauch declare consulting or speaker fees for Novartic Inc, Ultragenyx Inc, and Sanofi Inc. Etienne Cavalier is consultant for IDS, DiaSorin, Fujirebio, Nittobo, bioMérieux, and Werfen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladang, A., Rauch, F., Delvin, E. et al. Bone Turnover Markers in Children: From Laboratory Challenges to Clinical Interpretation. Calcif Tissue Int 112, 218–232 (2023). https://doi.org/10.1007/s00223-022-00964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-00964-2

Keywords

Navigation