Skip to main content

Genetic Engineering to Improve Biotic and Abiotic Stress Tolerance in Maize (Zea mays L.)

  • Chapter
  • First Online:
Maize Improvement

Abstract

In the erratic climate-changing scenario, various biotic (insect/pests and diseases) and abiotic stresses (drought, heat, salinity, and waterlogging) threaten the global food security issue. Maize, being an important cereal crop, has been severely affected due to the detrimental effect of these stresses. A lot of efforts have been attempted to fabricate maize genotype to maintain yield potential under stressed conditions through various conventional breeding and new biotechnological methods. Currently, genetic engineering techniques through advanced transformation methods, RNA interference, and genome editing tools have revolutionized the maize stress tolerance/resistance by targeting desirable traits at a commercial scale. The application of new biotechnological tools has gained distinction by developing improved elite maize cultivars adapted to the changing climatic conditions in recent years. The future of stress resistance genetic engineering in maize seems promising with different advanced versions of CRISPR/Cas9 techniques. Hence, this chapter focuses on the current scenario of genetic engineering in maize for the development of biotic and abiotic stress resistance through utilizing different techniques along with their impact and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adem M, Beyene D, Feyissa T (2017) Recent achievements obtained by chloroplast transformation. Plant Methods 13:30. https://doi.org/10.1186/s13007-017-0179-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aldemita RR, Reano IME, Solis RO, Hautea RA (2015) Trends in global approvals of biotech crops (1992–2014). GM Crops Food 6(3):150–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Almeida AM, Araújo S, Cardoso LA et al (2003) Genetic engineering of maize towards desiccation tolerance: electroporation with the trehalose gene. Genetika 35(2):111–121

    Article  CAS  Google Scholar 

  • Aman R, Ali Z, Butt H et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1. https://doi.org/10.1186/s13059-017-1381-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amara I, Capellades M, Ludevid MD et al (2013) Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170(9):864–873

    Article  CAS  PubMed  Google Scholar 

  • Amara I, Zaidi I, Masmoudi K et al (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am J Plant Sci 5(22):3440

    Article  Google Scholar 

  • Ambawat S, Sharma P, Yadav NR et al (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321. https://doi.org/10.1007/s12298-013-0179-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anand A, Bass SH, Wu E et al (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200. https://doi.org/10.1007/s11103-018-0732-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anwar A, Kim JK (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. Int J Mol Sci 21(8):2695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Areal FJ, Riesgo L, Rodríguez-Cerezo E (2013) Economic and agronomic impact of commercialized GM crops: a meta-analysis. J Agric Sci 151:7–33

    Article  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC et al (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35(2):550–557

    Article  Google Scholar 

  • Arthur GD (2011) Benefits and concerns surrounding the cultivation of genetically modified crops in Africa: the debate. Afr J Biotechnol 10:17663–17677

    Article  Google Scholar 

  • Aslam M, Zamir MSI, Afzal I et al (2013) Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetări Agronomice în Moldova 46(2):99–114

    Google Scholar 

  • Aslam M, Maqbool MA, Cengiz R (2015) Drought stress in maize (Zea mays l.) effects, resistance mechanisms, global achievements and Biological Strategies for Improvement, Springer $ briefs in agriculture. Springer

    Google Scholar 

  • Aznar A, Chalvin C, Shih PM et al (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11:2. https://doi.org/10.1186/s13068-017-1007-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barahimipour R, Strenkert D, Neupert J et al (2015) Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J 84:704–717. https://doi.org/10.1111/tpj.13033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basso MF, Lourenco-Tessutti IT, Busanello C et al (2020) Insights obtained using different modules of the cotton uceA1.7 promoter. Planta 251:56. https://doi.org/10.1007/s00425-020-03348-8

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25(11):1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Bawa AS, Anilakumar KR (2013) Genetically modified foods: safety, risks and public concerns—a review. J Food Sci Technol 50(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Bedada LT, Seth MS, Runo SM et al (2016) Drought tolerant tropical maize (Zea mays L.) developed through genetic transformation with isopentenyltransferase gene. African. J Biotechnol 15(43):2447–2464

    CAS  Google Scholar 

  • Bedada LT, Seth MS, Runo SM (2018) Tropical maize (Zea mays L.) genotypes respond differently to agrobacterium-mediated genetic transformation. Ethiop J Agric Sci 28(2):1–22

    Google Scholar 

  • Belele CL, Sidorenko L, Stam M et al (2013) Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing. PLoS Genet 9:e1003773. https://doi.org/10.1371/journal.pgen.1003773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the U.S. – the first sixteen years. Environ Sci Eur 24:24

    Article  Google Scholar 

  • Bhusal B, Poudel MR, Rishav P et al (2021) A review on abiotic stress resistance in maize (Zea mays L.): effects, resistance mechanisms and management. J Biol Today’s World 10(2):1–3

    CAS  Google Scholar 

  • Bidhan R, Noren SK, Mandal AB et al (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10(1):1–22

    Google Scholar 

  • Bo C, Chen H, Luo G et al (2020) Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep 39(1):135–148

    Article  CAS  PubMed  Google Scholar 

  • Borkiewicz L, Polkowska Kowalczyk L, CieÅ›la J et al (2020) Expression of maize calciumdependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II. Physiol Plant 168(1):38–57

    Article  CAS  PubMed  Google Scholar 

  • Burachik M (2010) Experience from use of GMOs in Argentinian agriculture, economy and environment. New Biotechnol 27:588–592

    Article  CAS  Google Scholar 

  • Buschman L, Sloderbeck P, Guo Y et al (1998) Corn borer resistance and grain yield of Bt and non-Bt corn hybrids at Garden city, Kansas, in 1997. Progress Report-814, agricultural experiment station and co-operative extension service, Kansas State University, pp 34–38

    Google Scholar 

  • Cai G, Wang G, Wang L et al (2014) ZmMKK1, a novel group a mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Plant Sci 214:57–73

    Article  CAS  PubMed  Google Scholar 

  • Cakir R (2004) Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res 89(1):1–16

    Article  Google Scholar 

  • Cao M, Sato SJ, Behrens M et al (2011) Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba. J Agric Food Chem 59(11):5830–5834

    Article  CAS  PubMed  Google Scholar 

  • Casaretto JA, El-Kereamy A, Zeng B et al (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17(1):1–15

    Article  Google Scholar 

  • Chang H, Yi B, Ma R et al (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6(1):1–12

    CAS  Google Scholar 

  • Chang X, Lu Z, Shen Z et al (2017) Bitrophic and tritrophic effects of transgenic cry1Ab/cry2Aj maize on the beneficial, nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 46(5):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Che P, Anand A (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16:1388–1395. https://doi.org/10.1111/pbi.12879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 29(70):667–697

    Article  Google Scholar 

  • Chen G, Zhou Y, Kishchenko O et al (2020) Gene editing to facilitate hybrid crop production. Biotechnol Adv 5:107676

    Google Scholar 

  • Chilcoat D, Liu ZB, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  CAS  PubMed  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17(1):23–42

    Article  PubMed  Google Scholar 

  • Comas C, Lumbierres B, Pons X et al (2014) No effects of Bacillus thuringiensis maize on non-target organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res 23:135–143

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ, Brown SL, Hails RS et al (2001) Transgenic crops in natural habitats. Nature 409:682–683

    Article  CAS  PubMed  Google Scholar 

  • Daspute AA, Yunxuan X, Gu M et al (2019) Agrobacterium rhizogenes-mediated hairy roots transformation as a tool for exploring aluminum-responsive genes function. Futur Sci OA 5:FSO364. https://doi.org/10.4155/fsoa-2018-0065

    Article  CAS  Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Sec 2(1):1–3

    Google Scholar 

  • de Oliveira RS, Oliveira-Neto OB, Moura HF et al (2016) Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and cotton boll weevil (Anthonomus grandis). Front Plant Sci 7:165. https://doi.org/10.3389/fpls.2016.00165

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong S, Delucca P, Geijskes RJ et al (2014) Advances in Agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech 16:366–371

    Article  CAS  Google Scholar 

  • Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-cas systems. Trends Biotechnol 36(2):134–146

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Berhow MA, Johnson ET (2018) Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase-3 like gene. Plant Gene 13:50–55

    Article  CAS  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:267

    Article  CAS  Google Scholar 

  • Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod 29(1):67–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du H, Zhang Z, Li J (2010) Isolation and functional characterization of a waterlogging-induced promoter from maize. Plant Cell Rep 29(11):1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Du H, Feng BR, Yang SS et al (2012) The R2R3-MYB transcription factor gene family in maize. PLoS One 7(6):e37463

    Article  PubMed Central  PubMed  Google Scholar 

  • Du H, Huang M, Liu L (2015) The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize. Euphytica 208(1):113–122

    Article  Google Scholar 

  • Du H, Shen X, Huang Y et al (2016) Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biol 16(1):1–11

    Article  Google Scholar 

  • Du D, Jin R, Guo J, Zhang F (2019) Construction of marker-free genetically modified maize using a heat-inducible auto-excision vector. Genes (Basel) 10:374. https://doi.org/10.3390/genes10050374

    Article  CAS  PubMed  Google Scholar 

  • Einset J, Winge P, Bones A (2007) ROS signaling pathways in chilling stress. Plant Signal Behav 2(5):365–367

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis RT, Stockhoff BA, Stamp L et al (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68(3):1137–1145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ercoli L, Masoni A, Pampana S et al (2007) Allelopathic effects of rye, brown mustard and hairy vetch on redroot pigweed, common lambsquarter and knotweed. Allelopath J 19:249–256

    Google Scholar 

  • Ercoli L, Lulli L, Arduini I et al (2011) Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Eur J Agron 35:63–70

    Article  CAS  Google Scholar 

  • FAO (2015) FAO statistical pocketbook 2015. FAO

    Google Scholar 

  • Fei Y, Wenwei Z, Hong X et al (2007) Transgenic hairpin RNA wheat shows resistance to barley yellow dwarf virus. Heredity 29(1):97–97

    Google Scholar 

  • Ferber D (1999) Risks and benefits: GM crops in the cross hairs. Science 286:1662–1666

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Zhu C, Wang C et al (2021) Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 159:257–267

    Article  CAS  PubMed  Google Scholar 

  • Gallegos JE, Rose AB (2015) The enduring mystery of intron-mediated enhancement. Plant Sci 237:8–15. https://doi.org/10.1016/j.plantsci.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Liu W, Zhao M et al (2015a) NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res 43:607–617. https://doi.org/10.1093/nar/gku1325

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Jiang W, Dai Y et al (2015b) A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol 87(4–5):413–428

    Article  CAS  PubMed  Google Scholar 

  • Gedil M, Menkir A (2019) An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Front Plant Sci 10:1430

    Article  PubMed Central  PubMed  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Madan B (2014) Genetic engineering of crop plants for abiotic stress tolerance. In: Emerging technologies and management of crop stress tolerance. Academic, pp 99–123

    Chapter  Google Scholar 

  • Gong F, Takahashi H, Omori F et al (2019) QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. J Exp Bot 70(21):6475–6487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grandaliano G, Choudhury GG, Abboud HE (1995) Transgenic animal models as a tool in the diagnosis of kidney diseases. Semin Nephrol 15:43–49

    CAS  PubMed  Google Scholar 

  • Green JM, Owen MD (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59(11):5819–5829

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Jiang T, Zhang C et al (2019) Maize HSFA 2 and HSBP 2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. Plant J 100(1):128–142

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Kumar H, Kaur S (2021) Vegetative insecticidal protein (Vip): a potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests. Front Microbiol 12:1139

    Article  Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P et al (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13. https://doi.org/10.1111/pbi.12220

    Article  CAS  PubMed  Google Scholar 

  • Han YJ, Kim JI (2019) Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnol Rep 13(5):447–457

    Article  Google Scholar 

  • Haroon M, Zafar MM, Farooq MA et al (2020) Conventional breeding, molecular breeding and speed breeding; brave approaches to revamp the production of cereal crops. Preprints. https://doi.org/10.20944/preprints202011.0667.v1

  • He Z, Zhong J, Sun X et al (2018) The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Front Plant Sci 9:422

    Article  PubMed Central  PubMed  Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance–a critical review. Crop Prot 18(3):177–191

    Article  Google Scholar 

  • Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K et al (2008) FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J 6:176–188. https://doi.org/10.1111/j.1467-7652.2007.00310.x

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ren B, Dong S et al (2020) Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC Plant Biol 20(1):1–19

    Article  Google Scholar 

  • Huang Y, Zhang XX, Li YH et al (2018) Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. J Integr Agric 17(12):2612–2623

    Google Scholar 

  • Ikenaka K, Kagawa T (1995) Transgenic systems in studying myelin gene expression. Dev Neurosci 17:127–136

    Article  CAS  PubMed  Google Scholar 

  • Ilyas M, Nisar M, Khan N et al (2021) Drought tolerance strategies in plants: a mechanistic approach. J Plant Growth Regul 40(3):926–944

    Article  CAS  Google Scholar 

  • ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. ISAAA Brief No. 52

    Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years, ISAAA brief no. 53. ISAAA, Ithaca. https://www.isaaa.org/resources/publications/briefs/53/

    Google Scholar 

  • ISAAA (2018a) Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change, ISAAA brief no. 54. ISAAA, Ithaca. https://www.isaaa.org/resources/publiccations/briefs/54/executivesummary/pdf/B54-ExecSum-English.pdf

    Google Scholar 

  • ISAAA (2018b) Global status of commercialized biotech/GM crops in 2018: executive brief. ISAAA, Ithaca

    Google Scholar 

  • ISAAA (2019) Global status of commercialized biotech/GM crops in 2019b: biotech crops drive socio-economic development and sustainable environment in the new frontier, ISAAA brief no. 55. ISAAA, Ithaca

    Google Scholar 

  • ISAAA (2020) ISAAA brief 55-2019: Executive Summary. Available Online at: https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp. Accessed 20 Jan 2021

  • ISAAA database (2019) GM approval database retrieved on 17 August 2021. https://www.isaaa.org/gmapprovaldatabase/default.asp

  • ISAAA database (2021) Accessed on 17 Aug 2021. https://www.isaaa.org/gmapprovaldatabase/

  • Izawati AM, Masani MY, Ismanizan I et al (2015) Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOG(R)1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens. Front. Plant Sci 6:727. https://doi.org/10.3389/fpls.2015.00727

    Article  Google Scholar 

  • Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4–PEPC. Biochimie 84(11):1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Jia TJ, Jing-jing LI, Wang LF et al (2020) Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids. J Integr Agric 19(9):2177–2187

    Article  CAS  Google Scholar 

  • Jiang Z, Song G, Shan X et al (2018) Association analysis and identification of ZmHKT1; 5 variation with salt-stress tolerance. Front Plant Sci 9:1485

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Josine TL, Ji J, Wang G et al (2011) Advances in genetic engineering for plants abiotic stress control. Afr J Biotechnol 10(28):5402–5413

    Google Scholar 

  • Kang T, Yu CY, Liu Y et al (2020) Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci 10:1664

    Google Scholar 

  • Karesch H, Bilang R, Scheid O et al (1991) Direct gene transfer to protoplasts of Arabidopsis thaliana. Plant Cell Rep 9:571–574

    Article  CAS  PubMed  Google Scholar 

  • KereÅ¡a S, GrdiÅ¡a M, Barić M et al (2008) Transgenic plants expressing insect resistance genes. Sjemenarstvo 25(2):139–153

    Google Scholar 

  • Kim SY, Bengtsson T, Olsson N et al (2020) Mutations in two aphid-regulated β-1, 3-glucanase genes by CRISPR/Cas9 do not increase barley resistance to Rhopalosiphum padi L. Front Plant Sci 11:1043

    Article  PubMed Central  PubMed  Google Scholar 

  • Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):e111629

    Article  PubMed Central  PubMed  Google Scholar 

  • Ko CB, Woo YM, Lee DJ et al (2007) Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiol Biochem 45(9):722–728

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Zhang M et al (2011) ZmMKK4, a novel group C mitogenactivated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34(8):1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Jin J, Dong Q et al (2019) Maize factors ZmUBP15, ZmUBP16 and ZmUBP19 play important roles for plants to tolerance the cadmium stress and salt stress. Plant Sci 280:77–89

    Article  CAS  PubMed  Google Scholar 

  • Koziel MG, Beland GL, Bowman C et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11(2):194–200

    CAS  Google Scholar 

  • Kumar S, Arul L, Talwar D (2010) Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance. J Appl Genet 51:243–257. https://doi.org/10.1007/BF03208854

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Gupta M, Singh A et al (2020) Frontier technologies in maize improvement. Maize research in India: retrospect and prospect. New India Publishing Agency, New Delhi, pp 541–563. isbn:978-93-89992-00-7

    Google Scholar 

  • Landi S, Hausman JF, Guerriero G et al (2017) Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci 8:1214

    Article  PubMed Central  PubMed  Google Scholar 

  • Laxa M (2017) Intron-mediated enhancement: a tool for heterologous gene expression in plants? Front Plant Sci 7:1977. https://doi.org/10.3389/fpls.2016.01977

    Article  PubMed Central  PubMed  Google Scholar 

  • Lea PJ, Joy KW, Ramos JL et al (1984) The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:1–6

    Article  CAS  Google Scholar 

  • Li Z, Howell SH (2021) Heat stress responses and thermotolerance in maize. Int J Mol Sci 22(2):948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Guan R, Guo H et al (2015) New insights into an RNAi approach for plant defence against piercing sucking and stemborer insect pests. Plant Cell Environ 38(11):2277–2285

    Article  CAS  PubMed  Google Scholar 

  • Li R, Fu D, Zhu B et al (2018a) CRISPR/Cas9 mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94(3):513–524

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li L, Zuo S et al (2018b) Differentially expressed ZmASR genes associated with chilling tolerance in maize (Zea mays) varieties. Funct Plant Biol 45(12):1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Li H, Han X, Liu X et al (2019) A leucine-rich repeat-receptor-like kinase gene SbER2–1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics 20(1):1–15

    Article  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Z, Chen K, Zhang Y et al (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430. https://doi.org/10.1038/nprot.2017.145

    Article  CAS  PubMed  Google Scholar 

  • Liang K, Tang K, Fang T et al (2020) Waterlogging tolerance in maize: genetic and molecular basis. Mol Breed 40(12):1–13

    Article  CAS  Google Scholar 

  • Liu MY, Sun J, Wang KY et al (2014) Spermidine enhances waterlogging tolerance via regulation of antioxidant defence, heat shock protein expression and plasma membrane H+ATPase activity in Zea mays. J Agron Crop Sci 200(3):199–211

    Article  CAS  Google Scholar 

  • Liu Y, Han L, Qin L et al (2015) Saccharomyces cerevisiae gene TPS1 improves drought tolerance in Zea mays L. by increasing the expression of SDD1 and reducing stomatal density. Plant Cell Tissue Organ Cult 120(2):779–778

    Article  CAS  Google Scholar 

  • Liu Y, Liang J, Sun L et al (2016) Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. Front Plant Sci 7:1011

    PubMed Central  PubMed  Google Scholar 

  • Liu M, Rehman S, Tang X et al (2019) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  PubMed Central  PubMed  Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150(11):1443–1452

    Article  Google Scholar 

  • Loke JC, Stahlberg EA, Strenski DG et al (2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol 138:1457–1468. https://doi.org/10.1104/pp.105.060541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399(6733):214

    Article  CAS  PubMed  Google Scholar 

  • Lowder LG, Paul JW, Qi Y (2017) Multiplexed transcriptional activation or repression in plants using CRISPR-dCas9-based systems. Methods Mol Biol 1629:167–184. https://doi.org/10.1007/978-1-4939-7125-1_12

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Li Y, Zhang J et al (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One 8(1):e52126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo X, Wang B, Gao S et al (2019) Genomewide association study dissects the genetic bases of salt tolerance in maize seedlings. J Integr Plant Biol 61(6):658–674

    Article  CAS  PubMed  Google Scholar 

  • Madhusudhan L (2016) Transgenic crops and the environment. J Ecosys Ecography 6:218. https://doi.org/10.4172/2157-7625.1000218

    Article  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR et al (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143. https://doi.org/10.1007/s00299-004-0794-y

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Wang H, Liu S et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6(1):1–13

    Article  CAS  Google Scholar 

  • Mao Y, Yang X, Zhou Y et al (2018) Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Genome Biol 19(1):1–15

    Article  Google Scholar 

  • Marco F, Bitrián M, Carrasco P et al (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant biology and biotechnology. Springer, New Delhi, pp 579–609

    Chapter  Google Scholar 

  • Marvier M, McCreedy C, Regetz J et al (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  CAS  PubMed  Google Scholar 

  • Masuka B, Araus JL, Das B et al (2012) Phenotyping for abiotic stress tolerance in maize F. J Integr Plant Biol 54(4):238–249

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B et al (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34:1835–1848. https://doi.org/10.1007/s00299-015-1831-8

    Article  CAS  PubMed  Google Scholar 

  • McPherson SA, Perlak FJ, Fuchs RL et al (1988) Characterization of the coleopteran–specific protein gene of Bacillus thuringiensis var. tenebrionis. Biotechnology 6(1):61–66

    CAS  Google Scholar 

  • Meng C, Sui N (2019) Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiol Biochem 135:167–173

    Article  CAS  PubMed  Google Scholar 

  • Minh BM, Linh NT, Hanh HH et al (2019) A LEA gene from a Vietnamese maize landrace can enhance the drought tolerance of transgenic maize and tobacco. Agronomy 9(2):62

    Article  CAS  Google Scholar 

  • Moglia A, Portis E (2016) Genetically modified foods. In: Encyclopedia of food and health. Academic Press is an imprint of Elsevier, Kidlington; Waltham, pp 196–203

    Book  Google Scholar 

  • Moon HS, Abercrombie LL, Eda S et al (2011) Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol Rep 75:621–631. https://doi.org/10.1007/s11103-011-9756-2

    Article  CAS  Google Scholar 

  • Morder intelligence blog (2021) Maize seed market – growth, trends, covid-19 impact, and forecasts (2021–2026). Available at https://www.mordorintelligence.com/industry-reports/maize-corn-seed-market. Accesses on 25 Aug 2021

  • Muppala S, Gudlavalleti PK, Malireddy KR et al (2021) Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through agrobacterium-mediated transformation. J Genet Eng Biotechnol 19(1):1–14

    Article  Google Scholar 

  • Nahampun HN, Lopez-Arredondo D, Xu X et al (2016) Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation. Plant Cell Rep 35:1121–1132. https://doi.org/10.1007/s00299-016-1942-x

    Article  CAS  PubMed  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev:11. https://doi.org/10.1079/PAVSNNR20094011

  • Nesmith DS, Ritchie JT (1992) Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res 28(3):251–256

    Article  Google Scholar 

  • Nicolia A, Manzo A, Veronesi F et al (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Kassa A, Hu X et al (2017) Control of western corn rootworm (Diabrotica virgifera virgifera) reproduction through plant-mediated RNA interference. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Onouchi H, Yokoi K, Machida C et al (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19:6373–6378. https://doi.org/10.1093/nar/19.23.6373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ortego F, Pons X, Albajes R et al (2009) European commercial genetically modified plantings and field trials. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, pp 327–343

    Chapter  Google Scholar 

  • Osman GH, Assem SK, Alreedy RM et al (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci Rep 5(1):1–11

    Article  Google Scholar 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11(1):11–24

    Article  Google Scholar 

  • Pan J, Sharif R, Xu X et al (2020) Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:627331. https://doi.org/10.3389/fpls.2020.627331

    Article  PubMed  Google Scholar 

  • Parmar N, Singh KH, Sharma D et al (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review 3. Biotechnology 7(4):1–35

    Google Scholar 

  • Paszkowski J, Shillito RD, Saul M et al (1984) Direct gene transfer to plants. EMBO J 3(12):2717–2722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pathi KM, Rink P, Budhagatapalli N et al (2020) Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Front Plant Sci 11:1559

    Article  Google Scholar 

  • Pavani N, Kuchanur PH, Patil A et al (2019) Stability analysis of stress-resilient maize (Zea mays L.) hybrids across stressed and non-stressed environments. Int J Curr Microbiol App Sci 9:252–260

    Google Scholar 

  • Pellegrino E, Bedini S, Nuti M (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a metaanalysis of 21 years of field data. Sci Rep 8(1):1–12

    Google Scholar 

  • Portis E, Acquadro A, Comino C et al (2004) Effect of farmers’ seed selection on genetic variation of a landrace population of pepper (Capsicum annuum L.), grown in north-West Italy. Genet Resour Crop Evol 51(6):581–590

    Article  CAS  Google Scholar 

  • Prasanna BM (2011) Maize in the developing world: trends, challenges, and opportunities. In: Addressing climate change effects and meeting maize demand for Asia-B. Extended summaries of the 11th Asian maze conference. Nanning, China, pp 26–38

    Google Scholar 

  • Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2(6):477–486

    Article  CAS  PubMed  Google Scholar 

  • Raman R (2017) The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food 8(4):195–208

    Article  PubMed Central  PubMed  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S et al (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110(5):859–864

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Liu Y, Kang D et al (2015) Two alternative splicing variants of maize HKT1; 1 confer salt tolerance in transgenic tobacco plants. Plant Cell Tissue Organ Cult 123(3):569–578

    Article  CAS  Google Scholar 

  • Restrepo-Diaz H, Chávez-Arias CC, Ligarreto-Moreno GA et al (2021) Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Front Plant Sci 12:1512

    Google Scholar 

  • Ribeiro C, Hennen-Bierwagen TA, Myers AM et al (2020) Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci 117(52):33177–33185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers DL (2004) Genetic erosion no longer just an agricultural issue. Nat Plants J 5(2):112–122

    Article  Google Scholar 

  • Rosa C, Kuo YW, Wuriyanghan H et al (2018) RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 56:581–610. https://doi.org/10.1146/annurev-phyto-080417-050044

    Article  CAS  PubMed  Google Scholar 

  • Ross-Ibarra J, Sawers R, Hufford MB (2017) Maize diversity and climate change. University of California e-Scholarship Working Papers

    Google Scholar 

  • Roundup Ready System. Monsanto. Archived from the original on 2 April 2013

    Google Scholar 

  • Sanchis V (2011) From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agron Sustain Dev 31(1):217–231

    Article  CAS  Google Scholar 

  • Sauer H, Wild A, Rühle W (1987) The effect of phosphinothricin (glufosinate) on photosynthesis II. The causes of inhibition of photosynthesis. Zeitschrift für Naturforschung C 42(3):270–278

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore NV, Van Rie J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seth K (2016) Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants. Biochem Biophys Res Commun 480(4):499–507

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345. https://doi.org/10.1038/s41586-019-1120-8

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Dong Y, Zhou Q et al (2016) Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses. Acta Physiol Plant 38(5):126

    Article  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004a) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55(399):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Fan JB et al (2004b) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci 101(9):3298–3303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siebers MH, Slattery RA, Yendrek CR et al (2017) Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric Ecosyst Environ 240:162–170

    Article  Google Scholar 

  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. BioScience 47:86–96

    Article  Google Scholar 

  • Statista (2021). Available at: https://www.statista.com/statistics/263292/acreage-of-genetically-modified-crops-worldwide/. Accessed on 25 Aug 2021

  • Su H, Cao Y, Ku L et al (2018) Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J Exp Bot 69(21):5177–5189

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S et al (2006) A highly efficient transformation protocol for micro-tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47(426):431

    CAS  Google Scholar 

  • Sundaresan G, Gambhir SS (2002) Radionuclide imaging of reporter gene expression. In: Brain mapping: the methods. Academic, pp 799–818

    Google Scholar 

  • Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed Central  PubMed  Google Scholar 

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195(3):165–171

    Article  CAS  Google Scholar 

  • Tachibana K, Watanabe T, Sekizawa Y et al (1986) Accumulation of ammonia in plants treated with bialaphos: action mechanism of bialaphos (part 2). J Pestic Sci 11(1):33–37

    Article  CAS  Google Scholar 

  • Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018. https://doi.org/10.1038/nplants.2017.103

    Article  CAS  PubMed  Google Scholar 

  • Teotia S, Singh D, Tang X et al (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34:106–123. https://doi.org/10.1016/j.tibtech.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL et al (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci 115(26):6644–6649

    Article  PubMed Central  PubMed  Google Scholar 

  • Torti P, Raineri J, Mencia R et al (2020) The sunflower TLDc-containing protein HaOXR2 confers tolerance to oxidative stress and waterlogging when expressed in maize plants. Plant Sci 300:110626

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6(9):1337–1348

    Google Scholar 

  • U.S. National Academies of Sciences (2016) Engineering, and medicine genetically engineered crops: experiences and prospects. Academic

    Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10(1):37–50

    Article  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143. https://doi.org/10.1104/pp.107.106690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1(4):199–206

    Article  PubMed  Google Scholar 

  • Wang M, Gu D, Liu T et al (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65(6):733–746

    Article  CAS  PubMed  Google Scholar 

  • Wang CR, Yang AF, Yue GD et al (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227(5):1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Peng S, Cui K et al (2014) Field performance of Bt transgenic crops: a review. Aust J Crop Sci 8:18–26

    CAS  Google Scholar 

  • Wang X, Wang H, Liu S et al (2016a) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48(10):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shan X, Xue C et al (2016b) Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). Plant Cell Rep 35(8):1671–1686

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Q, Liu M et al (2017) Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants. J Plant Biol 60(6):612–621

    Article  CAS  Google Scholar 

  • Wang B, Li Z, Ran Q et al (2018a) ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci 9:709. https://doi.org/10.3389/fpls.2018.00709

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang CT, Ru JN, Liu YW et al (2018b) Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int J Mol Sci 19(10):3046

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang H, Wang M, Xia Z (2019) Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci 281:113–121

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Zicola J, Oka R et al (2016) Plant enhancers: a call for discovery. Trends Plant Sci 21:974–987. https://doi.org/10.1016/j.tplants.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  • Wei A, He C, Li B et al (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9:216–229

    Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5(3):116–123

    Article  CAS  PubMed  Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG et al (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu J, Jiang Y, Liang Y et al (2019) Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem 137:179–188

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hennessy DA, Sardana K et al (2013) The realized yield effect of genetically engineered crops: U.S. maize and soybean. Crop Sci 53:735–745

    Article  Google Scholar 

  • Yadav OP, Hossain F, Karjagi CG et al (2015) Genetic improvement of maize in India: retrospect and prospects. Agric Res 4(4):325–338

    CAS  Google Scholar 

  • Yadava P, Abhishek A, Singh R et al (2017) Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci 7:1949

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto YY, Ichida H, Matsui M et al (2007) Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8:67. https://doi.org/10.1186/1471-2164-8-67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Li J, Zhang H et al (2021) ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize. Crop J. https://doi.org/10.1016/j.cj.2021.05.010

  • Yao Q, Cong L, Chang JL et al (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57(14):3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Yau YY, Stewart CN (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36. https://doi.org/10.1186/1472-6750-13-36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin XY, Yang AF, Zhang KW et al (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861

    CAS  Google Scholar 

  • Yu F, Liang K, Fang T et al (2019) A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J 17(12):2286–2298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Qu J, Guo X et al (2021) Overexpression of vacuolar H+pyrophosphatase (H+PPase) gene from Ammopiptanthus nanus enhances drought tolerance in maize. J Agron Crop Sci. https://doi.org/10.1111/jac.12504

  • Zaidi PH, Maniselvan P, Srivastava A et al (2010) Genetic analysis of water-logging tolerance in tropical maize (Zea mays L.). Maydica 55(1):17–26

    Google Scholar 

  • Zhang J, Klueva NY, Wang Z et al (2000) Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell Dev Biol Plant 36(2):108–114

    Article  CAS  Google Scholar 

  • Zhang S, Li N, Gao F et al (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26(3):455–465

    Article  CAS  Google Scholar 

  • Zhang S, Jiao Z, Liu L et al (2018) Enhancer-promoter interaction of SELF PRUNING 5G shapes photoperiod adaptation. Plant Physiol 178:1631–1642. https://doi.org/10.1104/pp.18.01137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, LiangX WL et al (2019) A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants 5(12):1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Mi Y, Mao H et al (2020a) Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol J 18(5):1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cao Y, Zheng H et al (2020b) Ectopic expression of antifreeze protein gene from Ammopiptanthus nanus confers chilling tolerance in maize. Crop J 9(4):924–933

    Article  Google Scholar 

  • Zhao Y, Du H, Wang Y et al (2021) The calciumdependent protein kinase ZmCDPK7 functions in heat stress tolerance in maize. J Integr Plant Biol 63(3):510–527

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhou J, Xiong Y et al (2018) Overexpression of a maize plasma membrane intrinsic protein ZmPIP1; 1 confers drought and salt tolerance in Arabidopsis. PLoS One 13(6):e0198639

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ et al (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18(5):555–558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheoran, S., Saini, M., Ramtekey, V., Gupta, M., Kyum, M., Kumar, P. (2023). Genetic Engineering to Improve Biotic and Abiotic Stress Tolerance in Maize (Zea mays L.). In: Wani, S.H., Dar, Z.A., Singh, G.P. (eds) Maize Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-21640-4_10

Download citation

Publish with us

Policies and ethics