Skip to main content
Log in

A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phytochrome-interacting factor 3 (PIF3) activates light-responsive transcriptional network genes in coordination with the circadian clock and plant hormones to modulate plant growth and development. However, little is known of the roles PIF3 plays in the responses to abiotic stresses. In this study, the cloning and functional characterization of the ZmPIF3 gene encoding a maize PIF3 protein is reported. Subcellular localization revealed the presence of ZmPIF3 in the cell nucleus. Expression patterns revealed that ZmPIF3 is expressed strongly in leaves. This expression responds to polyethylene glycol, NaCl stress, and abscisic acid application, but not to cold stress. ZmPIF3 under the control of the ubiquitin promoter was introduced into rice. No difference in growth and development between ZmPIF3 transgenic and wild-type plants was observed under normal growth conditions. However, ZmPIF3 transgenic plants were more tolerant to dehydration and salt stresses. ZmPIF3 transgenic plants had increased relative water content, chlorophyll content, and chlorophyll fluorescence, as well as significantly enhanced cell membrane stability under stress conditions. The over-expression of ZmPIF3 increased the expression of stress-responsive genes, such as Rab16D, DREB2A, OSE2, PP2C, Rab21, BZ8 and P5CS, as detected by real-time PCR analysis. Taken together, these results improve our understanding of the role ZmPIF3 plays in abiotic stresses signaling pathways; our findings also indicate that ZmPIF3 regulates the plant response to drought and salt stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Sady B, Ni WM, Kircher S, Schafer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446

    Article  CAS  PubMed  Google Scholar 

  • Al-Sady B, Kikis EA, Monte E, Quail PH (2008) Mechanistic duality of transcription factor function in phytochrome signaling. Proc Natl Acad Sci USA 105:2232–2237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Res 66:115–127

    Article  Google Scholar 

  • Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Buchanan CD, Klein PE, Mullet JE (2004) Phylogenetic analysis of 5′-noncoding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-regulatory modules. Genetics 168:1639–1654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, Segundo BS (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen DQ, Xu G, Tang WJ, Jing YJ, Ji Q, Fei ZJ, Lin RC (2013) Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25:1657–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Lucas M, Prat S (2014) PIFs get BRright: phytochrome interacting factors as integrators of light and hormonal signals. New Phytol 202:1126–1141

    Article  PubMed  Google Scholar 

  • de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Article  PubMed  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng SH, Martinez C, Gusmaroli G et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Franca MGC, Thi ATP, Pimentel C, Rossiello ROP, Zuily FY, Laffray D (2000) Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot 43:227–237

    Article  Google Scholar 

  • Franklin KA, Lee SH, Patel D et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S et al (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human skiinteracting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA 106:6410–6415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaedicke K, Lichtenthaler AL, Meyberg R, Zeidler M, Hughes J (2012) A phytochrome–phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci USA 109:12231–12236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballare CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J 67:195–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004) A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16:3033–3044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY, Yi HK, Choi G, Shin B, Song PS, Choi GS (2003) Functional characterization of phytochrome-interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15:2399–2407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  CAS  PubMed  Google Scholar 

  • Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349

    Article  CAS  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21:3535–3553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Gao Y, Xu H, Dai Y, Deng DQ, Chen JM (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Trevisan M, Pradervand S, Fankhauser C (2009) Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J 60:449–461

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang YL, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively and light-induced chloroplast development. Proc Natl Acad Sci USA 101:16091–16098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OsBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature 400:781–784

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Maloof JN (2006) Diurnal regulation of plant growth. Plant, Cell Environ 29:396–408

    Article  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by phytochrome interacting factor 3-like5 during seed germination in Arabidopsis. Plant Cell 21:403–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park E, Kim J, Lee Y, Shin J, Oh E, Chung WI, Liu JR, Choi G (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 45:968–975

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in droughtresponsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schafer E, Nagy F (2006) Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms. Springer, Dordrecht

    Book  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF (1988) Water relations in winter wheat as drought resistance indicator. Crop Sci 28:526–531

    Article  Google Scholar 

  • Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator phytochrome-interacting factor1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Song S, Chen Y, Zhao M, Zhang WH (2012) A novel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environ Exp Bot 80:1–9

    Article  CAS  Google Scholar 

  • Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stavang JA, Gallego-Bartolome J, Gomez MD, Yoshida S, Asami T, Olsen JE, Garcia-Martinez JL, Alabadi D, Blazquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michae MI (2002) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus U, Pathre M (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Sun JQ, Qi LL, Li YN, Chu JF, Li CY (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian SJ, Mao XG, Zhang HY, Chen SS, Zhai CC, Yang SM, Jing RL (2013) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24:79–85

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Wang D, Zhang S, Ehlting J et al (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genom 9:1–21

    Article  Google Scholar 

  • Yi N, Kim Y, Jeong MH, Oh SJ, Jeong J, Park SH, Jung H, Choi Y, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Mao XG, Jing RL, Chang XP, Xie HM (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31101093); Natural science Research Project for Colleges and Universities in Jiangsu Province (No. 11KJB210005); Certificate of China Postdoctoral Science Foundation Grant (2013M541737); Genetically Modified Organisms Breeding Major Projects (2014ZX0800205B). We also thank another financial support for the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Chen.

Additional information

Yong Gao and Wei Jiang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jiang, W., Dai, Y. et al. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol 87, 413–428 (2015). https://doi.org/10.1007/s11103-015-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0288-z

Keywords

Navigation