Skip to main content

Advertisement

Log in

Genetic engineering for abiotic stress resistance in crop plants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Drought, extreme temperatures and high salinity are major limiting factors for plant growth and crop productivity. In their quest to feed the ever-increasing world population, agricultural scientists have to contend with these adverse environmental factors. If crops can be redesigned to better cope with abiotic stress, agricultural production can be increased dramatically. Recent advances in understanding crop abiotic stress resistance mechanisms and the advent of molecular genetic technology allow us to address these issues much more efficiently than in the past. This paper reviews the most significant achievements of the genetic engineering approach to improving plant abiotic stress resistance and discusses future prospects in transgenic research. Improved resistance to drought, salinity and extreme temperatures has been observed in transgenic plants that express/overexpress genes regulating osmolytes, specific proteins, antioxidants, ion homeostasis, transcription factors and membrane composition. Although the results are not always consistent, these studies collectively foretell a scenario where biotechnology will arm our future crops with new tactics to survive in hostile environments. Further experiments are needed to determine if the achieved increases in stress tolerance are applicable to agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alia; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J. 16:155–161; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Aono, M.; Saji, H.; Sakamoto, A.; Tanaka, K.; Kondo, N.; Tanaka, K. Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol. 36:1687–1691; 1995.

    PubMed  CAS  Google Scholar 

  • Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport+ in Arabidopsis. Science 285:1256–1258; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, S.; Targolli, J.; Liu, L.-F.; Ho, T.-H. D.; Wu, R. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol. Breeding 5:493–503; 1999.

    Article  CAS  Google Scholar 

  • Bohnert, H. J.; Nelson, D. E.; Jensen, R. G. Adaptations to environmental stresses. Plant Cell 7:1099–1111; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H. J.; Jensen, R. G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14:89–97; 1996.

    Article  CAS  Google Scholar 

  • Bose, A.; Ghosh, E. Effect of heat stress on ribulose 1,5-bisphosphate carboxylase in rice. Phytochemistry 38:1115–1118; 1995.

    Article  CAS  Google Scholar 

  • Boyer, J. S. Plant productivity and environment. Science 218:443–448; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Bray, E. A. Plant responses to water deficit. Trends Plant Sci. 2:48–54; 1997.

    Article  Google Scholar 

  • Burke, J. J.; Oliver, M. J. Optimal thermal environments for plant metabolic processes (Cucumis sativus L.): light-harvesting chlorophyll a/b pigment-protein complex of photosystem II and seedling establishment in cucumber. Plant Physiol. 102:295–302; 1993.

    PubMed  CAS  Google Scholar 

  • Chen, L.; Marmey, P.; Taylor, N. J.; Brizard, J. P.; Espinoza, C.; D'Cruz, P.; Huet, H.; Zhang, S.; de Kochko, A.; Beachy, R. N.; Fauquet, C. M. Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16:1060–1064; 1998.

    Article  CAS  Google Scholar 

  • Close, T. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100:291–296; 1997.

    Article  CAS  Google Scholar 

  • Davidson, J. F.; Whyte, B.; Bissinger, P. H.; Schiestl, R. H. Oxidative stress is involved in heat induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5116–5121; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gan, S.; Amasino, R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gombos, Z.; Wada, H.; Murata, N. Unsaturation of fatty acids in membrane lipids enhances tolerance to the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc. Natl. Acad. Sci. USA 89:9959–9963; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gombos, Z.; Wada, H.; Murata, N. The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104:563–567; 1994.

    PubMed  CAS  Google Scholar 

  • Grover, A.; Saji, C.; Sanan, N.; Griver, A. Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci. 143:101–111; 1999.

    Article  CAS  Google Scholar 

  • Hare, P. D.; Cress, W. A.; van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535–553; 1998.

    Article  CAS  Google Scholar 

  • Imai, R.; Chang, L.; Ohta, A.; Bray, E. A.; Takagi, M. A lea-class gene of tomato confers salt and freezing tolerance when overexpressed in Saccharomyces cerevisiae. Gene 170:243–248; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K. R.; Gilmour, S. J.; Zarka, D. G.; Schabenberger, O.; Thomashow, M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17:287–291; 1999.

    Article  CAS  Google Scholar 

  • Klueva, N.; Zhang, J.; Nguyen, H.T. Molecular strategies for managing environmental stress. In: Chopra, V. L.; Singh, R. B.; Varma, A. eds. Crop productivity and sustainability—shaping the future. New Delhi, India: Oxford & IBH; 1998:501–524.

    Google Scholar 

  • Kodama, H.; Hamada, T.; Horiguchi, G.; Nishimura, M.; Iba, K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105:601–605; 1994.

    PubMed  CAS  Google Scholar 

  • Lee, J. H.; van Montagu M.; Verbruggen, N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc. Natl. Acad. Sci. USA 96:5873–5877; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H.; Hubel, A.; Schoffl, F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8:603–612; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H.; Schoffl, F. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252:11–19; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. R. J.; Nagao, R. T.; Key, J. L. A soybean 101 kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6:1889–1897; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.; Zhu, J. K. A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945; 1998.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B. D.; Bowley, S. R.; Harjanto, E.; Leprince, O. Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111:1177–1181; 1996.

    PubMed  CAS  Google Scholar 

  • McKersie, B. D.; Bowley, S. R.; Jones, K. S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 119:839–847; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Moon, B. Y.; Higashi, S.-I.; Gombos, Z.; Murata, N. Unsaturation of membrane lipids of chloroplasts stabilized photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 92:6219–6223; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N.; Ishizaki-Nishizawa, O.; Higashi, S.; Hayashi, H.; Tasaka, Y.; Nishida, I. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713; 1992.

    Article  CAS  Google Scholar 

  • Nedeva, T. S.; Savov, V. A.; Kujumdzieva-Savova, A. V.; Davidov, E. R. Screening of thermotolerant yeast as producers of superoxide dismutase. FEMS Microbiol. Lett. 107:49–52; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H. T.; Babu, B. C.; Blum, A. Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci. 37:1426–1434; 1997.

    Article  Google Scholar 

  • Oliver, M. J.; Ferguson, D. L.; Burke, J. J. Interspecific gene transfer. Implications for broadening temperature characteristics of plant metabolic processes. Plant Physiol. 107:429–434; 1995.

    PubMed  CAS  Google Scholar 

  • Osteryoung, K. W.; Pipes, B.; Wehmeyer, N.; Vierling, E. Studies of a chloroplast-localized small heat shock protein in Arabidopsis. In: Cherry, J. H., ed. Biochemical and cellular mechanisms of stress tolerance in plants, NATO ASI Series. Berlin: Springer-Verlag; 1994;97–113.

    Google Scholar 

  • Pardo, J. M.; Reddy, M. P.; Yang, S.; Maggio, A.; Huh, G. H.; Matsumoto, T.; Coca, M. A.; Paino-D'Urzo, M.; Koiwa, H.; Yun, D. J.; Watad, A. A.; Bressan, R. A.; Hasegawa, P. M. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA 95:9681–9686; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M. M.; Braam, J.; Fry, S. C. The Arabidopsis TCH4 xyloglucan endotransglucosylase. Plant Physiol. 115:181–190; 1999.

    Article  Google Scholar 

  • Roxas, V. P.; Smith, R. K.; Allen, E. R. Jr.; Allen, R. D.; Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnol. 15:988–991; 1997.

    Article  CAS  Google Scholar 

  • Sairam, R. K.; Deshmukh, P. S.; Shukla, D. S. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron. Crop Sci. 178:171–178; 1997.

    Article  CAS  Google Scholar 

  • Sakamoto, A.; Alia; Murata, N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38:1011–1019; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, E. C.; Lindquist, S.; Vierling, E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schoffl, F.; Rieping, M.; Baumann, G. Constitutive transcription of a soybean heat-shock gene by a cauliflower mosaic virus promoter in transgenic tobacco. Dev. Genet. 8:365–374; 1987.

    Article  Google Scholar 

  • Sen Gupta, A.; Heinen, J. L.; Holaday, A. S.; Burke, J. J.; Allen, R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90:1629–1633; 1993.

    Article  CAS  Google Scholar 

  • Shen, Q.; Zhang, P.; Ho, T. D. H. Modular nature of ABA response complexes: composite promoter units that are necessary and sufficient for ABA-induced gene expression in Barley. Plant Cell 7:1107–1119; 1996.

    Article  Google Scholar 

  • Smirnoff, N.; Bryant, J. A. DREB takes the stress out of growing up. Science 17:229–230; 1999.

    CAS  Google Scholar 

  • Storozhenko, S.; De Pauw, P.; van Montagu, M.; Inze, D.; Kushnir, S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol. 118:1005–1014; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Su, J.; Shen, Q.; Ho, T.-H.D.; Wu, R. Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol. 117:913–922; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski, M. C.; Jensen, R. G.; Bohnert, H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Tasaka, Y.; Gombos, Z.; Nishiyama, Y.; Mahanty, P.; Ohba, T.; Ohki, K.; Murata, N. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration, and photosynthesis. EMBO J. 15:6416–6425; 1996.

    PubMed  CAS  Google Scholar 

  • Thomashow, M. I. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118:1–7; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Torsethaugen, G.; Pitcher, L. H.; Zilinskas, B. A.; Pell, E. J. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol. 114:529–537; 1997.

    PubMed  CAS  Google Scholar 

  • Varkonyi, Z.; Zsoros, O.; Gombos, Z. The application of genetically manipulated cyanobacterial strains in the study of glycerolipid unsaturation of photosynthetic membranes in the tolerance of photosynthetic machinery to temperature stresses. J. Sci. Indust. Res. 55:658–668; 1996.

    CAS  Google Scholar 

  • Xu, D.; Duan, X.; Wang, B.; Hong, B.; Ho, T. D.; Wu, R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249–257; 1996.

    PubMed  CAS  Google Scholar 

  • Wells, D. R.; Tanguay, R. L.; Le, H.; Gallie, D. R. HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev. 12:3236–3251; 1998.

    PubMed  CAS  Google Scholar 

  • Winicov, I.; Bastola, D. R. Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol. 120:473–480; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wolter, F. P.; Schmidt, R.; Heinz, E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11:4685–4692; 1992.

    PubMed  CAS  Google Scholar 

  • Zhang, J.; Nguyen, H. T.; Blum, A. Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50:291–302; 1999a.

    Article  CAS  Google Scholar 

  • Zhang, J.; Zheng, H. G.; Ali, M. L.; Tripathy, J. N.; Aarti, A.; Pathan, M. S.; Sarial, A. K.; Robin, S.; Nguyen, T. T.; Babu, R. C.; Nguyen, B. D.; Sarkarung, S.; Blum, A.; Nguyen, H. T. Progress on the molecular mapping of osmotic adjustment and root traits. In: O'Toole, J. C.; Ito, O.; Hardy, B. eds. Genetic improvement of rice for water-limited environments. Los Baños, Philippines: International Rice Research Institute; 1999b: 307–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Nguyen.

Additional information

This is a contribution of Texas Tech University's College of Agricultural Sciences and Natural Resources #T-4-475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Klueva, N.Y., Wang, Z. et al. Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell.Dev.Biol.-Plant 36, 108–114 (2000). https://doi.org/10.1007/s11627-000-0022-6

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0022-6

Key words

Navigation