Skip to main content
Log in

Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgene escape, a major environmental and regulatory concern in transgenic crop cultivation, could be alleviated by removing transgenes from pollen, the most frequent vector for transgene flow. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). CinH recombinase recognized 119 bp of nucleic acid sequences, RS2, in pollen and excised the transgene flanked by the RS2 sites. In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol Ecol 13:697–710

    Article  PubMed  CAS  Google Scholar 

  • Al-Ahmad H, Dwyer J, Moloney M, Gressel J (2006) Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotechnol J 4:7–21

    Article  PubMed  CAS  Google Scholar 

  • Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Saji H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosafety Res 5:77–87

    Article  PubMed  CAS  Google Scholar 

  • Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol Appl 13:1276–1294

    Article  Google Scholar 

  • Brown T (2001) Southern blotting. Curr Protocols Mol Biol 2.9.1–2.9.20

  • Chevre AM, Eber F, Darmency H, Fleury A, Picault H, Letan-neur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under agronomic conditions. Theor Appl Genet 100:1233–1239

    Article  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91:79–85

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnol 20:581–586

    Article  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnol 16:345–348

    Article  CAS  Google Scholar 

  • Gray AJ, Raybould AF (1998) Crop genetics—reducing transgene escape routes. Nature 392:653–654

    Article  CAS  Google Scholar 

  • Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  PubMed  CAS  Google Scholar 

  • Halfhill MD, Zhu B, Warwick SI, Raymer PL, Millwood RJ, Weissinger AK, Stewart CN Jr (2004) Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environ Biosafety Res 3:73–81

    Article  PubMed  Google Scholar 

  • Haygood R, Ives AR, Andow DA (2005) Population genetics of transgene containment. Ecol Lett 7:213–220

    Article  Google Scholar 

  • Horsh RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Ingram J (2000) The separation distance required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. Plant Var and Seeds 13:181–199

    Google Scholar 

  • Kempe K, Rubtsova M, Berger C, Kumlehn I, Schollmeier C, Gils M (2010) Transgene excision from wheat chromosomes by phage phiC31 integrase. Plant Mol Biol 72:673–687

    Article  PubMed  CAS  Google Scholar 

  • Kholodii G (2001) The shuffling function of resolvases. Gene 269:121–130

    Article  PubMed  CAS  Google Scholar 

  • Klippell A, Kanaar R, Kahmann R, Cozzarelli NR (1993) Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants. EMBO J 12:1047–1057

    Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotina tabacum. Mol Gen Genet 242:653–657

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Mitchell JC, Hirayama L, Hodges TK (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res 21:969–975

    Article  PubMed  CAS  Google Scholar 

  • Maeser S, Kahmann R (1991) The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplasts. Mol Gen Genet 230:170–176

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–300

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, DeBeuckeleer M, Trueltner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Moon HS, Li Y, Stewart CN Jr (2010) Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends Biotechnol 28:3–8

    Article  PubMed  CAS  Google Scholar 

  • Moon HS, Eda S, Saxton AM, Ow D, Stewart CN Jr (2011) An efficient and rapid transgenic pollen screening and detection method using a flow cytometry. Biotechnol J 6:118–123

    Article  PubMed  CAS  Google Scholar 

  • Morris WF, Kareiva PM, Raymer PL (1994) Do barren zones and pollen traps reduce gene escape from transgenic crops? Ecol Appl 4:157–165

    Article  Google Scholar 

  • Nakagawa Y, Machida C, Machida Y, Toriyama K (2001) A system to induce the deletion of genomic sequences using R/RS site-specific recombination and the Ac transposon in transgenic rice plants. Theor Appl Genet 102:1136–1141

    Article  CAS  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19:6373–6378

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C (1995) Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet 247:653–660

    Article  PubMed  CAS  Google Scholar 

  • Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russel S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628

    Article  PubMed  CAS  Google Scholar 

  • Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernandez JA, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Alvarez-Buylla ER (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol 18:750–761

    Article  PubMed  Google Scholar 

  • Rao MR, Moon HS, Schenk TMH, Becker D, Mazarei M, Stewart CN Jr (2010) FLP/FRT Recombination from yeast: application of a two gene cassette scheme as an inducible system in plants. Sensors 10:8526–8535

    Article  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IF, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids- high-level foreign protein expression in fruits. Nature Biotechnol 19:870–875

    Article  CAS  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 14:748–751

    PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nature Rev Genet 4:806–817

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Yau Y-Y, Blanvillain R, Chinquy D, Thilmony R, Ow DW (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 18:237–248

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Chan R, Thilmony R, Yau Y-Y, Ow DW (2010) PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol 10:17

    Article  PubMed  Google Scholar 

  • Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109:705–713

    PubMed  CAS  Google Scholar 

  • Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15:308–321

    Article  PubMed  CAS  Google Scholar 

  • Whittington M (2006) Underground farming. http://www.associatedcontent.com/article/27102/underground_farming.html?cat=15. Accessed 24 Oct 2010

  • Woo H-J, Cho H-S, Lim S-H, Shin K-S, Lee S-M, Lee K-J, Kim D-H, Cho Y-G (2009) Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res 18:455–465

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li H, Quyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q-W, Møller SG, Chua N-H (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnol 19:157–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Murali R. Rao for helping on statistical analysis and Spencer Wei for his help with vector construction. We thank Patrick Gallois for the gift of pPK100 that was included in our vectors. This research was funded by USDA Biotechnology Risk Assessment Grants to C. N. Stewart, Jr. and D. W. Ow. We especially wish to express our gratitude to collaborator Yi Li, also a co-PI on the above grant, for the extensive help in this line of research and for the many conversations and innovations he and his lab has accomplished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Stewart Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, H.S., Abercrombie, L.L., Eda, S. et al. Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 75, 621–631 (2011). https://doi.org/10.1007/s11103-011-9756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9756-2

Keywords

Navigation