Skip to main content

Genetic Resources of Groundnut

  • Chapter
  • First Online:
Cash Crops

Abstract

Groundnut or peanut is one of the major oilseeds and food crops cultivated globally. This oilseed can be directly consumed as a foodstuff, is a rich source of oil, protein and carbohydrates and other nutrition like tocopherol, niacin and folic acid; mineral components like Cu, Mn, K, Ca and P; dietary fibres, flavonoids, phytosterols like resveratrol, beta-sitosterol; and phenolic acids. The cultivated groundnut Arachis hypogea is a segmental amphidiploid (4x = 40), and cytogenetic and molecular evidences suggest that the origin of cultivated groundnut was from a hybridization of two diploid wild species Arachis duranensis (AA) and Arachis ipaensis (BB). Eighty-three species of Arachis have been described and most of species in the genus Arachis are diploid with x = 10 (2n = 20), while a few aneuploid (2n = 2x = 18) and tetraploid (2n = 4x = 40) species are also reported, and new taxa continue to be discovered. Higher yield has been the most frequently targeted trait in the breeding programmes, and the enhanced yield attained in the Indian cultivars has been attributed to the improvement in seed size, seed weight, and number of pods per plant. The other trait which have been in focus is tolerance/resistance to diseases and drought, which have been the major production constraints. Improving quality of the produce also is now being taken up in addition to enhancement of yield. Early leaf spot (ELS; caused by Cercospora arachidicola), late leaf spot (LLS; caused by Phaeoisariopsis personata) and rust (caused by Puccinia arachidic) are the most prevalent foliar fungal diseases in groundnut. Among the viral diseases reported in groundnut from India, peanut bud necrosis virus (PBNV), tobacco streak virus (TSV), peanut mottle virus (PeMoV), and Indian peanut clump virus (IPCV) are the economically important. Among nematodes, peanut root-knot nematode (Meloidogyne spp.) and the root-lesion nematode (Pratylenchus brachyrus) are prominent. The breeding programmes across the groundnut growing countries mainly focus on these.

Due to the tetraploid nature of the crop and the complexity of the genome, marker development in cultivated groundnut has been in a slow pace. A good amount of genomic resources for groundnut has been added during the last 15 years. Several mapping populations have been prepared and the markers were mapped into genetic maps using these populations and used to understand the genome architecture and to identify QTLs for the economically important traits. The majority of QTLs reported are for foliar fungal diseases followed by oil quality and stem rot resistance. Though several reports on marker associations are available, utilisation of marker-assisted breeding is very meagre.

The availability of the draft genomes have opened up the large-scale genome-wide discovery of makers and the development of an58K Axiom_Arachis SNP array By the advent of the rapid sequencing tools and assembly tools, a good number of transcripts were assembled and analysed in detail.

In India alone more than 200 varieties have been developed so far for commercial cultivation. Several programmes in genomics-assisted breeding are underway and may come out with improved cultivars which can be grown under different production constraints without compromising yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aavani T, Tachibana N, Wallace V, Biernaskie J, Schuurmans C (2017) Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr Patterns 23–24:32–44

    Article  PubMed  CAS  Google Scholar 

  • Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X, Huang G, Wang X, Deshmukh R, Holbrook CC, Bertioli DJ, Ozias-Akins P, Jackson SA, Varshney RK, Guo B (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16(11):1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves DMT, Pereira RW, Leal-Bertioli SCM, Moretzsohn MC, Guimarães PM, Bertioli DJ (2008) Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp.). Genet Mol Res 7:631–642

    Article  CAS  PubMed  Google Scholar 

  • Anderson WF, Holbrook CC, Culbreath AK (1996) Screening the peanut core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Article  Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Nageswara Rao RC, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125

    Article  CAS  Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53:31–41

    Article  CAS  PubMed  Google Scholar 

  • Ballmer-Weber BK, Lidholm J, Fernandez-Rivas M, Seneviratne S, Hanschmann K-M, Vogel L, Bures P, Fritsche P, Summers C, Knulst AC, Le T-M, Reig I, Papadopoulos NG, Sinaniotis A, Belohlavkova S, Popov T, Kralimarkova T, de Blay F, Purohit A, Clausen M, Jedrzejczak-Czechowcz M, Kowalski ML, Asero R, Dubakiene R, Barreales L, Clare Mills EN, van Ree R, Vieths S (2015) IgE recognition patterns in peanut allergy are age dependent: perspectives of the EuroPrevall study. Allergy 70:391–407

    Article  CAS  PubMed  Google Scholar 

  • Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci Junior M, Valls JFM, Lopes CR, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biol 10:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belamkar V, Selvaraj MG, Ayers JL, Payton PR, Puppala N, Burow MD (2011) A first insight into population structure and linkage disequilibrium in the US peanut minicore collection. Genetica 139:411–429

    Article  PubMed  Google Scholar 

  • Bentham G (1841) On the structure and affinities of Arachis and Voandzeia. Trans Linn Soc London 18(2):155–162

    Article  Google Scholar 

  • Benz B (2012) The conservation of cultivated plants. Nat Educ Knowl 3:4

    Google Scholar 

  • Bera SK, Rathanakumar AL, Radhakrishnan T (2004) Cytogenetics and utilization of Arachis species. In: Basu MS, Singh NB (eds) Groundnut research in India. National Research Center for Groundnut (ICAR), Junagadh

    Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Ajay BC (2017) A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut. Australas Plant Pathol 45(6):637–644

    Article  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Dash P, Maurya AK, Jasani MD, Chandrashekar AB, Manivannan N, Vasanthi RP, Dobariya KL, Pandey MK, Janila P, Radhakrishnan T, Varshney RK (2018) Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214:162

    Article  CAS  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK, Dash P, Ajay BC, Rani K, Manivannan N, Janila P, Pandey MK, Vasanthi RP, Dobariya KL, Radhakrishnan T, Varshney RK (2019) Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS One 14:e0226252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Moretzsohn MC (2014) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 (Bethesda) 4:89–96

    Article  CAS  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bhogireddy S, Xavier A, Garg V, Layland N, Arias R, Payton P, Nayak SN, Pandey MK, Puppala N, Varshney RK (2020) Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Sci Rep 10:4071

    Google Scholar 

  • Bhat RS, Rockey J, Shirasawa K Tilak IS, Patil MPB, Lachagari VBR (2020) DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.). BMC Res Notes 13:20. https://doi.org/10.1186/s13104-020-4883-y

  • Bianchi-Hall C, Keys RD, Stalker HT (1993) Diversity of seed storage proteins in wild peanuts (Arachis species). Plant Syst Evol 186:1–15

    Article  CAS  Google Scholar 

  • Birthal PS, Rao PP, Nigam SN, Bantilan CS, Bhagavatulu S (2010) Groundnut and soybean economies in Asia: facts, trends and outlook. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Bishi SK, Kumar L, Mahatma MK, Khatediya N, Chauhan SM, Misra JB (2015) Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem 167:107–114

    Article  CAS  PubMed  Google Scholar 

  • Bosamia TC, Mishra GP, Radhakrishnan T, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10(6):e0129127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosamia T, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Radhakrishnan T (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One 15(8):e0236823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branch WD (2002) Registration of ‘Georgia-01R’ peanut. Crop Sci 42:1750–1751

    Article  Google Scholar 

  • Branch WD, Brenneman TB, Hookstra G (2014) Field test results versus marker assisted selection for root-knot nematode resistance in peanut. Peanut Sci 41(2):85–89

    Article  Google Scholar 

  • Brasileiro AC, Morgante CV, Araujo AC, Leal-Bertioli SC, Silva AK, Martins AC, Vinson CC, Santos CM, Bonfim O, Togawa RC, Saraiva MA, Bertioli DJ, Guimaraes PM (2015) Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep 33:1876–1892

    Article  CAS  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resource management. Genome 31:818–824

    Article  Google Scholar 

  • Bryant RJ, Rao DR, Ogutu S (2004) Alpha and beta-galactosidase activities and oligosaccharide content in peanuts. Plant Foods Hum Nutr 58:213–223

    Article  Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphiploid in cultivated peanut (A hypogaea L): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burow MD, Starr JL, Park CH et al (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breed 34(2):393–406

    Article  CAS  Google Scholar 

  • Carrin M, Carelli A (2010) Peanut oil: compositional data. Eur J Lipid Sci Technol 112:697–707

    Article  CAS  Google Scholar 

  • Casini C, Dardanelli JL, Martinez MJ, Balzarini M, Borgogno CS, Nassetta M (2003) Oil quality and sugar content of peanuts (Arachis hypogaea) grown in Argentina: their relationship with climatic variables and seed yield. J Agric Food Chem 51:6309–6313

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:411–435

    Article  Google Scholar 

  • Chakraborty K, Mahatma MK, Thawait LK, Bishi SK, Kalariya KA, Singh AL (2016) Water deficit stress affects photosynthesis and the sugar profile in source and sink tissues of groundnut (Arachis hypogaea L.) and impacts kernel quality. J Appl Bot Food Qual 89:98–104

    CAS  Google Scholar 

  • Chamberlin KDC, Melouk HA, Payton ME (2010) Evaluation of the US peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica 172:109–115

    Article  Google Scholar 

  • Chavarro C, Chu Y, Holbrook CC, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, Jackson SA, Ozias-Akins P (2020) Pod and seed trait QTL identification to assist breeding for peanut market preferences. G3 Genes Genomes Genet 10(7):2297–2315

    CAS  Google Scholar 

  • Chen Z, Wang ML, Barkley NA, Pittman RN (2010) A simple allele-specific PCR-assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep 28:542–548

    Article  CAS  Google Scholar 

  • Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp SJ, Ozias-Akins P, Varshney RK, Liang X (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, Liao B, Huang J, Huang S, Wei W, Jiang H (2014) Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics 15:1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Jiang H (2016a) Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet 17:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Yud S (2016b) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. PNAS 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yang Q, Li H, Li H, Hong Y, Pan L, Chen N, Zhu F, Chi X, Zhu W, Chen M, Liu H, Yang Z, Zhang E, Wang T, Zhong N, Wang M, Liu H, Wen S, Li X, Zhou G, Li S, Wu H, Varshney R, Liang X, Yu S (2016c) Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol J 14(5):1215–1224

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Cao Q, Jiang Q, Li J, Yu R, Shi G (2019a) Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC Plant Biol 19:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey MK, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique KHM, Liu ZJ, Paterson AH, Varshney RK, Liang X (2019b) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12:920–934

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang Z, Ren X, Huang L, Guo J, Zhao J, Zhou X, Yan L, Luo H, Liu N, Chen W, Wan L, Lei Y, Liao B, Huai D, Jiang H (2019c) Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut (Arachis hypogaea L.). Crop J 7(2):238–248

    Article  Google Scholar 

  • Chen H, Yang Q, Chen K, Zhao S, Zhang C, Pan R, Cai T, Deng Y, Wang X, Chen Y, Chu W, Xie W, Zhuang W (2019d) Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.). BMC Genomics 21;20(1):392

    Google Scholar 

  • Choi K, Burow MD, Church G, Burow G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Wilkins TA, Burow MD (2015) Next generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut Arachis hypogaea L. Mol Gen Genomics 290:1169–1180

    Article  CAS  Google Scholar 

  • Chopra R, Burow G, Simpson CE, Chagoya J, Mudge J, Burow MD (2016) Transcriptome sequencing of diverse peanut (Arachis) wild species and the cultivated species reveals a wealth of untapped genetic variability. G3 (Bethesda) 6(12):3825–3836

    Article  Google Scholar 

  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P (2007) Development of a PCR based molecular marker to select for nematode resistance in peanut. Crop Sci 47:841–845

    Article  CAS  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B controls the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    Article  CAS  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman B, Person G, Ozias-Akins P (2011) Marker assisted selection to pyramid nematode resistance and high oleic trait in peanut. Plant Genome 4:110–117

    Article  CAS  Google Scholar 

  • Chukwumah Y, Walker LT, Verghese M (2009) Peanut skin color: a biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. Int J Mol Sci 10:4941–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavel D, Drame NK, Roy Macauley H, Braconnier S, Laffray D (2005) Analysis of early responses to drought associated with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars. Environ Exp Bot 54:219–230

    Article  CAS  Google Scholar 

  • Clements RS, Darnell B (1980) Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr 33:1954–1967

    Article  CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SCM, Ozias-Akins P (2017) Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10:309–322

    Article  CAS  PubMed  Google Scholar 

  • Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Qiu W, Wang N, Nakanishi H, Zuo Y (2018) Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. Plant Physiol Biochem 127:516–524

    Article  CAS  PubMed  Google Scholar 

  • Damame SV, Chavan JK, Kadam SS (1990) Effects of roasting and storage on proteins and oil in peanut kernels. Plant Foods Hum Nutr 40:143–148

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Li Z, Zhang W (2012) Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol 30(1):311–315

    Article  CAS  PubMed  Google Scholar 

  • Desmae H, Moses O, Bonny N, Farid W, Jupiter J, Diarra A, Amadou A, Abdoulaye I, Kodio O, Cisse Y, Traore M, Moutari A, Zarafi AM, Mamadou CA, Ajeigbe H, Motagi B, Candidus E, Ahmed B, Alabi L, Amos (2016) Enhancing groundnut productivity and production in West and Central Africa. In: Monyo ES, Varshney RK (eds) Seven seasons of learning and engaging smallholder farmers in the drought-prone areas of sub-Saharan Africa and South Asia through Tropical Legumes, 2007–2014. ICRISAT, Patancheru

    Google Scholar 

  • Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng-Frimpong R, Miningou A, Ojiewo C, Varshney RK (2019) Genetics, genomics and breeding of groundnut (Arachis hypogaea L.) Plant Breed 138(4):425–444

    Google Scholar 

  • Devi MJ, Bhatnagar-Mathur P, Sharma KK, Serraj R, Anwar SY, Vadez V (2011) Relationships between transpiration efficiency and its surrogate traits in the rd29A:DREB1A transgenic lines of groundnut. J Agron Crop Sci 197:272–283

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Chauhan SM, Bhatt DM, Misra JB (2001) Cellulolytic and groundnut shell decomposition potential of some microorganisms. Indian J Microbiol 42:165–167

    Google Scholar 

  • Do AN, Watson CT, Cohain AT, Griffin RS, Grishin A, Wood RA, Wesley Burks A, Jones SM, Scurlock A, Leung DYM, Sampson HA, Sicherer SH, Sharp AJ, Schadt EE, Bunyavanich S (2019) Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children. J Allergy Clin Immunol 145(4):1219–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narendrakumar D, Soni P, Rathnakumar AL, Dobaria JR, Sangh C, Chitikineni A, Chanda SV, Pandey MK, Varshney RK, Radhakrishnan T (2019) Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet 132:1001–1016

    Article  PubMed  Google Scholar 

  • Dong WB, Holbrook CC, Timper P, Brenneman TB, Chu Y, Ozias-Akins P (2008) Resistance in peanut cultivars and breeding lines to three root-knot nematode species. Plant Dis 92:631–638

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Nigam SN (1995) Breeding for improved seed quality in groundnut (A. hypogaea L.) with special reference to export promotion: issues and opportunities. Paper presented at workshop on Status of Confectionery Groundnut Research in India and Strategies for Export Promotion 28–29 April, 1995. BARC, Trombay, India

    Google Scholar 

  • Dwivedi SL, Nigam SN, Rao RCN, Singh U, Rao KVS (1996) Effect of drought on oil, fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds. Field Crops Res 48:125–133

    Article  Google Scholar 

  • Dwivedi SL, Puppala N, Upadhyaya HD, Manivannan N, Singh S (2008) Developing a Core Collection of Peanut Specific to Valencia Market Type. Crop Science 48:625–632

    Google Scholar 

  • Falalou H, Mariama H, Achirou FB, Oumarou H, Vincent V (2018) Genotypic variation for root development, water extraction and yield components in groundnut under low phosphorus and drought stresses. Am J Agric For 6(5):122–131

    Google Scholar 

  • FAOSTAT (2018) FAOSATAT, statistical data base. Food and Agricultural Organizations of the United Nations, Rome

    Google Scholar 

  • Faye I, Pandey MK, Hamidou F, Rathore A, Ndoye O, Vadez V, Varshney RK (2015) Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica 206:631–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman EB (1999) Assorted monounsaturated fatty acids promote healthy hearts. Am J Clin Nutr 70:953–954

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Wang X, Xinyou Z, Dang P, Holbrook CC, Culbreath AK, Wu Y (2012) Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comp Funct Genomics 5013:373768

    Google Scholar 

  • Fernandez A, Krapovickas A (1994) Cromosomas y evolucion en Arachis (Leguminosae). (In Spanish, with English abstract.). Bonplandia 8:187–220

    Article  Google Scholar 

  • Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foncéka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Rami JF (2012a) Fostered and left behind alleles in peanut: inter-specific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Foncéka D, Tossim HA, Rivallan R, Vignes H, Lacut E, de Bellis F, Rami JF (2012b) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7(11):e48642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang WJ, Chen ZY, Kemerait RC, Lee RD, Chen S, Varshney RK, Guo B (2018) Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Sci Rep 8(1):3430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  CAS  PubMed  Google Scholar 

  • Francisco ML, Resurreccion AV (2008) Functional components in peanuts. Crit Rev Food Sci Nutr 48:715–746

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X (2017) Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics 18(1):220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39(5):836–845

    Article  CAS  PubMed  Google Scholar 

  • Garcia GM, Stalker HT, Schroeder E, Lyerly JH, Kochert G (2005) RAPD-based linkage map of peanut based on a backcross population between the two diploid species Arachis stenosperma and A cardenasii. Peanut Sci 32:1–8

    Article  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012) QTL analysis and consensus genetic map for drought tolerance traits based on three RIL populations of cultivated groundnut (Arachis hypogaea L.). Mol Breed 32:757–772

    Article  Google Scholar 

  • GCP (2011) CGIAR generation challenge programme: project updates (incorporating projects completed in 2010 and 2009) Texcoco, Mexico: generation challenge programme. Genome 4:110–117

    Google Scholar 

  • Girdthai T, Jogloy S, Akkasaeng C, Vorasoot N, Wongkaew S, Holbrook CC, Patanothai A (2010) Heritability of, and genotypic correlations between, aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Res 118:169–176

    Article  Google Scholar 

  • Gorbet DW, Knauft DA (1997) Registration of ‘SunOleic 95R’ peanut. Crop Sci 37:1392

    Article  Google Scholar 

  • Gorbet DW, Shokes FM (2002a) Registration of ‘C-99R’ peanut. Crop Sci 42:2207

    Google Scholar 

  • Gorbet DW, Shokes FM (2002b) Registration of ‘Florida MDR 98’ peanut. Crop Sci 42:2207–2208

    Google Scholar 

  • Gregory WC, Gregory MP (1976) Groundnut, Arachis hypogaea (Leguminosae-Papilionatae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 151–154

    Google Scholar 

  • Gregory MP, Gregory WC (1979) Exotic germplasm of Arachis L interspecific hybrids. J Hered 70:185–193

    Article  Google Scholar 

  • Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough J (1973) Structure and genetic resources of peanuts. In: Peanuts—culture and uses. American Peanut Research Education Association, Stillwater, pp 47–133

    Google Scholar 

  • Gregory WC, Krapovickas A, Gregory MP (1980) Structures, variation, evolution and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanical Gardens, London, pp 469–481

    Google Scholar 

  • Guimarães PM, Garsmeur O, Proite K, Leal-Bertioli SCM, Seijo G, Christian C, Bertioli DJ, D’Hont A (2008) BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol 8:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guimarães PM, Brasileiro ACM, Proite K, Araújo ACG, Leal-Bertioli SCM, Pic-Taylor A, Silva FR, Morgante CV, Ribeiro SG, Bertioli DJ (2010) A study of gene expression in the nematode resistant wild peanut relative, Arachis stenosperma, in response to challenge with Meloidogyne arenaria. Trop Plant Biol 3:183–192

    Article  CAS  Google Scholar 

  • Guimarães PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB Jr, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC, Bertioli DJ (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13:387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guimaraes PM, Guimaraes LA, Morgante CV, Silva OB Jr, Araujo AC, Martins AC, Saraiva MA, Oliveira TN, Togawa RC, Leal-Bertioli SC, Bertioli DJ, Brasileiro AC (2015) Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoS One 10(10):e0140937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guimaraes LA, Pereira BM, Araujo ACG, Guimaraes PM, Brasileiro ACM (2017) Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods 13:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Khanal S, Tang S, Bowers JE, Heesacker AF, Khalilian N, Nagy ED, Zhang D, Taylor CA, Stalker HT, Ozias-Akins P, Knapp SJ (2012) Comparative mapping in intraspesific populations uncovers high degree of macrosynteny between A- and B-genome diploid species of peanut. BMC Genomics 13:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo BZ, Pandey MK, He G, Zhang XY, Liao B, Culbreath AK, Varshney RK, Nwosu V, Wilson RF, Stalker HT (2013) Recent advances in molecular genetic linkage maps of cultivated peanut (Arachis hypogaea L.). Peanut Sci 40(2):95–106

    Article  Google Scholar 

  • Guo F, Ma J, Hou L, Shi S, Sun J, Li G, Zhao C, Xia H, Zhao S, Wang X, Zhao Y (2020) Transcriptome profiling provides insights into molecular mechanism in Peanut semi-dwarf mutant. BMC Genomics 21:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Dhawan K, Kumar P, Yadava TP (1982) Note on chemical composition of some groundnut strains. Ind J Agric Sci 52:343–344

    Google Scholar 

  • Gupta K, Kayam G, Faigenboim-Doron A, Clevenger J, Ozias-Akins P, Hovav R (2016) Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Plant Sci 248:116–127

    Article  CAS  PubMed  Google Scholar 

  • Guthrie JD, Hoffpauir CL, Steiner ET, Stansbury MF (1949) Survey of the chemical composition of cotton fibers, cottonseed, peanuts, and sweet potatoes: a literature review. Southern Regional Research Lab, New Orleans

    Google Scholar 

  • Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Bhat RS (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12(10):e0186113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1992) Use of single primer DNA amplification in genetic studies of peanut. Plant Mol Biol 18:315–325

    Article  CAS  PubMed  Google Scholar 

  • Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  PubMed  Google Scholar 

  • Hamidou F, Ratnakumar P, Halilou O, Mponda O, Kapewa T, Monyo E, Faye I, Ntare BR, Nigam SN, Upadhyaya HD, Vadez V (2012) Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crops Res 126:189–199

    Article  Google Scholar 

  • Hammons RO (1977) Groundnut rust in the United States and the Caribbean. PANS 23(3):300–304

    Article  Google Scholar 

  • Hammons RO (1982) Origin and early history of the peanut. In: Pattee HE, Young CT (eds) Peanuts science and technology. American Peanut Research and Education Society, Stillwater, pp 1–20

    Google Scholar 

  • Han S, Liu H, Yan M, Qi F, Wang Y, Sun Z, Huang B, Dong W, Tang F, Zhang X, He G (2017) Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.). PLoS One 12(8):e0183428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao K, Wang F, Nong X, McNeill MR, Liu S, Wang G, Cao G, Zhang Z (2017) Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Sci Rep 7(1):964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris D, Matthews RB, Nageswara Rao RC, Williams JH (1988) The physiological basis for yield differences between four genotypes of groundnut (Arachis Hypogaea) in response to drought. III. Developmental processes. Exp Agric 24:215–226

    Article  Google Scholar 

  • Hashim IB, Koehler PB, Eitenmiller RR (1993) Tocopheroles in runner and virginia peanut cultivars at various maturity stages. J Am Oil Chem Soc 70:633–635

    Article  CAS  Google Scholar 

  • He G, Meng R, Gao H, Guo B, Newman M, Pittman RN, Prakash CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142:131–136

    Article  CAS  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect Arachis (Fabaceae): evidence from RAPDs. Syst Evol 198:167–178

    Article  CAS  Google Scholar 

  • Holbrook CC (2001) Status of the Arachis germplasm collection in the United States. Peanut Sci 28:84–89

    Article  Google Scholar 

  • Holbrook CC, Dong W (2005) Development and evaluation of a mini core collection for the U S peanut germplasm collection. Crop Sci 45:1540–1544

    Article  Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the United States germplasm collection of peanut. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Timper P, Culbreath A, Craig K (2008) Registration of ‘Tifguard’ peanut. J Plant Reg 2(2):92–94

    Article  Google Scholar 

  • Holbrook CC, Guo BZ, David W, Patricia T (2009) The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Sci 36(1):50–53

    Article  Google Scholar 

  • Hong Y, Liang X, Chen X, Liu H, Zhou G, Li S, Wen S (2008) Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China 7:915–921

    Article  CAS  Google Scholar 

  • Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in cultivated peanut (Arachis hypogaea L). Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, Xu TT, Chen N, Chi XY, Zhang ZM, Chen J (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L). Theor Appl Genet 128:1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Ren X, Wu B, Li X, Chen W, Zhou X, Chen Y, Pandey MK, Jiao Y, Luo H, Lei Y, Varshney RK, Liao B, Jiang H (2016) Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep 6:39478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Xing M, Li Y, Cheng F, Gu H, Yue C, Zhang Y (2019) Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). J Agric Food Chem 67(4):1312–1324

    Article  CAS  PubMed  Google Scholar 

  • Hurlburt BK, Offermann LR, McBride JK, Majorek KA, Maleki SJ, Chruszcz K (2013) Structure and function of the peanut Panallergen Arah8. J Biol Chem 288(52):36890–33690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husted L (1936) Cytological studies of the peanut Arachis II. Chromosome number, morphology and behaviour and their application to the origin of cultivated form. Cytologia 1:396–423

    Article  Google Scholar 

  • Isleib TG, Wynne JC, Nigam SN (1994) Groundnut breeding. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 552–623

    Chapter  Google Scholar 

  • Izge AU, Mohammed ZH, Goni A (2007) Levels of variability in groundnut (Arachis hypogaea L.) to cercospora leafspot disease-implication for selection. Afr J Agric Res 2:182–186

    Google Scholar 

  • Jackson BN, Aluru S, Schnable PS (2005) Consensus genetic maps: a graph theoretic approach. In: Proceeding of computational systems bioinformatics conference, pp 35–43

    Google Scholar 

  • Jambunathan R, Raju MS, Barde SP (1985) Analysis of oil content of groundnuts by nuclear magnetic resonance spectrometry. J Sci Food Agric 36:162–166

    Article  Google Scholar 

  • Janila P, Aruna R, Kumar JE, Nigam SN (2012) Variation in blanchability in Virginia groundnuts (Arachis hypogaea L.). Indian J Oilseeds Res 29:116–120

    Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Plant Sci 4:1–12

    Google Scholar 

  • Janila P, Nigam SN, Abhishek R, Kumar VA, Manohar SS, Venuprasad R (2014) Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters. J Agric Sci 153:975–994

    Article  CAS  Google Scholar 

  • Janila P, Manohar SS, Rathore A, Nigam SN (2015) Inheritance of SPAD chlorophyll meter reading and specific leaf area in four crosses of groundnut (Arachis hypogaea L). Indian J Genet 75:408–412

    Article  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP, Radhakrishnan T, Manivannan N, Dobariya KL, Vasanthi RP, Varshney RK (2016a) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, Manohar SS, Rathnakumar AL, Radhakrishnan T, Liao B, Varshney RK (2016b) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HF, Ren XP, Liao BS, Huang JQ, Lei Y, Chen BY, Guo BZ, Holbrook CC, Upadhyaya HD (2008) Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin 34(1):25–30

    Article  CAS  Google Scholar 

  • Jiang HF, Ren XP, Zhang XJ, Huang JQ, Lei Y, Yan LY, Liao BS, Upadhyaya HD, Holbrook CC (2010) Comparison of genetic diversity based on SSR markers between peanut mini core collections from China and ICRISAT. Acta Agron Sin 36(7):1084–1091

    CAS  Google Scholar 

  • Jiang C, Zhang H, Ren J, Dong J, Zhao X, Wang X, Wang J, Zhong C, Zhao S, Liu X, Gao S, Yu H (2020) Comparative transcriptome-based mining and expression profiling of transcription factors related to cold tolerance in peanut. Int J Mol Sci 21(6):1921

    Article  CAS  PubMed Central  Google Scholar 

  • Kanyika BTN, Lungu D, Mweetwa A, Kaimoyo E, Njung’e VM, Monyo ES, de Villiers SM (2015) Identification of groundnut (Arachis hypogaea L.) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electron J Biotechnol 18(2):61–67

    Article  Google Scholar 

  • Karmakar K, Kundu A, Rizvi AZ, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M (2019) Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’ legume Arachis hypogaea highlights its contrast with ‘infection thread’ adapted legumes. Mol Plant-Microbe Interact 32(3):271–285

    Article  CAS  PubMed  Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khera P, Pandey MK, Wang H, Feng S, Qiao L, Culbreath AK, Kale S, Wang J, Holbrook CC, Zhuang W, Varshney RK, Guo BZ (2016) Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS One 11(7):e0158452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoll JE, Ramos ML, Zeng Y, Holbrook CC, Chow M, Chen S, Ozias-Akins P (2011) TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol 11:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kolekar RM, Sujay V, Shirasawa K, Sukruth M, Khedikar YP, Gowda MVC, Pandey MK, Varshney RK, Bhat RS (2016) QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209:147–156

    Article  CAS  Google Scholar 

  • Kolekar RM, Sukruth M, Shirasawa K, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136(6):1–6

    Article  CAS  Google Scholar 

  • Korani W, Chu Y, Holbrook CC, Ozias-Akins P (2018) Insight into genes regulating postharvest aflatoxin contamination of tetraploid peanut from transcriptional profiling. Genetics 209(1):143–156

    Google Scholar 

  • Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea). In: Ucko PJ, Falk IS (eds) The domestication and exploitation of plants and animals. Gerald Duckworth, London, pp 424–441

    Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomıa del genero Arachis (Leguminosae). Bonplandia 8(1–4):1–186

    Google Scholar 

  • Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD (1999) High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr. 70(6):1009–1015

    Google Scholar 

  • Krishnamurthy L, Vadez V, Devi MJ, Serraj R, Nigam SN, Sheshshayee MS, Chandra S, Aruna R (2007) Variation in transpiration efficiency and its related traits in a groundnut. Field Crops Res 103:189–197

    Article  Google Scholar 

  • Kuang Q, Yu Y, Attree R, Xu B (2017) A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogaea) grown in China. Int J Food Prop 20:S131–S140

    Article  CAS  Google Scholar 

  • Kumar N, Ajay BC, Rathanakumar AL, Radhakrishnan T, Mahatma MK, Kona P, Chikani BM (2019) Assessment of genetic variability for yield and quality traits in groundnut genotypes. Electron J Plant Breed 10:196–206

    Article  Google Scholar 

  • Lal C, Hariprasanna K, Rathnakumar AL, Gor HK, Chikani BM (2006) Gene action for surrogate traits of wateruse efficiency and harvest index in peanut (Arachis hypogaea). Ann Appl Biol 148:165–172

    Article  Google Scholar 

  • Lanham PG, Fennell S, Moss JP, Powell W (1992) Detection of polymorphic loci in Arachis germplasm using random amplified polymorphic DNAs. Genome 35:885–889

    Article  CAS  PubMed  Google Scholar 

  • Lavia GI (1999) Caracterizacion cromosomica del germoplasma de man. PhD dissertation, Universidad Nacional de Cordoba, Argentina

    Google Scholar 

  • Lea CH (1962) The oxidative deterioration of food lipids. In: Schultz HW, Day EA Sinnhuber RO (eds) Symposium on food: lipids and their oxidation. The AVI Publishing Company, Westport, pp 3–28

    Google Scholar 

  • Leal-Bertioli SCM, José AC, Alves-Freitas DM, Moretzsohn MC, Guimarães PM, Nielen S, Bertioli DJ (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leal-Bertioli SCM, Moretzsohn MC, Roberts PA, Ballen-Taborda C, Borba TCO, Valdisser PA, Vianello RP, Araujo ACG, Guimaraes PM, Bertioli DJ (2015) Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. G3 (Bethesda) 6(2):377–390

    Article  CAS  Google Scholar 

  • Leal-Bertioli SCM, Cavalante U, Gouvea EG, Ballén Taborda C, Shirasawa K, Guimarães PM, Moretzsohn MC (2016) Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3 (Bethesda) 5:1403–1413

    Article  CAS  Google Scholar 

  • Li SX, Zhou GY, Liang XQ, Li SL, Lin YK, Hong YB, Chen XP, Liu HY (2007) Breeding of a new peanut variety Yueyou 114 and its cultivation technologies. J Peanut Sci 36:34–37

    Google Scholar 

  • Li HF, Zhu FH, Li HY, Zhu W, Chen XP, Hong YB, Liu HY, Wu H, Liang XQ (2013) Proteomic identification of gravitropic response genes in peanut gynophores. J Proteome 93:303–313

    Article  CAS  Google Scholar 

  • Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Li L, Zhang X, Zhang K, Ma D, Liu J, Wan Y (2017a) QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica 213:57

    Article  CAS  Google Scholar 

  • Li Y, Meng J, Yang S, Guo F, Zhang J, Geng Y, Cui L, Wan S, Li X (2017b) Transcriptome analysis of calcium- and hormone-related gene expressions during different stages of peanut pod development. Front Plant Sci 8:1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang XQ, Luo M, Holbrook CC, Guo BZ (2006) Storage protein profiles in Spanish and runner market type peanuts and potential markers. BMC Plant Biol 6:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Baring M, Wang S, Septiningsih EM (2017) Mapping QTLs for leaf spot resistance in peanut using SNP-based next-generation sequencing markers. Plant Breed Biotech 5(2):115–122

    Article  Google Scholar 

  • Liao BS (ed) (2003) The groundnut. Hubei Press for Science and Technology, Wuhan, (in Chinese) ISBN 7-5352-2919-0/S.327

    Google Scholar 

  • Linnaeus C (1753) Species Plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas

    Google Scholar 

  • Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66:5663–5681

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Gu J, Lu Q, Li H, Hong Y, Chen X, Ren L, Deng L, Liang X (2019a) Transcriptomic analysis reveals the high-oleic acid feedback regulating the homologous gene expression of stearoyl-ACP desaturase 2 (SAD2) in peanuts. Int J Mol Sci 20(12):3091

    Article  CAS  PubMed Central  Google Scholar 

  • Liu N, Guo J, Zhou X, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Boshou Liao B, Jiang H (2019b) High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0 8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet 133:37–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozano MG, Alan Sartori GO, Bastosb DHM, Regitano-d’Arce MAB (2019) Selected nutrients and antinutrients in peanut cultivars harvested in Brazil. J Sci Food Agric 99:5334–5340

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.–Leguminosae). Theor Appl Genet 85:550–560

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X (2018) Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics 19:887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Jiang H (2017a) Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L). Theor Appl Genet 130:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Jiang H (2017b) Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics 18:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Cui R, Chavarro C, Tseng Y, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J (2020) Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea L). Theor Appl Genet 133:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhao Y, Chen H, Fu C, Zhu L, Zhou X, Xia H, Hou L, Li G, Zhuang W, Wang X, Zhao C (2020) Genome-wide development of polymorphic microsatellite markers and their application in peanut breeding program. Electron J Biotechnol 44:25–32

    Article  CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahman B, Paul S, Yousef S (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Mahatma MK, Thawait LK, Bishi SK, Khatediya N, Rathnakumar AL, Lalwani HB, Misra JB (2016) Nutritional composition and antioxidant activity of Spanish and Virginia groundnuts (Arachis hypogaea L.): a comparative study. J Food Sci Tech 53:2279–2286

    Article  CAS  Google Scholar 

  • Mahatma MK, Bishi SK, Rthanakumar AL, Singh AL (2018) In: Mahatma MK, Reddy KK, Radhakrishnana T (eds) Evaluation of nutritional and bioactive compounds of groundnut. ICAR-Directorate of Groundnut Research Annual Report 2018-19, p 66

    Google Scholar 

  • Mahatma MK, Thawait LK, Verma A, Kumar N, Sushmita SAL (2020) Variation in quality traits of different seed sizes of groundnut. J Oilseeds Res 37:36

    Google Scholar 

  • Mallikarjuna N, Hoisington D (2009) Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Sec 1:457–462

    Article  Google Scholar 

  • Mallikarjuna N, Varshney RK (2014) Genetics, genomics and breeding of peanut: an introduction. In: Mallikarjuna N, Varshney RK (eds) Genetics, genomics and breeding of peanuts. Series on genetics, genomics and breeding of crop plants. CRC Press, Boca Raton, pp 1–12. ISBN 9781482238372

    Chapter  Google Scholar 

  • Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Rao JN (2004) Introgression of disease resistance genes from Arachis kempff-mercadoi into cultivated groundnut. Plant Breed 123:573–576

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Maheedhar G, Chandra S (2005) Genetic diversity among Arachis species based on RAPDs. Indian J Genet 65(1):5–8

    CAS  Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington D (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L). Genet Resour Crop Eval 58:889–907

    Article  Google Scholar 

  • Martins ACQ, Mehta A, Murad AM, Mota APZ, Saraiva MAP, Araújo ACG, Miller RNG, Brasileiro ACM, Guimarães PM (2020) Proteomics unravels new candidate genes for Meloidogyne resistance in wild Arachis. J Proteome 217:103690

    Article  CAS  Google Scholar 

  • Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38

    Article  Google Scholar 

  • Mayeux AH, Waliyar F, Ntare BR (2003) Groundnut varieties recommended by the Groundnut Germplasm Project (GGP) for West and Central Africa. ICRISAT, Patancheru, p 80

    Google Scholar 

  • Mehan VK, McDonald D, Rajagopalan K (1987) Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India. Peanut Sci 14:17–21

    Article  Google Scholar 

  • Mehan VK, Nageswara Rao RC, McDonald D, Williams JH (1988) Management of drought stress to improve field screening of peanuts for resistance to Aspergillus flavus. Phytopathology 78:659–663

    Article  Google Scholar 

  • Mehan VK, Reddy DDR, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, Tylenchorhynchus brevilineatus. Int J Pest Manage 39:201–203

    Article  Google Scholar 

  • Mehan VK, Reddy PM, Subrahmanyam P, MacDonald D, Singh AK (1996) Identification of new sources of resistance to rust and late leaf spot in peanut. Int J Pest Manage 42:267–271

    Article  Google Scholar 

  • Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12(27):4283

    Article  CAS  Google Scholar 

  • Milla SR, Isleib TG, Tallury SP (2005) Identification of AFLP markers linked to reduced aflatoxin accumulation in A cardenasii-derived germplasm lines of peanut. Proc Am Peanut Res Educ Soc 37:90

    Google Scholar 

  • Misra JB (2004) Nutritive value of groundnut and composition of Indian groundnut cultivars. In: Basu MS, Singh NB (eds) Groundnut research in India. National Research Centre for Groundnut-ICAR, Junagadh, pp 273–291

    Google Scholar 

  • Misra JB, Ghosh PK, Dayal D, Mathur RS (2000) Agronomic, nutritional and physical characteristics of some Indian groundnut cultivars. Indian J Agric Sci 70:741–746

    Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012a) Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188(2):163–173

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012b) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29(2):467–476

    Article  CAS  Google Scholar 

  • Mondal S, Hadapad AB, Hande PA, Badigannavar AM (2014a) Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973

    Article  CAS  Google Scholar 

  • Mondal S, Hande P, Badigannavar AM (2014b) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol 162:548–552

    Article  CAS  Google Scholar 

  • Monyo ES, Varshney RK (2016) Seven seasons of learning and engaging smallholder farmers in the drought-prone areas of sub-Saharan Africa and South Asia through tropical legumes, 2007–2014. International Crops Research Institute for the Semi-Arid Tropics, Patancheru. ISBN 978-92-9066-568-7, 236 pp

    Google Scholar 

  • Mora-Escobedo R, Hernández-Luna P, Joaquín-Torres IC, Ortiz-Moreno A, Robles-Ramírez MC (2015) Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyTA J Food 13:300–304

    Article  CAS  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimarães PM, Leal-Bertioli SCM, Gimenes MA, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SCM (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    Article  CAS  PubMed  Google Scholar 

  • Mota APZ, Vidigal B, Danchin EGJ, Togawa RC, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG, Brasileiro ACM, Guimaraes PM (2018) Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance. BMC Plant Biol 18(1):159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motagi B, Gowda CB, Makanahally SR (1996) Mutants resistant to foliar diseases in groundnut (Arachis hypogaea L.). Curr Sci 71:582–584

    Google Scholar 

  • Motagi BN, Naidu GK, Angadi CC, Gowda MVC (2014) Potential genotypes for resistance to foliar diseases and productivity in groundnut (Arachis hypogaea L.). Karnataka J Agric Sci 27:445–448

    Google Scholar 

  • Nageswara Rao RC, Williams JH, Singh M (1989) Genotypic sensitivity to drought and yield potential of peanut. Agron J 81:887–893

    Article  Google Scholar 

  • Nageswara Rao RC, Williams JH, Sivakumar MVK, Wadia KRD (1998) Effect of water deficit at different growth phases of peanut. Response to drought during pre-flowering phase. Agron J 80:431–438

    Google Scholar 

  • Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf Nitroge in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agron Crop Sci 189:175–182

    Article  Google Scholar 

  • Nagy E, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26(2):357–370

    Article  CAS  Google Scholar 

  • Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Knapp SJ (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal PC, Rachaputi NR, Joshi YC (2002) Moisture-deficit induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Res 74:67–79

    Article  Google Scholar 

  • Nawade B, Bosamia T, Radhakrishnan T, Rathnakumar AL, Kumar A, Dobaria JR, Kundu R, Mishra GP (2016) Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Front Plant Sci 7:1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawade B, Mishra GP, Radhakrishnan T, Sangh C, Dobariya JR, Kundu R (2019) Development of high oleic peanut lines through marker-assisted introgression of mutant ahFAD2 alleles and its fatty acid profiles under open-field and controlled conditions. 3 Biotech 9:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson A, Samuel DM, Tucker J, Jackson C, Stahlecker-Roberson A (2006) Assessment of genetic diversity and sectional boundaries in tetraploid peanuts (Arachis). Peanut Sci 33:64–67

    Article  Google Scholar 

  • Nigam SN (2014) Groundnut at a glance. ICRISAT, Patancheru, p 121

    Google Scholar 

  • Nigam SN, Dwivedi SL, Reddy LJ, Rao MJV (1989) An update on groundnut breeding activities at ICRISAT Centre with particular reference to breeding and selection for improved quality. In: Proceedings of the third regional groundnut workshop (Lilongwe), pp 115–125

    Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991) Groundnut breeding: constraints, achievements and future possibilities. Plant Breed 61:1127–1136

    Google Scholar 

  • Nigam SN, Upadhyaya HD, Chandra S, Rao RCN, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea). Ann Appl Biol 139:301–306

    Article  Google Scholar 

  • Nigam SN, Nageswara Rao RC, Wright GC (2002) Field screening for drought tolerance in groundnut. In: Field screening for drought tolerance proceedings of an international workshop on International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, pp 147–151. ISBN 92-9066-448-7

    Google Scholar 

  • Nigam SN, Chandra S, Sridevi KR, Bhukta MR, Reddy AGS, Rachaputi NR, Nagda AK (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439

    Article  Google Scholar 

  • Nigam SN, Waliyar F, Aruna FR, Reddy SV, Lava Kumar P, Craufurd PQ, Upadhyaya HD (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49

    Article  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14:7–11

    Article  CAS  Google Scholar 

  • O’Brien RD (2004) Fats and oils. Formulating and processing for applications. CRC Press, Boca Raton

    Google Scholar 

  • Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London, pp 47–223

    Google Scholar 

  • Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    Article  CAS  PubMed  Google Scholar 

  • Palladino C, Breiteneder H (2018) Peanut allergens. Mol Immun 100:58–70

    Article  CAS  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotech Adv 30:639–651

    Article  CAS  Google Scholar 

  • Pandey MK, Guo B, Holbrook CC, Janila P, Zhang X, Bertioli DJ, Isobe S, Liang S, Varshney RK (2014a) Molecular markers, genetic maps, and QTLs for molecular breeding in peanut. In: Mallikarjuna N (ed) Genetics, genomics and breeding of peanuts. CRC Press, Boca Raton, pp 79–113. ISBN 978-1-4822-3835-8

    Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD, Vishwakarma MK, Leal-Bertioli S, Liang X, Bertioli DJ, Guo B, Jackson SA, Ozias-Akins P, Varshney RK (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Gallo M, Tillman BL, Rowland D, Wang J (2016) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L). Mol Genet Genomics 291:363–381

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J (2017a) Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Mol Gen Genomics 5:1–11

    Google Scholar 

  • Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J (2017b) Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Sci Rep 7:40066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Kesmala T, Patanothai A, Holbrook CC (2008) Effect of drought stress on traits related to N2 fixation in eleven peanut (Arachis hypogaea L.) genotypes differing in degrees of resistance to drought. Asian J Plant Sci 7:334–342

    Article  CAS  Google Scholar 

  • Puangbut D, Sanun J, Vorasoot N, Chutipong A, Kesmalac T, Patanothai A (2009) Variability in yield responses of peanut (Arachis hypogaea L.) genotypes under early season drought. Asian J Plant Sci 8(4):254–264

    Article  Google Scholar 

  • Puangbut D, Jogloy S, Toomsan B, Vorasoot N, Akkasaeng C, Kesmala T, Rachaputi Rao CN, Wright GC, Patanothai A (2010) Physiological basis for genotypic variation in tolerance to and recovery from pre-flowering drought in peanut. J Agron Crop Sci 196:358–367

    Article  Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Qui QS, Li ZC, Shen YF, Wang CT, Miao HR (1998) Groundnut breeding through mutation techniques in China. Int Arachis Newsl 18:17

    Google Scholar 

  • Radhakrishnan T, Hariprasanna K (2004) Molecular characterisation of crop genetic resources with reference to groundnut and its wild relatives. In: Thangaduarai D, Pullaiah T, Pedro K, Paltti PK (eds) Genetic resource and biotechnology, vol 2. Regency Publications, New Delhi

    Google Scholar 

  • Radhakrishnan T, Thirumalaisamy PP, Vemana K, Kumar A (2016) Major virus diseases of groundnut in India and their management. In: Gaur R, Petrov N, Patil B, Stoyanova M (eds) Plant viruses: evolution and management. Plant viruses: evolution and management. Springer, Singapore, pp 253–271

    Chapter  Google Scholar 

  • Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262

    Article  Google Scholar 

  • Rathnakumar AL, Hariprasanna K, Lalwani HB (2012) Genetic improvement in Spanish type groundnut, Arachis hypogaea L varieties in India over the years. J Oilseeds Res 27:1–7

    Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Reddy LJ, Nigam SN, Rao RCN, Reddy NS (2001) Registration of ICGV 87354 peanut germplasm with drought tolerance and rust resistance. Crop Sci 41:274–275

    Article  Google Scholar 

  • Reddy TY, Reddy VR, Anbumozhi V (2003) Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul 41:75–88

    Article  CAS  Google Scholar 

  • Ren X, Jiang H, Yan Z, Chen Y, Zhou X, Huang L, Lei Y, Huang J, Yan L, Qi Y, Wei W, Liao B (2014) Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS One 9(2):e88091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046

    Article  PubMed  Google Scholar 

  • Rowland D, Puppala N, Beasley J Jr, Burow M, Gorbet D, Jordan D, Melouk H, Simpson C, Ferrell J (2012) Variation in carbon isotope ratio and its relation to other traits in peanut breeding lines and cultivars from U.S. trials. J Plant Breed Crop Sci 4:144–155

    Article  Google Scholar 

  • Salway JG, Whitehead L, Finnegan JA, Karunanayaka A, Barnett D, Payne RB (1978) Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet 2:1282–1284

    Article  CAS  PubMed  Google Scholar 

  • Sanogo O (2016) Early generation selection for drought related traits in groundnut (Arachis hypogaea L.) in Mali. PhD thesis, University of Ghana

    Google Scholar 

  • Santana SH, Valls JFM (2015) Arachis veigae (Fabaceae), the most dispersed wild species of the genus, and yet taxonomically overlooked. Bonplandia 24:139–150

    Article  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122:49–59

    Article  Google Scholar 

  • Savage GP (2003) Saponin. In: Benjamin C (ed) Encyclopedia of food sciences and nutrition. Academic Press, New York, pp 5095–5098

    Chapter  Google Scholar 

  • Schaafsma G (2000) The protein digestibility-correct amino acid score. J Nutr 130:1865S–1867S

    Article  CAS  PubMed  Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    Article  PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Seijo G, Lavia GI, Fernandez A, Krapovickas A, Daniel D, Bertioli D, Eduardo M (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Selvaraj MG, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol 12(2):E13

    Google Scholar 

  • Senawong KST, Jogloy S, Patanothai A (2012) Comparison of total phenolic content and composition of individual phenolic acids in testae and testa-removed kernels of 15 Valencia-type peanut (Arachis hypogaea L.) genotypes. Afr J Biotechnol 11:15923–15930

    Article  CAS  Google Scholar 

  • Shad MA, Pervez H, Nawaz H, Khan H, Ullah MA (2009) Evaluation of biochemical and phytochemical composition of some groundnut varieties grown in arid zone of Pakistan. Pak J Bot 41:2739–2749

    CAS  Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Varshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M, Sudini HK, Dobariya KL, Bera SK, Radhakrishnan T, Pandey MK, Janila P, Varshney RK (2020) Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8(1):1–15

    Article  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Isobe S (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha A, Champagne DE, Culbreath AK, Rotenberg D, Whitfield AE, Srinivasan R (2017) Transcriptome changes associated with tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). J Gen Virol 98(8):2156–2170

    Article  CAS  PubMed  Google Scholar 

  • Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18(1):22–26

    Article  Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116

    Article  CAS  Google Scholar 

  • Simpson CE, Faries MJ (2001) Advances in the characterization of diversity in section Arachis: archeological evidence, crossing results and their relationship in understanding the origin of Arachis hypogaea L. In: Abstracts of III SIRGEALC—Simpósio de Recursos Genéticos para a America Latina e Caribe Instituto Agronômico do Paraná, Londrina, pp 103–104

    Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80

    Article  Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of NemaTAM peanut. Crop Sci 43(4):1561

    Article  Google Scholar 

  • Singh F, Diwakar B (1993) Nutritive value and uses of pigeonpea and groundnut. Manual. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Singh AK, Nigam SN (1997) Groundnut. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust. Cambridge University Press, Cambridge, pp 114–127

    Chapter  Google Scholar 

  • Singh AK, Nigam SN (2016) Chapter 2: Arachis gene pools and genetic improvement in groundnut. In: Rajpal VR, Rao SM, Raina SN (eds) Gene pool diversity and crop improvement. Springer International Publishing, Basel, pp 17–77

    Chapter  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematic and genetic resources. In: Smartt J (ed) The groundnut crop, a scientific basis for improvement. Chapman and Hall, London, pp 96–138

    Google Scholar 

  • Singh AK, Sivaramakrishnan S, Mengesha MH, Ramaiah CD (1991) Phylogenetic relations in section Arachis based on seed protein profile. Theor Appl Genet 82:593–597

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungi and bacterial diseases: an update and appraisal. Information bulletin no 50. International Crops Research Institute for the Semi-Arid Tropcis, Patancheru

    Google Scholar 

  • Sinha P, Bajaj P, Pazhamala LT, Nayak SN, Pandey MK, Chitikineni A, Huai D, Khan AW, Desai A, Jiang H, Weijian Z, Guo B, Boshou L, Varshney RK (2020) Arachis hypogea gene expression atlas (AhGEA) for fastigiata subspecies of cultivated groundnut to accelerate functional and translational genomics applications. Plant Biotechnol J 18(11):2187–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smartt J (1990) Grain legumes. In: Evolution and genetic resources. Cambridge University Press, Cambridge, pp 30–84

    Google Scholar 

  • Smartt J, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young CE (eds) Peanut science and technology. American Peanut Research Education Society, Yoakum, pp 21–49

    Google Scholar 

  • Sobolev VS, Cole RJ (1999) Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 47(4):1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook CC (2009) Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci 48:2245–2253

    Article  Google Scholar 

  • Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK (2020) Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol 11:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT (2017) Utilizing wild species for peanut improvement. Crop Sci 57(3):1102–1120

    Article  Google Scholar 

  • Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE, Young CT (eds) Peanuts science and technology. American Peanut Research and Education Society, Stillwater, pp 1–20

    Google Scholar 

  • Stalker HT, Phillips TD, Murphy JP, Jones TM (1994) Variation of isozyme patterns among Arachis species. Theor Appl Genet 87:746–755

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT, Ferguson ME, Valls JFM, Pittman RN, Simpson CE, Bramel-Cox P (2002) Catalog of Arachis germplasm collection. ICRISAT, Patancheru. http://www.icrisat.org/GroundNut/Arachis/Start.htm

    Google Scholar 

  • Stalker HT, Tallury SP, Ozias-Akins P, Bertioli D, Leal-Bertioli SC (2013) The value of diploid peanut relatives for breeding and genomics. Peanut Sci 40:70–88

    Article  Google Scholar 

  • Stevenson PC, Anderson JC, Blaney WM, Simmonds MJS (1993) Developmental inhibition of Spodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut Arachis paraguariensis (Chod et Hassl.). J Chem Ecol 19:2917–2933

    Article  CAS  PubMed  Google Scholar 

  • Sturm PA, Parkhurst RM, Skinner WA (1966) Quantitative determination of individual tocopherols by thin layer chromatographic separation and spectrophotometry. Anal Chem 38:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Suárez López MM, Kizlansky A, López LB (2006) Assessment of protein quality in food by calculating the amino acids score corrected by digestibility. Nutr Hosp 21:47–51

    PubMed  Google Scholar 

  • Subrahmanyam P, McDonald D (1983) Rust disease of groundnut. Inform Bull 13. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Subrahmanyam P, Moss JP, McDonald D, Subba Rao PV, Rao VR (1985) Resistance to Cercosporidium personatum leafspot in wild Arachis species. Plant Dis 69:951–954

    Article  Google Scholar 

  • Subrahmanyam P, McDonald D, Waliyar F, Reddy LJ, Nigam SN, Gibbons RW, Subba Rao PV (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. In: Information bulletin, no. 47. ICRISAT, Patancheru

    Google Scholar 

  • Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S (2018) Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front Plant Sci 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:773–788

    Article  CAS  PubMed  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tharanathan RN, Dharmaraj B, Wankhede DB, Rao MRR (1979) Groundnut carbohydrates—a review. J Sci Food Agric 30:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • The Peanut Institute (2006). http://www.peanut-institute.org/NutritionBasics.html

  • Treadwell K, Young CT, Wynne JC (1983) Evaluation of fatty acid content of forty peanut cultivars. Oleagineux 38:381–385

    CAS  Google Scholar 

  • Tseng YC, Tillman BL, Peng Z, Wang J (2016) Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EPTM ‘113’. BMC Genet 17:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Upadhyaya HD (2008) Crop germplasm and wild relatives: a source of novel variation for crop improvement. Korean J Crop Sci 53:12–17

    Google Scholar 

  • Upadhyaya HD, Nigam SN, Mehan VK, Lenne JM (1997) Aflatoxin contamination of groundnut: prospects for a genetic solution through conventional breeding. Aflatoxin contamination problems in groundnut in Asia. In: Proceedings of the first Asia working group meet, 27-29 May, 1996. International Crop Research Institute for Semi-Arid Tropics, Patancheru, pp 81–85

    Google Scholar 

  • Upadhyaya HD, Ferguson ME, Bramel PJ (2001) Status of the Arachis germplasm collection at ICRISAT. Peanut Sci 28:89–96

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Sharma S, Singh S, Singh M (2011) Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.). Euphytica 177:55–66

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Vadez V, Hamidou F, Singh S, Varshney RK, Liao B (2014) Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Sci 54:679–693

    Article  Google Scholar 

  • Utomo SD, Anderson WF, Wynne JC, Beute MK, Hagler WM Jr, Payne GA (1990) Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc Am Peanut Res Educ Soc 22:26

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63

    Article  Google Scholar 

  • Valls JFM, Costa LC, Custodio AR (2013) A novel Trifoliolate species of Arachis (Fabaceae) and further comments on the taxonomic section trierectoides. Bonplandia 22:91–97

    Article  Google Scholar 

  • Varman PV (1999) A foliar disease resistant line developed through interspecific hybridization in groundnut (Arachis hypogaea). Indian J Agric Sci 69(1):67–68

    Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Sci 242:98–107

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L). Theor Appl Genet 118:729–739

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam M, Sathe S (2006) Chemical composition of selected edible nut seeds. J Agric Food Chem 54:4705–4714

    Article  CAS  PubMed  Google Scholar 

  • Vereda A, Van Hage M, Ahlstedt S, Ibanez MD, Cuesta-Herranz J, Van Odijk J, Wickman M, Sampson HA (2011) Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions. J Allergy Clin Immunol 127(3):603–607

    Article  CAS  PubMed  Google Scholar 

  • Vindhiyavarman P, Manivannan N, Nigam SN, Muralidharan V (2010) Farmers’ participatory varietal selection in groundnut: a case study from Tamilnadu, India. Electron J Plant Breed 1:878–881

    Google Scholar 

  • Viquez OM, Konan KN, Dodo HW (2003) Structure and organization of the genomic clone of a major peanut allergen gene, Ara h1. Mol Immunol 40(9):565–571

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma MK, Pandey MK, Shasidhar Y, Manohar SS, Nagesh P, Janila P, Varshney RK (2016) Identification of two major quantitative trait locus for fresh seed dormancy using the diversity arrays technology and diversity arrays technology-seq based genetic map in Spanish-type peanuts. Plant Breed 135:367–375

    Article  CAS  Google Scholar 

  • Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Varshney RK (2017) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064

    Google Scholar 

  • Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala UN, Upadhyaya HD, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145:901–913

    Article  CAS  Google Scholar 

  • Wan L, Li B, Lei Y, Yan L, Ren X, Chen Y, Dai X, Jiang H, Zhang J, Guo W, Chen A, Liao B (2017) Mutant transcriptome sequencing provides insights into pod development in peanut (Arachis hypogaea L.). Front Plant Sci 8:1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang KH, Lai YH, Chang JC, Ko TF, Shyu SL, Chiou RYY (2005) Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J Agric Food Chem 53:242–246

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shi Y, Ren Y, Li S, Jiao K, Yuan M, Li H (2008) Development of SSR markers for root-knot nematode resistance in peanut. J Peanut Sci 37(2):14–17

    CAS  Google Scholar 

  • Wang CT, Wang XZ, Tang YY, Chen DX, Cui FG, Zhang JC, Yu SL (2010) Phylogeny of Arachis based on internal transcribed spacer sequences. Genet Resour Crop Evol 58(2):311–319

    Article  Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Yu J (2011) Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini core collection. Theor Appl Genet 123:1307–1317

    Article  PubMed  Google Scholar 

  • Wang H, Penmetsa RV, Yuan M, Gong L, Zhao Y, Guo B, He G (2012) Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Pandey MK, Qiao L, Qin H, Culbreath AK, He G, Varshney RK, Guo B (2013) Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘Tifrunner’ X ‘GT-C20'’ in peanut. Plant Genome 6(3):E1–E10

    Article  CAS  Google Scholar 

  • Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One 10(4):e0119454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Lei Y, Wan L, Yan L, Lv J, Dai X, Ren X, Guo W, Jiang H, Liao B (2016a) Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus. BMC Plant Biol 16:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li B, Pandey MK, Wu Y, Lei Y, Yan L, Dai X, Jiang H, Zhang J, Wei G, Varshney RK, Liao B (2016b) Transcriptome analysis of a new peanut seed coat mutant for the physiological regulatory mechanism involved in seed coat cracking and pigmentation. Front Plant Sci 7:1491

    Google Scholar 

  • Wang Y, Ma X, Zhang X, He X, Li H, Cui D, Yin D (2016c) ITRAQ-based proteomic analysis of the metabolic mechanisms behind lipid accumulation and degradation during peanut seed development and post germination. J Proteome Res 15(12):4277–4289

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu P, Yin L, Ren Y, Li S, Shi Y, Alcock TD, Xiong Q, Qian W, Chi X, Pandey MK, Varshney RK, Yuan M (2018a) Genomic and transcriptomic analysis identified gene clusters and candidate genes for oil content in peanut (Arachis hypogaea L.). Plant Mol Biol Rep 36(3):518–529

    Article  CAS  Google Scholar 

  • Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B (2018b) Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci 9:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Nong X, Hao K, Cai N, Wang G, Liu S, Ullah H, Zhang Z (2020) Identification of the key genes involved in the regulation of symbiotic pathways induced by Metarhizium anisopliae in peanut (Arachis hypogaea) roots. 3 Biotech 10, 124

    Google Scholar 

  • Watson CT, Cohain AT, Griffin RS, Chun Y, Grishin A, Hacyznska H, Hoffman GE, Beckmann ND, Shah H, Dawson P, Henning A, Wood R, Burks AW, Jones SM, Leung DYM, Sicherer S, Sampson HA, Sharp AJ, Schadt EE, Bunyavanich S (2017) Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun 8(1):1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will ME, Holbrook CC, Wilson DM (1994) Evaluation of field inoculation techniques for screening peanut genotypes for reaction to preharvest A. flavus group infection and aflatoxin contamination. Peanut Sci 21:122–125

    Article  Google Scholar 

  • Williams D (2001) New directions for collecting and conserving peanut diversity. Peanut Sci 28:135–140

    Article  Google Scholar 

  • Williams KA, Williams DE (2001) Evolving political issues affecting international exchange of Arachis genetic resources. Peanut Sci 28:132–135

    Article  Google Scholar 

  • Williams JH, Rao RCN, Rao MHV (1985) Breeding for drought tolerance on groundnut (Arachis Hypogaea L.). In: Proceedings of the workshop on varietal improvement for rice-based farming systems, 11–15 Mar 1985, Phitsanulok, Thailand

    Google Scholar 

  • Wilson JN, Chopra R, Baring MR, Selvaraj MG, Simpson CE, Chagoya J, Burow MD (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L). Trop Plant Biol 10:1–17

    Article  CAS  Google Scholar 

  • Wright GC, Nageswar Rao RC, Basu MS (1996) A physiological approach to the understanding of Genotype by environment interaction: a case study on improvement of drought adaptation in groundnut. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, ISBN: 0-85199-108-4

    Google Scholar 

  • Wynne JC, Gregory WC (1981) Peanut breeding. Adv Agron 34:39–72

    Article  Google Scholar 

  • Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 14:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H, Zhu L, Zhao C, Li K, Shang C, Hou L, Wang M, Shi J, Fan S, Wang X (2020) Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut, Plant Signaling & Behavior, 15:2, https://doi.org/10.1080/15592324.2020.1721044

  • Xiuzhen W, Yueyi T, Qi W, Ligui Z, Quanxi S, Zhiwei W, Qingxuan G, Jianzhi X, Shutao Y, Chaoqi F, Chuantang W (2016) Development of a new high-oleic peanut cultivar Huayu 662 by using molecular marker aided selection and NIRS. J Nucl Agric Sci 30(6):1054–1058

    Google Scholar 

  • Xue H (2004) Evaluation of peanut (Arachis hypogaea L.) germplasm for resistance to aflatoxin production by Aspergillus flavus Link ex Fries. PhD thesis, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Xu P, Tang G, Cui W, Chen G, Ma C-L, Zhu J Li P, Shan L, Liu Z, Wan S (2020) Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. PLoS ONE 15(1): e0219413.

    Google Scholar 

  • Yang S, Li L, Zhang J, Geng Y, Guo F, Wang J, Meng J, Sui N, Wan S, Li X (2017) Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Front Plant Sci 8:1609

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Fang L, Sanders S, Jayanthi S, Rajan G, Podicheti R, Thallapuranam SK, Mockaitis K, Medina-Bolivar F (2018) Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins. J Biol Chem 293(1):28–46

    Article  CAS  PubMed  Google Scholar 

  • Yeri SB, Bhat RS (2016) Development of late leaf spot and rust resistant backcross lines in Jl 24 variety of groundnut (Arachis hypogaea L.). Electron J Plant Breed 7:37–41

    Article  Google Scholar 

  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One 8(9):e73767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young T (1996) Peanut oil. In: Hui YH (ed) Bailey’s industrial oil and fat products. Wiley, New York, pp 377–392

    Google Scholar 

  • Yu JM, Ahmedna M, Goktepe I, Dai J (2006) Peanut skin procyanidins: composition and antioxidant activities as affected by processing. J Food Comp Anal 19:364–371

    Article  CAS  Google Scholar 

  • Yu M, Liu F, Zhu W, Sun M, Liu J, Li X (2015) New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages. Funct Integr Genomics 15(6):707

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, Zhou X, Luo H, Liu N, Chen W, Lei Y, Pandey MK, Sudini H, Varshney RK, Liao B, Jiang H (2019) Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet 20:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Yüksel B, Paterson HA (2005) Construction and characterization of peanut HindIII BAC library. Theor Appl Genet 111(4):630–639

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Han S, Tang F, Xu J, Liu H, Yan M, Dong W, Huang B, Zhu S (2011) Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Afr J Biotechnol 10(37):7126–7130

    Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang P, Xia H, Zhao C, Hou L, Li C, Gao C, Wang X, Zhao S (2016) Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. BMC Genomics 17(1):606. Erratum in: BMC Genomics 17(1):836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D (2017) Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci 8:1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang GH, Yu ST, Wang H, Wang XD (2019) Transcriptome profiling of high oleic peanut under low temperature during germination. Yi Chuan 41:1050–1059

    Google Scholar 

  • Zhang H, Zhao X, Sun Q, Yan C, Wang J, Yuan C, Li C, Shan S, Liu F (2020) Comparative transcriptome analysis reveals molecular defensive mechanism of Arachis hypogaea in response to salt stress. Int J Genomics 2020:6524093

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Liu Y, Zhao M, Ren J, Yang B (2011) Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem 127:1438–1443

    Article  CAS  Google Scholar 

  • Zhao C, Zhao S, Hou L, Xia H, Wang J, Li C, Li A, Li T, Zhang X, Wang X (2015) Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol 15:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Wang X (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8:1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S (2018) Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 45(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Shockey J, Guo F, Shi L, Li X, Shan L, Wan S, Peng Z (2017) Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: the peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. J Plant Physiol 219:62–70

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15:351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou GF, Jian JB, Wang PH, Li CD, Tao Y, Li X, Renshaw D, Clements J, Sweetingham M, Yang HA (2018) Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor Appl Genet 131:209–223

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X (2014) Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol Biol 85(4–5):395–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang W, Chen H, Yang M et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radhakrishnan, T., Rathnakumar, A.L., Mahatma, M.K., Chandramohan, S., Patel, S. (2022). Genetic Resources of Groundnut. In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_10

Download citation

Publish with us

Policies and ethics