Skip to main content
Log in

Genetic relationships between peanut and wild species ofArachis sect.Arachis (Fabaceae): Evidence from RAPDs

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bianchi-Hall, C., Keys, R. D., Stalker, H. T., Murphy, J. P., 1993: Diversity of seed storage proteins in wild peanut (Arachis species). — Pl. Syst. Evol.186: 1–15.

    Google Scholar 

  • Demeke, T., Adams, R. P., Chibbar, R., 1992: Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study inBrassica. — Theor. Appl. Genet.84: 990–994.

    Google Scholar 

  • Devos, K. M., Gale, M. D., 1992: The use of random amplified polymorphic DNA markers in wheat. — Theor. Appl. Genet.84: 567–572.

    Google Scholar 

  • Dice, L. R., 1945: Measures of the amount of ecological association between species. — Ecology26: 295–302.

    Google Scholar 

  • Gregory, M. P., Gregory, W. C., 1979: Exotic germplasm ofArachis L. interspecific hybrids. — J. Heredity70: 185–193.

    Google Scholar 

  • Gregory, W. C., Gregory, M. P., 1976: Groundnut.Arachis hypogaea (Leguminosae, Papilionatae). — InSimmonds, N. W., (Ed.): Evolution of crop plants, pp. 151–154. — London: Longman.

    Google Scholar 

  • —, 1973: Structure and genetic resources of peanut. — In Peanut's: culture and uses. — Stillwater, Oklahoma: American Peanut Research and Education.

    Google Scholar 

  • Grieshammer, U., Wynne, J. C., 1990: Isozyme variability in mature seeds of U.S. peanut cultivars and collections. — Peanut Sci.18: 72–75.

    Google Scholar 

  • Halward, T., Stalker, T., La Rue, E., Kochert, G., 1992: Use of single- primer DNA amplifications in genetic studies of peanut (Arachis hypogeae L.) — Pl. Molec. Biol.18: 315–325.

    Google Scholar 

  • Harlan, J. R., De Wet, J. M. J., 1971: Toward a rational classification of cultivated plants. — Taxon3: 509–517.

    Google Scholar 

  • He, S., Ohm, H., Machenzie, S., 1992: Detection of DNA polymorphisms among wheat varieties. — Theor. Appl. Genet.84: 573–581.

    Google Scholar 

  • Hilu, K. W., 1994a: Evidence from RAPD markers in the evolution ofEchinochloa millets (Poaceae). — Pl. Syst. Evol.189: 247–257.

    Google Scholar 

  • —, 1994b: Evolution of domesticated plants. — InArntzen, C. J., (Ed.): Encyclopedia of agricultural science,2, pp. 117–127. — London: Academic Press.

    Google Scholar 

  • Kochert, G., Halward, T., Branch, W. D., Simpson, C. E., 1991: RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. — Theor. Appl. Genet.81: 565–570.

    Google Scholar 

  • - -Stalker, H. T., 1996: Genetic variation in peanut and its implications in plant breeding. — InPickersgill, B., (Ed.): Advances in legume science3. Proc. Kew Conference. — London (in press).

  • Krapovickas, A., Gregory, W. C., 1994: Taxonomy of the genusArachis (Leguminosae). — Bonplandia8: 1–186.

    Google Scholar 

  • Lanham, P. G., Fennel, S., Moss, J. P., Powell, W., 1992: Detection of polymorphic loci inArachis germplasm using random amplified polymorphic DNAs. — Genome35: 885–889.

    Google Scholar 

  • M'Ribu, H. K., Hilu, K. W., 1994: Detection of interspecific and intraspecific variation inPanicum millets through random amplified polymorphic DNA. — Theor. Appl. Genet.88: 412–416.

    Google Scholar 

  • Nei, M., Li, W. H., 1979: Mathematical model for studying genetic variation in terms of restrictions endonucleases. — Proc. Natl. Acad. Sci. USA76: 5269–5273.

    Google Scholar 

  • Paik-Ro, O. G., Smith, R. L., Knauft, D. A., 1992: Restriction fragment length polymorphism evaluation of six peanut species within theArachis section. — Theor. Appl. Genet.84: 201–208.

    Google Scholar 

  • Quiros, C. F., Ceada, A., Georgescu, A., Hu, J., 1993: Use of RAPD markers in potato genetics: segregations in diploid and tetraploid families. — Amer. Potato J.70: 35–42.

    Google Scholar 

  • Raman, V. S., 1958: Studies in the genusArachis. IV. Hybrid betweenA. hypogaea andA. monticola. — Indian Oilseeds J.2: 20–23.

    Google Scholar 

  • Reed, K. C., Mann, D. A., 1985: Rapid alkaline transfer of DNA from agarose gels to nylon membranes. — Nucl. Acid Res.13: 7207–7221.

    Google Scholar 

  • Rohlf, F. J., 1993: NTSYS-PC numerical taxonomy and multivariate analysis system, ver. 1.80. — Setauket, New York: Exeter

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W., 1984: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. Natl. Acad. Sci. USA81: 8014–8018.

    Google Scholar 

  • Seetharam, A., Nayar, K. M. D., Sreekantaradhya, R., Achar, D. K. T., 1973: Cytological studies on the interspecific hybrid ofArachis hypogaea ×Arachis duranensis. — Cytologia38: 277–280.

    Google Scholar 

  • Singh, A. K., 1988: Putative genome donors ofArachis hypogaea (Fabaceae), evidence from crosses with synthetic amphiploids. — Pl. Syst. Evol.160: 143–151.

    Google Scholar 

  • Singsit, C., Ozias-Akins, P., 1993: Genetic variation in monoploids of diploid potatoes and detection of clone-specific random amplified polymorphic DNA markers. — Pl. Cell. Rep.12: 144–148.

    Google Scholar 

  • Smartt, J., Gregory, W. C., Gregory, M. P., 1978a: The genomes ofArachis hypogaea. 1. Cytogenetic studies of putative genome donors. — Euphytica27: 665–675.

    Google Scholar 

  • —, 1987b: The genomes ofArachis hypogaea. 2. Implications in interspecific breeding. — Euphytica27: 677–680.

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: Freeman.

    Google Scholar 

  • Stalker, H. T., 1985: Cytotaxonomy ofArachis. — InMoss, J. P., (Ed.): Proceedings of the international workshop on cytogenetics ofArachis, Hyderabad, India, 31 Oct. — 2 Nov. 1983, pp. 65–79. — Patancheru, India: Icrisat.

    Google Scholar 

  • —, 1990: A morphological appraisal of wild species in sectionArachis of peanuts. — Peanut Sci.17: 117–122.

    Google Scholar 

  • —, 1991: A new species in sectionArachis of peanuts with a D genome. — Amer. J. Bot.78: 630–637.

    Google Scholar 

  • —, 1986: Karyotype analysis and relationships among varieties ofArachis hypogaea. — Caryologia51: 617–629.

    Google Scholar 

  • —, 1987: Speciation, cytogenetics and utilization ofArachis species. — Adv. Agron.41: 1–40.

    Google Scholar 

  • —, 1995: Germplasm resources inArachis. — InPattee, H. E., Stalker, H. T., (Eds): Advances in peanut science. — Research Education Society. North Carolina, USA: American Peanut (in press).

    Google Scholar 

  • —, 1994: Diversity of isozyme patterns inArachis species. — Theor. Appl. Genet.87: 746–755.

    Google Scholar 

  • Varisai Muhammad, S., 1973: Cytological investigations in the genusArachis L. II. Triploid hybrids and their derivatives. — Madras Agric. J.60: 1414–1427.

    Google Scholar 

  • Vierling, R. A., Nguyen, H. T., 1992: Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. — Theor. Appl. Genet.84: 835–838.

    Google Scholar 

  • Welsh, J., McClelland, M., 1990: Fingerprinting genomes using PCR with arbitrary primers. — Nucl. Acids Res.18: 7213–7218.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V., 1990: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. — Nucl. Acids Res.18: 6531–6535.

    Google Scholar 

  • Xu, Y., Clark, M. S., Pehu, E., 1993: Use of RAPD markers to screen somatic hybrids betweenSolanum tuberosum andS. brevidens. — Pl. Cell Rep.12: 107–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilu, K.W., Stalker, H.T. Genetic relationships between peanut and wild species ofArachis sect.Arachis (Fabaceae): Evidence from RAPDs. Pl Syst Evol 198, 167–178 (1995). https://doi.org/10.1007/BF00984735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984735

Key words

Navigation