Skip to main content
Log in

Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Groundnut (Arachis hypogaea L.) is an important oilseed crop grown in more than 100 countries across wide range of environments. Frequent occurrence of drought is one of the limiting factors adversely affecting groundnut productivity, especially in rainfed areas, and hence genotypes having high water use efficiency (WUE) under limited available water need to be developed. In groundnut, WUE is correlated with SPAD chlorophyll meter reading (SCMR) and specific leaf area (SLA). These two traits, SCMR and SLA, can be used as surrogate traits for selecting for WUE. In order to improve SCMR and SLA, and in turn WUE in groundnut, a good knowledge of the genetic system controlling the expressions of these traits is essential for the selection of the most appropriate and efficient breeding procedure. The present investigation was conducted to determine the gene action controlling the inheritance of SCMR and SLA in two crosses, ICG 7243 × ICG 9418 and ICG 6766 × Chico, and their reciprocals. Six generations of each cross (P1, P2, F1, F2, BC1P1, and BC1P2) were evaluated for SCMR and SLA at two stages of the crop growth viz., 60 and 80 days after sowing (DAS). For SCMR at 80 DAS, additive effects were important in both the crosses whereas predominance of dominance effects with duplicate epistasis was observed for SCMR at 60 DAS and SLA at both stages in both the crosses. Predominance of additive effect for SCMR at 80 DAS suggested effective selection could be practiced even in early generations whereas for SCMR at 60 DAS and SLA at both stages in both crosses, it would be better to defer selection to later generations. Further, recording of SCMR and SLA should be done between 60 and 80 DAS for screening the germplasm lines for drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand SC, Torrie JH (1963) Heritability of yield and other traits interrelationships among traits in F3 and F4 generations of three soybeans crosses. Crop Sci 3:508–511

    Article  Google Scholar 

  • Araus JL, Bort J, Caccareli S, Grando S (1997) Relationship between leaf structure and carbon isotope discrimination in field grown barley. Plant Physiol Biochem 35:533–541

    CAS  Google Scholar 

  • Bailey WK, Hammons RO (1975) Registration of Chico peanut germplasm. Crop Sci 15:105

    Article  Google Scholar 

  • Bindu Madhava H, Sheshshayee MS, Shankar AG, Prasad TG, Udaykumar M (2003) Use of SPAD chlorophyll meter to assess transpiration efficiency of peanut. In: Cruickshank AW et al. (ed). Breeding of drought resistant peanuts. ACIAR Proceedings No. 112. Proceedings of a collaborative review meeting, Hyderabad, Andhra Pradesh, India, ACIAR, Canberrra, Australia.25–27 Feb 2002 pp 3–9

  • Cavalli LL (1952) An analysis of linkage in quantitative inheritance. In: Rieve ECR, Waddington CH (eds) Quantitative Inheritance. HMSO, London, pp 135–144

    Google Scholar 

  • Chapman SC, Barreto HJ (1997) Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron J 89:557–562

    Article  Google Scholar 

  • Ebdon JS, Petrovic AM, Dawson TE (1998) Relationship between carbon isotope discrimination, water use efficiency and evapotranspiration in Kentucky bluegrass. Crop Sci 38:157–162

    Article  Google Scholar 

  • Ehdaie B, Hall AE, Farquhar GD, Nguyen HT, Waines JG (1991) Water use efficiency and carbon isotope discrimination in wheat. Crop Sci 31:1282–1288

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (2007) http://www/FAO.ORG. FAOSTAT database

  • Hubick KT, Farquhar GD, Shorter R (1986) Correlation between water use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Aust J Plant Physiol 13:803–816

    Article  CAS  Google Scholar 

  • Jayalakshmi V, Rajareddy C, Reddy PV, Nageswara Rao RC (1999) Genetic analysis of carbon isotope discrimination and specific leaf area in groundnut (Arachis hypogaea L.). J Oilseeds Res 16:1–5

    Google Scholar 

  • Lal C, Hariprasanna K, Rathnakumar AL, Basu MS, Gor HK, Chikani BM (2005) Identification of water use efficient groundnut genotypes for rainfed situations through leaf morpho-physiological traits. IAN 25:4–7

    Google Scholar 

  • Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genet 99:541–553

    CAS  Google Scholar 

  • Mackown CT, Sutton TG (1998) Using early season leaf traits to predict nitrogen sufficiency of burley tobacco. Agron J 90:21–27

    Article  Google Scholar 

  • Martin B, Thorstenson YR (1988) Stable carbon isotope discrimination (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii and the F1 hybrid. Plant Physiol 88:213–217

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water use efficiency in tomato. Crop Sci 39:1775–1783

    Article  Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical Genetics, 2nd edn. Chapman and Hall, London, p 382

    Google Scholar 

  • Nageswara Rao RC, Wright GC (1994) Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103

    Article  Google Scholar 

  • Nageswara Rao RC, Sardar Singh, Sivakumar MVK, Srivastava KL, Williams JH (1985) Effect of moisture deficit at different growth stages of peanut. I. Yield responses. Agron J 77:782–786

    Article  Google Scholar 

  • Nageswara Rao RC, Williams JH, Wadia KDR, Hubick KT, Farquhar GD (1993) Crop growth, water use efficiency and carbon isotope discrimination in groundnut (Arachis hypogaea L.) genotypes under end of season drought conditions. Ann Appl Biol 122:357–367

    Article  Google Scholar 

  • Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J Agron Crop Science 186:175–182

    Article  Google Scholar 

  • Nigam SN, Upadhyaya HD, Chandra S, Nageswara Rao RC, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea). Ann Appl Biol 139:301–306

    Article  Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity: Avenues for improvement. Aust J Plant Physiol 13:91–201

    Article  Google Scholar 

  • Payne RW (2009) The guide to GenStat® release 12, Part 2: Statistics. VSN International, 5 The Waterhouse, Waterhouse Street, Hemel Hempstead, Hertfordshire HP1 1ES, UK

  • Rao MJV, Nigam SN, Huda AKS (1992) The thermal time concept as a selection criterion for earliness in peanut. Peanut Sci 19:7–10

    Article  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Wood JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 22:14–18

    Article  Google Scholar 

  • Shashidhar G (2002) Screening diverse germplasm lines of groundnut (Arachis hypogaea L.) for genetic variability in water use efficiency and total dry matter based on stable isotopes and RAPD. M.Sc. (Agric) Thesis submitted to University of Agricultural Sciences, Bangalore

  • Suriharn B, Patanothai A, Jogloy S (2005) Gene effects for specific leaf area and harvest index in peanut (Arachis hypogaea L.). Asian J Plant Sci 4:667–672

    Article  Google Scholar 

  • Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Sube Singh (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Virgona JM, Hubick KT, Rawson HM, Farquhar GD, Downes RW (1990) Genotypic variation in transpiration efficiency, carbon isotope discrimination and carbon allocation during early growth in sunflower. Aust J Plant Physiol 17:207–214

    Article  CAS  Google Scholar 

  • Warner JN (1952) A method of estimating heritability. Agron J 44:427–430

    Article  Google Scholar 

  • Wright S (1921) System of mating. Genetics 6:111–178

    CAS  PubMed  Google Scholar 

  • Wright S (1968) The genetics of quantitative variability. In: Wright S (ed) Evolution and genetics of populations. Vol I. Genetic and biometric foundations. University of Chicago Press, Chicago

    Google Scholar 

  • Wright GC, Hubick KT, Farquhar GD (1988) Discrimination in carbon isotopes of leaves correlates with water use efficiency of field grown peanut varieties. Aust J Plant Physiol 15:815–825

    Article  Google Scholar 

  • Wright GC, Nageswara Rao RC, Farquhar GD (1994) Water use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  • Wu R, Stettler RE (1994) Quantitative genetics of growth and development in Populos.I. A three generation comparison of tree architecture during the first two years of growth. Theor Appl Genet 89:1046–1054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Upadhyaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyaya, H.D., Sharma, S., Singh, S. et al. Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.). Euphytica 177, 55–66 (2011). https://doi.org/10.1007/s10681-010-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0256-2

Keywords

Navigation