Skip to main content
Log in

Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The peanut (Arachis hypogaea) is an important crop species that is threatened by drought stress. The genome sequences of peanut, which was officially released in 2016, may help explain the molecular mechanisms that underlie drought tolerance in this species. We report here a gene expression profiling of A. hypogaea to gain a global view of its drought resistance. Using whole-transcriptome sequencing, we analysed differential gene expression in response to drought stress in the drought-resistant peanut cultivar J11. Pooled samples obtained at 6, 12, 18, 24, and 48 h were compared with control samples at 0 h. In total, 51,554 genes were found, including 49,289 known genes and 2265 unknown genes. We identified 224 differentially expressed transcription factors, 296,335 SNPs and 28,391 InDELs. In addition, we detected significant differences in the gene expression profiles of the treatment and control groups. After comparing the two groups, 4648 genes were identified. An in-depth analysis of the data revealed that a large number of genes were associated with drought stress, including transcription factors and genes involved in photosynthesis–antenna proteins, carbon metabolism and the citrate cycle. The results of this study provide insights into the diverse mechanisms that underlie the successful establishment of drought resistance in the peanut, thereby facilitating the identification of important genes in the peanut related to drought management. Transcriptome analysis based on RNA-Seq is a powerful approach for gene discovery and molecular marker development for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188:265–272

    Article  CAS  Google Scholar 

  2. Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS ONE 9(12): e110507. https://doi.org/10.1371/journal.pone.0110507

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dai CC, Chen Y, Wang XX et al (2013) Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China. Agrofor Syst 87:417–426

    Article  Google Scholar 

  4. Su LC, Deng B, Liu S, Li LM, Hu B, Zhong YT et al (2015) Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00512

    Google Scholar 

  5. Sun L, Hu RB, Shen GX, Zhang H (2013) Genetic engineering peanut for higher drought and salt tolerance. Food Nutr Sci 4(6):1–7

    Article  Google Scholar 

  6. Mathur PB, Rao JS, Vadez V, Dumbala SR, Rathore A, Shinozaki KY et al (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340

    Article  Google Scholar 

  7. Sun AQ, Zhang JD, Wang YS, Liu FZ, Zhang K, Sun L (2010) In silico expression profile of genes in response to drought in peanut. Acta Agron Sin 39(6):1045–1053 (in Chinese)

    Article  Google Scholar 

  8. Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss Organ Cult 104:9–89

    Article  Google Scholar 

  9. Sharma KK, Ortiz R (2010) Program for the application of the genetic engineering for crop improvement in the semi-arid tropics. In Vitro Cell Dev Biol—Plant 36:83–92

    Article  Google Scholar 

  10. Mathur PB, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R et al (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26(12):2071–2082

    Article  Google Scholar 

  11. Yang S, Vanderbeld B, Wang J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  CAS  PubMed  Google Scholar 

  12. Guo BZ, Yu J, Holbrook CC, Cleveland TE, Nierman WC, Scully BT (2009) Strategy in prevention of prehavest aflatoxin contamination in peanuts: aflatoxin biosynthesis, genetics and genomics. Peanut Sci 36(1):11–20

    Article  Google Scholar 

  13. Guo BZ, Fedorova ND, Chen XP (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3(7):737–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding H, Zhang ZM, Qin FF, Dai LX, Li CJ, Ci DW et al (2014) Isolation and characterization of drought responsive genes from peanut roots by suppression subtractive hybridization. Electron J Biotechn 17(6):304–310

    Article  CAS  Google Scholar 

  15. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li XY, Lu JB, Liu S, Liu X, Lin YY, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14(14):58

    Article  PubMed  PubMed Central  Google Scholar 

  17. Govind G, Gowda HV, Kalaiarasi PJ, Iyer DR, Muthappa SK, Nese S et al (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genom 281(6):591–605

    Article  CAS  Google Scholar 

  18. Ranganayakulu GS, Chandraobulreddy P, Thippeswamy M, Veeranagamallaiah G, Sudhaka C (2012) Identification of drought stress-responsive genes from drought-tolerant groundnut cultivar (Arachis hypogaea L. cv K-134) through analysis of subtracted expressed sequence tags. Acta Physiol Plant 34(1):361–377

    Article  CAS  Google Scholar 

  19. Lu XY, Li JQ, Yang JH, Liu XN, Ma J (2014) De novo transcriptome of the desert beetle Microdera punctipennis (Coleoptera: Tenebrionidae) using illumina RNA-seq technology. Mol Biol Rep 41(11):7293–7303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J et al (2012) RNA-Seq of early infected poplar leaves by the rust pathogen Melampsora laricipopulina uncovers PtSultr3; 5, a fungal-induced host sulfate transporter. PLoS ONE 7(8):e44408. https://doi.org/10.1371/journal.pone.0044408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathioni MS, Beló A, Rizzo CJ, Dean RA, Donofrio NM (2011) Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genom 12:49–69

    Article  Google Scholar 

  22. Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu WG et al (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8(11):e80816. https://doi.org/10.1371/journal.pone.0080816

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu DF, Sui SZ, Ma J et al (2014) Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox). PLoS ONE 9(1):e86976. https://doi.org/10.1371/journal.pone.0086976

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. https://doi.org/10.1038/ng.3517

    PubMed  Google Scholar 

  26. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:357–359

    Google Scholar 

  27. Hu B, Liu X, Hong L, Li L, Luo GY (2010) Expression and localization of Arachis hypogaea 9-cis epoxycarotenoid dioxygenase 1 (ahnced1) of peanut under water stress. Biotechnol Biotechnol Equ 24(1):1562–1568

    Article  CAS  Google Scholar 

  28. Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H (2009) Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 71:157–171

    Article  CAS  PubMed  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):295–311

    Article  Google Scholar 

  31. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols 7(3):562–578

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):323

    Article  CAS  Google Scholar 

  33. Robinson MD, McCarthy DG, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  34. Chi XY, Hu RB, Yang QL, Zhang XW, Pan LJ, Chen N et al (2012) Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genom 287:167–176

    Article  CAS  Google Scholar 

  35. Lane BG, Dunwelll JM, Rag JA, Schmitt MR, Cumin AC. Germin (1993) A protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268(17):12239–12242

    CAS  PubMed  Google Scholar 

  36. Bateman A et al (2013) Current protocols in bioinformatics. Wiley, Hoboken

    Google Scholar 

  37. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  40. Chen XP, Zhu W, Azam S, Li HY, Zhu FH, Li HF et al (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11:115–127

    Article  CAS  PubMed  Google Scholar 

  41. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  42. Liu T, Zhu S, Tang Q, Yu Y, Tang S (2013) Identification of drought stressresponsive transcription factors in ramie (Boehmeria nivea L. Gaud). BMC Plant Biol 13:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Y, Gao S, Yang Y, Huang M, Cheng L et al (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom 14:662

    Article  CAS  Google Scholar 

  44. Chopra R, Burow G, Farmer A et al (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Mol Genet Genom 290(3):1–12

    Article  Google Scholar 

  45. Guimarães PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387

    Article  Google Scholar 

  46. Dang PM, Chen CY, Holbrook CC (2012) Identification of genes encoding drought-induced transcription factors in peanut (Arachis hypogaea L.). J Mol Biochem 1:196–205

    Google Scholar 

  47. Jia WS, Zhang JH (2008) Stomatal movements and long-distance signaling in plants. Plant Signal Behav 3:772–777

    Article  PubMed  PubMed Central  Google Scholar 

  48. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimizu T, Kanamori Y, Furuki T, Kikawada T, Okuda T, Takahashi T et al (2010) Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry 49:1093–1104

    Article  CAS  PubMed  Google Scholar 

  50. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M et al (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  Google Scholar 

  51. Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ (2011) Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 36(2):223–228

    Article  PubMed  Google Scholar 

  52. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol. https://doi.org/10.1016/S1357-2725(97)00085-X

    PubMed  Google Scholar 

  53. Udvardi MK, Kakar K, Wandrey M, Montanari O et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 14:538–549

    Article  Google Scholar 

  54. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

  55. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seo JS, Joo JS, Kim MJ et al (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  PubMed  Google Scholar 

  57. Kiribuchi K, Sugimori M, Takeda M et al (2004) RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein. Biochem Biophys Res Commun 325(3):857–863

    Article  CAS  PubMed  Google Scholar 

  58. Cui J, You C, Zhu E et al (2016) Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28(5):1078–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li HM, Sun JQ, Xu YX et al (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol 65:655–665

    Article  CAS  PubMed  Google Scholar 

  60. Zhu E, You C, Wang S, Cui J et al (2015) The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J 83:976–990

    Article  CAS  PubMed  Google Scholar 

  61. Liu M, Shi J, Lu C (2013) Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold-and droughtstressed seedlings. BMC Plant Biol 13:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  63. Tran LSP, Nakashima K, Sakuma Y, Osakabe Y et al (2006) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    Article  Google Scholar 

  64. Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H et al (2013) FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163:857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB-Arabidopsis Stress Responsive Transcription Factor DataBase. Int J Plant Genom. https://doi.org/10.1155/2009/583429

    Google Scholar 

  66. Davies PJ (1995) Plant hormones. Springer, Amsterdam

    Book  Google Scholar 

  67. Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    Article  CAS  PubMed  Google Scholar 

  68. Steuer B, Stuhlfauth T, Heinrich P, Fock (1998) The efficiency of water use in water stressed plants is increased due to ABA induced stomatal closure. Photosynth Res 18(3):327–336

    Article  Google Scholar 

  69. Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yao GH, Gao PP, Wang YP, Huang L, Xu DG, Liu P (2013) Abscisic acid improves chilling-induced oxidative stress in Trichosanthes kirilowii Maxim seedlings. J Agric Sci Technol IRAN 15(3):583–592

    CAS  Google Scholar 

  71. Guo LW, Chen RG, Gong ZH, Xin YX, Ahmed SS, He YM (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Gent Mol Res 11(4):4063–4080

    Article  CAS  Google Scholar 

  72. Yamasaki H, Sakihama Y, lkehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M et al (2011) System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J 68:871–889

    Article  CAS  PubMed  Google Scholar 

  74. Li H, Yao WJ, Fu YR, Li SK, Guo QQ (2015) De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS ONE 10(1):e111054. https://doi.org/10.1371/journal.pone.0111054

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    Article  CAS  PubMed  Google Scholar 

  76. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160

    Article  CAS  PubMed  Google Scholar 

  77. Singh K, Kumar S, Yadav SK, Ahuja PS (2009) Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnol Rep 3:95–101

    Article  Google Scholar 

  78. Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S et al (2011) The Arabidopsis book. The American Society of Plant Biologists, Rockville

    Google Scholar 

  79. Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang CP (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89

    Article  Google Scholar 

  80. Shen W, Wei Y, Dauk M, Tan Y, Taylor DC, Selvaraj G et al (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18:422–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Qing Kong for the excellent advice on this paper. This work was supported by the International Science and Technology Cooperation Program of China (2015DFA31190); Young Scholars Fundation of Shandong Academy of Agricultural Sciences (2016-YQN16); National Science and Technology Support Program (2014BAD11B00); Fine Breeds Project of Shandong Province (2014–2016). Shandong Provincial Natural Science Foundation, China (ZR2016CP03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Shan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2018_4145_MOESM1_ESM.tif

LEA gene expression of different organs in peanut with Real-time qPCR. The Y-axis represents Relative Expression Level. The X-axis represents different organs. R: root; S: stem; L: leaf. The expression levels of selected genes were normalized against those of Actin 11, which was used as an internal control. (Figure was created by MSOffice) (TIF 283 KB)

11033_2018_4145_MOESM2_ESM.tif

LEA gene expression at different time response to drought-stres. a: LEA 2; b: LEA3; c: LEA4. The Y-axis represents Relative Expression Level. The X-axis represents different time (h). The expression levels of selected genes were normalized against those of Actin 11, which was used as an internal control. (Figure was created by MSOffice) (TIF 598 KB)

11033_2018_4145_MOESM3_ESM.tif

Phylogeny inferred with NJ analysis using LEA sequences. Bootstrap values were obtained from 1000 replications. a: LEA 2; b: LEA3; c: LEA4. Numbers near each clade refer to the NJ bootstrap value, and are displayed when the bootstrap value is greater than 60. (Figure was created by Mega5.0) (TIF 1353 KB)

A species-based classification for unigenes. (Figure was created by MSOffice) (TIF 1305 KB)

Supplementary material 5 (DOC 41 KB)

Supplementary material 6 (DOC 31 KB)

Supplementary material 7 (XLS 836 KB)

Supplementary material 8 (XLSX 16 KB)

Supplementary material 9 (DOC 33 KB)

Supplementary material 10 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, C., Wan, S. et al. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 45, 119–131 (2018). https://doi.org/10.1007/s11033-018-4145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4145-4

Keywords

Navigation