Skip to main content
Log in

QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.)

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Main stem height (MSH) and the first lateral branch length (LBL) of peanut (Arachis hypogaea L.) are important traits affecting plant shape and yield. Identification of quantitative trait loci (QTLs) related to these two traits, the prediction and cloning of candidate genes, and identification of plant height-related molecular markers are the basis for analysis of the molecular genetic mechanism of plant shape in peanut. In this study, a population of 151 recombinant inbred lines from a single seed, derived from a cross between variety 79266 (P1) and its variant progeny D893 (P2), was used to construct a peanut genetic map. The map consisted of 231 simple sequence repeat markers in 23 linkage groups, had a total length of 905.18 cM with average and minimum marker intervals of 3.92 and 0.1 cM, respectively. There were 11 and 16 QTLs detected in six environments for MSH and LBH with 6.26–22.53 and 5.89–21.63% phenotypic variation explained (PVE), respectively. Seven QTLs were detected in two or more environments: 3 QTLs for MSH (including Qmsh-14-3) with 7.66–22.53% PVE, and 4 QTLs for LBL (including Qllb-11-1) with 6.12–21.63% PVE. Qmsh-14-3 was steadily detected in five environments, localized between two markers, ARS376 and SEQ4G02, exhibited a genetic distance of 0.59–2.59 and 4.11–6.11 cM from the two markers, respectively. Qllb-11-1 was steadily detected in five environments, localized between two markers, ARS203 and AHS1413, exhibited a genetic distance of 1.06–3.06 and 0.23–2.23 cM from the two markers, respectively. There were 220 germplasm accessions used to detect the relationship between genotype and phenotypic values of traits at the marker loci ARS376 and SEQ4G02, average values of MSH and LBL were significantly higher for germplasm with the P1 compared to the P2 genotype. Determination of the marker loci ARS203 and AHS1413 indicated that average values of LBL were greater in germplasm with the P1 than the P2 genotype. The results provide references for fine mapping of QTLs for MSH and LBL, as well as breeding optimum plant-types in peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait locus/loci

RIL:

Recombinant inbred line

SSR:

Simple sequence repeat

MSH:

Main stem height

LBL:

The first lateral branch length

References

  • Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli S, Guimarães PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM, Sato S, Tabata S, Cannon S, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genom 10(1):45

    Article  Google Scholar 

  • Budiman MA, Jones JIT, Citek RW, Warek U, Bedell JA, Knapp SJ (2006) Methylation-filtered and shotgun genomic sequences for diploid and tetraploid peanut taxa. GenBank Available at http://www.ncbi.nlm.nih.gov

  • Chen BY, Jiang HF, Liao BS, Ren XP, Huang JQ, Lei Y, Wang SY (2008) Genetic diversity analysis of Arachis gerplasm by SSR. J Trop Subtrop Bot 16(4):296–303

    CAS  Google Scholar 

  • Cheng LQ, Tang M, Ren XP, Huang L, Chen WG, Li ZD, Zhou XJ, Chen YN, Liao BS, Jiang HF (2015) Construction of genetic map and QTL analysis for main stem height and total branch number in peanut (Arachis hypogaea L.). Acta Agronomica Sinica 41(6):979–987

    Article  CAS  Google Scholar 

  • Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol 8(1):1

    Article  Google Scholar 

  • David JB, Steven BC, Lutz F, Huang GD, Andrew DF, Ethalinda KSC, Liu X, Gao DY, Josh C, Sudhansu D, Ren LH, Márcio CM, Kenta S, Huang W, Bruna V, Brian A, Chu Y, Chad EN, Pooja U, Ana CGA, Alexander K, Kyung DK, Mark DB, Rajeev KV, Wang XJ, Zhang XY, Noelle B, Patrícia MG, Sachiko I, Guo BZ, Liao BS, Thomas HS, Robert JS, Brian ES, Soraya CML-B, Xu X, Scott AJ, Richard M, Peggy OA (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. doi:10.1038/ng.3517

    Google Scholar 

  • Ferguson ME, Burow MD, Schultze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Gimenes MA, Hosino AA, Barbosa AV, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea). BMC Plant Biol 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo BZ, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  PubMed  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong YB, Liang XQ, Chen XP, Liu HY, Zhou GY, Li SX, Wen SJ (2009) Construction of genetic linkage map in peanut (Arachis hypogaea L.) Cultivars. Acta Agronomica Sinica 35(3):395–402

    Article  CAS  Google Scholar 

  • Hong YB, Chen XP, Liang XQ, Liu HY, Zhou GY, Li SX, Guo B (2010) A SSR based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39(4):1243–1247

    Article  CAS  Google Scholar 

  • Huang L, He HY, Chen WG, Ren XP, Chen YN, Zhou XJ, Xia YL, Wang XL, Jiang XG, Liao BS, Jiang HF (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128(6):1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang HF, Duan N, Ren XP (2006) Descriptors and data standard for peanut (Arachis spp.). China Agriculture Press, Beijing

    Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30(1):125–138

  • Lan XL, Tang ZX, Xu R (2011) Analysis of gray gorrelation between yield and major agronomic traits of peanut in Fujian Province. Acta Agric Jiangxi. 23(8):61–63

    Google Scholar 

  • Li H, Ribaut J, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116(2):243–260

    Article  PubMed  Google Scholar 

  • Li QB, Yang CY, Huang L, Zhou XJ, Jiang HF, Ren XP, Wang HM, Chen YN, Lei Y, Yan LY, Liao BS (2015) Genetic linkage map and QTL analysis of resistance to Aspergillus flavus in Arachis hypogaea L. Chin J Oil Crop Sci 37(5):596–604

    Google Scholar 

  • Liu H, Zhang XY, Han SY, Yan M, Xu J, Dong WZ, Sun ZQ (2013) Inheritance analysis and QTL mapping of main stem height and lateral branch length in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci 35(5):508–514

    Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimares PM, Leal-Bertioli SC, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JF, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111(1):113–126

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Lee Y, Dong W, Timper P, Taylor C, Ozias-Akins P, Holbrook C, Beilinson V, Nelson N, Stalker T, Knapp S (2010) Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26(2):357–370

    Article  CAS  Google Scholar 

  • Naito Y, Suzuki S, Iwata Y, Kuboyama T (2008) Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breeding Science 58(3):293–300

  • Nielen S, Vidigal BS, Leal-Bertioli SC, Ratnaparkhe M, Paterson AH, Garsmeur O, Bertioli DJ (2012) Matita, a new retro element from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genom 287(1):21–38

    Article  CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  • Proite K, Leal-Bertioli SC, Bertioli DJ, Moretzsohn MC, Silva FR, Martins NF, Guimaraes PM (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7(1):1

    Article  Google Scholar 

  • Qin HD, Feng SP, Chen C, Guo YF, Knapp S, Culbreath A, He GH, Wang ML, Zhang XY, Horlbrook CC, Ozias-Akins P, Guo BZ (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124(4):653–664

    Article  PubMed  Google Scholar 

  • Shirasawa K, Koillconda P, Koillconda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito K, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida K, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12(1):80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertiol SC, Thudi M, Pandey MK, Rami JF, Fonceka D, Gowda MV, Qin HD, Guo BZ, Hong YB, Liang XQ, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oijen JW (2006) Join Map Version 4.0: Software for the Calculation of Genetic Linkage Maps in experimental populations. The Netherlands Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118(4):729–739

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Yang XD, Chen DX, Yu SL, Liu GZ, Tang YY, Xu JZ (2007) Isolation of simple sequence repeats from groundnut. Electron J Biotechnol 10(3):473–480

    Article  CAS  Google Scholar 

  • Wang H, Pandey MK, Qiao LX, Qin HD, Culbreath AK, He GH, Varshney RK, Guo BZ (2013) Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘Tifrunner’ x ‘GT-C20’ in Peanut (Arachis hypogaea L.). Plant Genome 6(3):1–28

    Article  Google Scholar 

  • Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Culbreath AK (2015) Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.). PLoS ONE 10(4):e0119454

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin DM, Shang MZ, Cui DQ (2006) Studies on genetic analysis of major agronomic characters in peanut. Chin Agric Sci Bull 22(7):261–265

    CAS  Google Scholar 

  • Zhang XY. (2011) Inheritance of main traits related to yield, quality and disease resistance and their QTLs mapping in peanut (Arachis hypogaea L.). Doctoral dissertation. Zhejiang University, Hangzhou, China

  • Zhou GY (1992) Introduction of exogenous DNA into plants after pollination via the pollen tube pathway. In: Ottaviano E, Mulcahy DL, Sari Gorla M, Bergamini Mulcahy G (eds) Angiosperm pollen and ovules. Springer, New York, pp 336–339

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (NSFC) (31571711), the Earmarked Fund for China Agriculture Research System (CARS-14), the Peanut Seed Industry Project in Shandong Province of China, the Earmarked Fund for Agriculture Research System in Shandong Province of China (SDAIT-04-03) and the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province (Grant No. CX(12)5076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengzhen Liu or Yongshan Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, L., Zhang, X. et al. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica 213, 57 (2017). https://doi.org/10.1007/s10681-017-1847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1847-y

Keywords

Navigation