Skip to main content

Transgenic Approaches to Develop Virus Resistance in Rice

  • Chapter
  • First Online:
Genome Engineering for Crop Improvement

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

  • 318 Accesses

Abstract

Rice (Oryza sp.) is one of the most important food crops in the tropical areas of the world. Viral infections are serious constraints in rice production in certain parts of the world. There are about 16 viruses reported to date, which cause significant yield loss to rice. They belong to different geographical regions, show genome variability, and have widely different transmission characteristics and symptom development. Although the use of conventional/natural genetic resistance in plants is always considered the most appropriate strategy against the pathogen, in case of rice-virus pathology such examples are very rare. Since the last three decades, the concepts of pathogen-derived resistance and RNA interference have proved to be effective to develop virus-resistant transgenic rice plants. The present chapter collates the various transgenic approaches used to provide broad-spectrum transgenic resistance in rice against viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo ME, Sy AA (1997) Rice virus diseases: epidemiology and management strategies. J Sustain Agric 11:113–134

    Article  Google Scholar 

  • Abo ME, Alegbejo MD, Sy AA et al (2003) The host range of Rice yellow mottle virus genus Sobemovirus in Cote d’Ivoire. Samaru J Agric Res 9:67-78

    Google Scholar 

  • Adams MJ, Zerbini FM, French R et al (2011) Family potyviridae. In: Virus taxonomy: ninth report of the international committee on taxonomy of viruses, pp 1069–1089

    Google Scholar 

  • Ahmed MMS, Bian S, Wang M et al (2017) RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic Res 26:197–207

    Article  CAS  PubMed  Google Scholar 

  • Akita F, Miyazaki N, Hibino H et al (2011) Viroplasm matrix protein Pns9 from rice gall dwarf virus forms an octameric cylindrical structure. J Gen Virol 92:2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Akita F, Higashiura A, Shimizu T et al (2012) Crystallographic analysis reveals octamerization of viroplasm matrix protein P9-1 of Rice black streaked dwarf virus. J Virol 86(2):746–756

    Google Scholar 

  • Alam MM, Tanaka T, Nakamura H et al (2015a) Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J 13(1):1171–1172

    Google Scholar 

  • Alam MM, Nakamura H, Ichikawa H et al (2015b) Overexpression of OsHAP2E for a CCAAT-binding factor confers resistance to Cucumber mosaic virus and Rice necrosis mosaic virus. J Gen plant Pathol 81:32–41

    Google Scholar 

  • Alazem M, Lin N-S (2017) Antiviral roles of abscisic acid in plants. Front Plant Sci 8:1760

    Article  PubMed  PubMed Central  Google Scholar 

  • Alegbejo MD, Raji BA, Abubakar IU, Banwo OO (2006) Rice yellow mottle virus disease, a new disease of rice in Zamfara, Nigeria. Int Rice Res Notes 31(39):39–39

    Google Scholar 

  • Attoui H, Becnel J, Belaganahalli S et al (2012) Part II: the viruses—the double stranded RNA viruses-family Reoviridae, pp 541–637

    Google Scholar 

  • Azzam O, Chancellor TC (2002) The biology, epidemiology, and management of rice tungro disease in Asia. Plant Dis 86:88–100. https://doi.org/10.1094/PDIS.2002.86.2.88

    Article  CAS  PubMed  Google Scholar 

  • Badge JL, Kashiwazaki S, Lock S, Foster GD (1997) A bymovirus PCR primer and partial nucleotide sequence provides further evidence for the recognition of rice necrosis mosaic virus as a bymovirus. Eur J Plant Pathol 103:721–724

    Article  CAS  Google Scholar 

  • Bai F, Yan J, Qu Z et al (2002) Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes 25:201–206

    Article  CAS  PubMed  Google Scholar 

  • Bakker W (1970) Rice yellow mottle, a mechanically transmissible virus disease of rice in Kenya. Netherlands J Plant Pathol 76:53–63

    Article  Google Scholar 

  • Bakker W (1974) Characterization and ecological aspects of rice yellow mottle virus in Kenya. 152 The Netherlands: agricultural research, doctoral thesis, University of Wageningen

    Google Scholar 

  • Bakker W (1975) Rice yellow mottle virus. C Descr Plant Viruses 149:1–4

    Google Scholar 

  • Barbier P, Takahashi M, Nakamura I et al (1992) Solubilization and promoter analysis of RNA polymerase from rice stripe virus. J Virol 66:6171–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844. https://doi.org/10.1105/tpc.8.10.1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN (1993) Transgenic resistance to plant viruses. In: Seminars in virology (United Kingdom)

    Google Scholar 

  • Bergonia HT, Capule NM, Novero EP, Galica CA (1966) Rice rosette, a new disease in the Philippines. Philipp J Plant Ind 31:47–52

    Google Scholar 

  • Boccardo G, Milne RG (1984) Plant reovirus group. CMI/AAB descriptions of plant viruses no. 294

    Google Scholar 

  • Boccardo G, Milne RG, Disthaporn S et al (1985) Morphology and nucleic acid of rice gall dwarf virus. Intervirology 23:167–171

    Article  CAS  PubMed  Google Scholar 

  • Bonneau C, Brugidou C, Chen L et al (1998) Expression of the rice yellow mottle virus P1 protein in vitro and in vivo and its involvement in virus spread. Virology 244:79–86

    Article  CAS  PubMed  Google Scholar 

  • Brugidou C, Holt C, Yassi MNA et al (1995) Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein. Virology 206:108–115

    Article  CAS  PubMed  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    Article  PubMed  CAS  Google Scholar 

  • Cabauatan PQ, Hibino H (1985) Transmission of rice tungro bacilliform and spherical viruses by Nephotettix virescens distant. Philipp Phytopathol 21

    Google Scholar 

  • Cao X, Zhou P, Zhang X et al (2005) Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol 79:13018–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaogang S, Jianhua W, Guoying Z et al (2003) Ectopic expression of the spike protein of Rice Ragged Stunt Oryzavirus in transgenic rice plants inhibits transmission of the virus to insects. Mol Breed 11:295–301

    Article  Google Scholar 

  • Chen CC, Chiu RJ, Wang ES (1979) Rice ragged stunt: a virus disease new to Taiwan. Plant Prot Bull (Taiwan) 21:447

    Google Scholar 

  • Chen CC, Chen MJ, Chiu RJ, Hsu HT (1989) Morphological comparisons of Echinochloa ragged stunt and rice ragged stunt viruses by electron microscopy. Phytopathology 79:235–241

    Article  Google Scholar 

  • Chen CC, Chen MJ, Chiu RJ, Hsu HT (1997) Rice ragged stunt virus (Oryzavirus) possesses an outer shell and A-spikes. Plant Prot Bull 39:383–388

    Google Scholar 

  • Chen H, Li J, Liu Y et al (2015a) Interference of the expression of viral nonstructural protein Pns6 of rice ragged stunt virus (RRSV) inhibits it’s multiplication in Nilaparvata lugens. J Agric Biotechnol 23:1486–1493

    Google Scholar 

  • Chen Q, Wang H, Ren T et al (2015b) Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. J Gen Virol 96:933–938

    Google Scholar 

  • Chen Q, Zhang L, Chen H et al (2015c) Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector. Virol J 12:211. https://doi.org/10.1186/s12985-015-0438-6

  • Chen Y, Lu C, Li M et al (2015d) Adverse Effects of Rice gall dwarf virus upon its Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). Plant Dis 100:784–790. https://doi.org/10.1094/PDIS-06-15-0713-RE

  • Chen Y, Lu C, Li M et al (2016) Adverse effects of rice gall dwarf virus upon its insect vector Recilia dorsalis (Hemiptera: Cicadellidae). Plant Dis 100(4):784–790

    Google Scholar 

  • Ching-Chung C (1982) Three symptomatologic types of rice virus diseases related to grassy stunt in Taiwan. Plant Dis 66:15

    Article  Google Scholar 

  • Costa AT, Bravo JP, Makiyama RK et al (2013) Viral counter defense X antiviral immunity in plants: mechanisms for survival. In: Current issues in molecular virology-viral genetics and biotechnological applications. IntechOpen

    Google Scholar 

  • Dai S, Zhang Z, Bick J, Beachy RN (2006) Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus. J Gen Virol 87:715–722

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Wei X, Alfonso AA et al (2008) Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease. Proc Natl Acad Sci 105:21012–21016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta I, Hull R, Eastop S et al (1991) Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J Gen Virol 72:1215–1221. https://doi.org/10.1099/0022-1317-72-6-1215

    Article  CAS  PubMed  Google Scholar 

  • Donaire L, Barajas D, Martínez-García B et al (2008) Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol. 82(11):5167-5177

    Google Scholar 

  • Donaire L, Wang Y, Gonzalez-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214. https://doi.org/10.1016/j.virol.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  • Estiati A, Astuti D, Widyajayantie D, Nugroho S (2018) Overexpression of RF2a in transgenic rice plants cultivar IR64 enhances tolerance to rice tungro virus. J Crop Sci Biotechnol 21:291–299. https://doi.org/10.1007/s12892-018-0058-0

    Article  Google Scholar 

  • Fairhurst T, Dobermann A (2002) Rice in the global food supply. World 5:349–454

    Google Scholar 

  • Falk BW, Tsai JH (1998) Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36:139–163

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Zhang SG, He XZ et al (1983) Rice gall dwarf: a new virus disease epidemic in the west of Guangdong province of south China. Acta Phytopathol Sin 13:1–6

    Google Scholar 

  • Fan G, Gao F, Wei T et al (2010) Expression of rice gall dwarf virus outer coat protein gene (S8) in insect cells. Virol Sin 25:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Yu J, Feng J et al (2001) Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 146:167–170

    Article  CAS  PubMed  Google Scholar 

  • Fargette D, Pinel A, Abubakar Z et al (2004) Inferring the evolutionary history of Rice yellow mottle virus from genomic, phylogenetic, and phylogeographic studies. J Virol 78:3252–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fütterer J, Potrykus I, Brau MPV et al (1994) Splicing in a plant pararetrovirus. Virology. https://doi.org/10.1006/viro.1994.1078

    Article  PubMed  Google Scholar 

  • Gallois J-L, Moury B, German-Retana S (2018) Role of the genetic background in resistance to plant viruses. Int J Mol Sci 19:2856

    Article  PubMed Central  CAS  Google Scholar 

  • Gálvez GE (1968) Purification and characterization of rice tungro virus by analytical density-gradient centrifugation. Virology 35:418–426. https://doi.org/10.1016/0042-6822(68)90220-1

    Article  PubMed  Google Scholar 

  • Ganesan U, Suri SS, Rajasubramaniam S et al (2009) Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes 39:113–119. https://doi.org/10.1007/s11262-009-0359-9

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK (1980) Rice necrosis mosaic. Proc Plant Sci 89:291–299

    Google Scholar 

  • Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4:197–202

    CAS  PubMed  Google Scholar 

  • Hagiwara K, Minobe Y, Nozu Y et al (1986) Component proteins and structure of rice ragged stunt virus. J Gen Virol 67:1711–1715

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science (80-) 286:950–952. https://doi.org/10.1126/science.286.5441.950

  • Hay JM, Jones MC, Blakebrough ML et al (1991) An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res 19:2615–2621. https://doi.org/10.1093/nar/19.10.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa T, Zhu Y, Itoh K et al (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci 89:9865–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayano Y, Kakutani T, Hayashi T, Minobe Y (1990) Coding strategy of rice stripe virus: major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology 177:372–374

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang H, Sun Z et al (2017) Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. New Phytol 214:388–399

    Article  CAS  PubMed  Google Scholar 

  • He L, Chen X, Yang J et al (2020) Rice black-streaked dwarf virus encoded P5–1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol 225(2):896–912

    Article  CAS  PubMed  Google Scholar 

  • Herdt RW (1991) Research priorities for rice biotechnology. Rice Biotechnol 6:19–54

    Google Scholar 

  • Hibi T, Omura T, Saito Y (1984) Double-stranded RNA of rice gall dwarf virus. J Gen Virol 65:1585–1590

    Article  CAS  Google Scholar 

  • Hibino H (1979) Rice ragged stunt, a new virus disease occurring in tropical Asia. Rev Plant Prot Res 12:98–110

    Google Scholar 

  • Hibino H (1986) Rice grassy stunt virus. Trop Agric Res Ser 19:165–171

    Google Scholar 

  • Hibino H (1990) Insect-borne viruses of rice. In: Advances in disease vector research. Springer, pp 209–241

    Google Scholar 

  • Hibino H (1996) Biology and epidemiology of rice viruses. Annu Rev Phytopathol 32:249–274. https://doi.org/10.1146/annurev.phyto.34.1.249

    Article  Google Scholar 

  • Hibino H, Roechan M, Sudarisman S (1978) Association of two types of virus particles with penyakithabang (tungro disease) of rice in Indonesia. Phytopathology 68:1412–1416. https://doi.org/10.1094/Phyto-68-1412

    Article  Google Scholar 

  • Hiraguri A, Netsu O, Shimizu T et al (2011) The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus. Arch Virol 156:911–916

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Huet H, Mahendra S, Wang J et al (1999) Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy. Phytopathology 89:1022–1027. https://doi.org/10.1094/PHYTO.1999.89.11.1022

    Article  CAS  PubMed  Google Scholar 

  • Hull R (1994) Resistance to plant viruses: obtaining gene by non-conventional approaches. Euphytica 75:195–205

    Article  Google Scholar 

  • Inoue H, Omura T (1982) Transmission of rice gall dwarf virus by the green rice leafhopper. Plant Dis 66:57–59

    Article  Google Scholar 

  • Inouye T, Fujii S (1977) Rice necrosis mosaic virus. In: Descriptions of plant viruses, Ser. No. 172. Commonwealth Mycological Institute, Surrey, p 4

    Google Scholar 

  • Ishii M, Yoshimura S (1973) Epidemiological studies on the rice black-streaked dwarf virus in Kanto-Tosan district, Japan. J Cent Agric Exp Stn 61–121

    Google Scholar 

  • Ishikawa K, Omura T, Hibino H (1989) Morphological characteristics of rice stripe virus. J Gen Virol 70:3465–3468

    Article  Google Scholar 

  • Isogai M, Uyeda I, Lee BC (1998) Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol 79:1487–1494

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Nakano M, Shinkai A (1985) Detection of rice grassy stunt virus in planthopper vectors and rice plants by ELISA. Japanese J Phytopathol 51:450–458

    Article  Google Scholar 

  • Jin L, Qin Q, Wang Y et al (2016) Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog 12:e1005847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones MC, Gough K, Dasgupta I et al (1991) Rice tungro disease is caused by an RNA and a DNA virus. J Gen Virol 72:757–761. https://doi.org/10.1099/0022-1317-72-4-757

    Article  CAS  PubMed  Google Scholar 

  • Jyothsna M, Manonmani S, Rabindran R et al (2013) Introgression of transgenic resistance for rice tungro disease into mega variety, ASD 16 of Tamil Nadu through marker assisted backcross breeding. Madras Agric J 100:70–74

    Google Scholar 

  • Kakutani T, Hayano Y, Hayashi T, Minobe Y (1991) Ambisense segment 3 of rice stripe virus: the first instance of a virus containing two ambisense segments. J Gen Virol 72:465–468

    Article  CAS  PubMed  Google Scholar 

  • Koganezawa H, Hibino H, Motoyoshi F et al (1990) Nucleotide sequence of segment S9 of the genome of rice gall dwarf virus. J Gen Virol 71:1861–1863

    Article  CAS  PubMed  Google Scholar 

  • Konaté G, Traore O, Coulibaly MM (1997) Characterization of rice yellow mottle virus isolates in Sudano-Sahelian areas. Arch Virol 142:1117–1124

    Article  PubMed  Google Scholar 

  • Kormelink R, Garcia ML, Goodin M et al (2011) Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162:184–202

    Article  CAS  PubMed  Google Scholar 

  • Kouassi N, Brugidou C, Chen L et al (1997) Transgenic rice plants expressing rice yellow mottle virus coat protein gene. Int Rice Res Notes 22:14–15

    Google Scholar 

  • Kouassi NK, Chen L, Siré C et al (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol 151:2111–2122

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Jyothsna M, Valarmathi P et al (2019) Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus. Arch Virol 1–9

    Google Scholar 

  • Le DT, Chu HD, Sasaya T (2015) Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus. GM Crops Food 6:47–53. https://doi.org/10.1080/21645698.2015.1025188

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee B-C, Yoon Y-N, Hong S-J et al (2008) Analysis on the occurrence of Rice stripe virus. Res Plant Dis 14:210–213

    Article  Google Scholar 

  • Li Y, Bao YM, Wei CH et al (2004) Rice dwarf phytoreovirus segment S6-encoded nonstructural protein has a cell-to-cell movement function. J Virol 78:5382–5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Shen H, Wang T et al (2015) ABA regulates subcellular redistribution of OsABI-LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa. Plant Cell Physiol 56(12):2396–2408

    Google Scholar 

  • Li LI, Cheng GUO, Biao W et al (2016) RNAi-mediated transgenic rice resistance to Rice stripe virus. J Integr Agric 15:2539–2549

    Article  CAS  Google Scholar 

  • Lian S, Jonson MG, Cho W-K et al (2011) Generation of antibodies against Rice stripe virus proteins based on recombinant proteins and synthetic polypeptides. Plant Pathol J 27:37–43

    Article  CAS  Google Scholar 

  • Lida TT (1972) Rice dwarf virus. CMI/AAB descriptions of plant viruses 102

    Google Scholar 

  • Liu Y, Jia D, Chen H et al (2011) The P7–1 protein of southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol 156:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Sun F et al (2017) Overexpression of OsCIPK30 enhances plant tolerance to Rice stripe virus. Front Microbiol 8:2322

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockhart BEL (1990) Evidence for a double-stranded circular DNA genome in a second group of plant viruses. Phytopathology 80:127–131

    Article  CAS  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Lan W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Curr Opin Plant Biol 12:339–346

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Song Y, Wu B et al (2011) Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res 20:1367–1377. https://doi.org/10.1007/s11248-011-9502-1

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malathi P, Muzammil SA, Krishnaveni D et al (2019) Coat protein 3 of Rice tungro spherical virus is the key target gene for development of RNAi mediated tungro disease resistance in rice. Agri Gene 12:100084

    Article  Google Scholar 

  • Mariappan V, Hibino H, Shanmugam N (1984) A new rice virus disease in India. Int Rice Res Newsl 9:9–10

    Google Scholar 

  • Matsukura K, Sanada-Morimura S, Fujii T, Matsumura M (2019) Potential risks of poaceous plants as infectious sources of Rice black-streaked dwarf virus transmitted by the small brown planthopper, Laodelphax striatellus. Plant Dis 103:1244–1248

    Article  PubMed  Google Scholar 

  • Milne RG, Boccardo G, Ling KC (1982) Rice ragged stunt virus. C Descr Plant Viruses 16:248

    Google Scholar 

  • Miyazaki N, Wu B, Hagiwara K et al (2010) The functional organization of the internal components of Rice dwarf virus. J Biochem 147:843–850

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki N, Higashiura A, Higashiura T et al (2015) Electron microscopic imaging revealed the flexible filamentous structure of the cell attachment protein P2 of Rice dwarf virus located around the icosahedral 5-fold axes. J Biochem 159:181–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnár A, Csorba T, Lakatos L et al (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morinaka T, Putta M, Chettanachit D et al (1982) Transmission of rice gall dwarf virus by cicadellid leafhoppers Recilia dorsalis and Nephotettix nigropictus in Thailand. Plant Dis 66:703–704

    Article  Google Scholar 

  • Moriyasu Y, Ishikawa K, Kikuchi A et al (2000) Sequence analysis of Pns11, a nonstructural protein of rice gall dwarf virus, and its expression and detection in infected rice plants and vector insects. Virus Genes 20:237–241

    Article  CAS  PubMed  Google Scholar 

  • Moriyasu Y, Maruyama-Funatsuki W, Kikuchi A et al (2007) Molecular analysis of the genome segments S1, S4, S6, S7 and S12 of a Rice gall dwarf virus isolate from Thailand; completion of the genomic sequence. Arch Virol 152:1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Naitow H, Morimoto Y, Mizuno H et al (1999) A low-resolution structure of rice dwarf virus determined by ab initio phasing. Acta Crystallogr Sect D Biol Crystallogr 55:77–84

    Article  CAS  Google Scholar 

  • Nakagawa A, Miyazaki N, Taka J et al (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Netsu O, Hiraguri A, Uehara-Ichiki T et al (2015) Functional comparison of RNA silencing suppressor between the p5 protein of rice grassy stunt virus and the p3 protein of rice stripe virus. Virus Res 203:10–19

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TD, Lacombe S, Bangratz M et al (2015) p2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway. Virus Genes 51:267–275

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Ishikawa K, Hibino H et al (1991) Nucleotide sequences of genome segments S8, encoding a capsid protein, and S10, encoding a 36K protein, of rice gall dwarf virus. J Gen Virol 72:2837–2842

    Article  CAS  PubMed  Google Scholar 

  • Omura T (1980) Observations on rice gall dwarf, a new virus disease. Int Rice Res Newsl 5:11–12

    Google Scholar 

  • Omura T, Yan J (1999) Role of outer capsid proteins in transmission of Phytoreovirus by insect vectors. Adv Virus Res 54:15–43

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Morinaka T, Inoue H, Saito Y (1982) Purification and some properties of rice gall dwarf virus, a new phytoreovirus. Phytopathology 72:241–246

    Article  Google Scholar 

  • Omura T, Yan J, Zhong B et al (1998) The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. J Virol 72:9370–9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225. https://doi.org/10.1006/viro.1999.0056

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P, Zaitlin M (1997) Replicase-mediated resistance to plant virus disease. Adv Virus Res 48:349–377

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H-M, Choi M-S, Kwak D-Y et al (2012) Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene. Mol Cells 33:43–51

    Article  CAS  PubMed  Google Scholar 

  • Pinto YM, Kok RA, Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotechnol 17:702–707

    Article  CAS  PubMed  Google Scholar 

  • Putta M, Chettanachit D, Morinaka T et al (1980) Gall dwarf—a new rice virus disease in Thailand. Int Rice Res Newsl 5:10–11

    Google Scholar 

  • Qu F (2010) Antiviral role of plant-encoded RNA-dependent RNA polymerases revisited with deep sequencing of small interfering RNAs of virus origin. Mol Plant Microbe Interact 23:1248–1252. https://doi.org/10.1094/MPMI-06-10-0124

    Article  CAS  PubMed  Google Scholar 

  • Qu R, Bhattacharyya M, Laco GS et al (1991) Characterization of the genome of rice tungro bacilliform virus: comparison with Commelina yellow mottle virus and caulimoviruses. Virology 185:354–364

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri SP, Mishra MD, Ghosh A (1967) Preliminary note on transmission of virus disease resembling tungro of rice in India and other virus-like symptoms. Plant Dis Rep 51:300–301

    Google Scholar 

  • Ren B, Guo Y, Gao F et al (2010) Multiple functions of Rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J Virol 84:12914–12923. https://doi.org/10.1128/JVI.00864-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera CT, Ou SH (1967) Transmission studies of the two strains of rice tungro virus. Plant Dis Rep 51:877–881

    Google Scholar 

  • Rivera CT, Ou SH, Iida TT (1966) Grassy stunt disease of Rice and its transmission by the planthopper Nilaparvata lugens Stal. Plant Dis Report 50:453–456

    Google Scholar 

  • Rossel HW, Thottapilly G, Buddenhagen IW (1982) Occurrence of rice yellow mottle virus in two important rice-growing areas of Nigeria. FAO Plant Prot Bull 30:137–139

    Google Scholar 

  • Roy S, Banerjee A, Tarafdar J et al (2012) Transfer of transgenes for resistance to rice tungro disease into high-yielding rice cultivars through gene-based marker-assisted selection. J Agric Sci 150:610–618

    Article  CAS  Google Scholar 

  • Ruan YL, Chen SX, Lin RF et al (1984) A study of rice black-streaked dwarf virus disease. Zhejiang Agric Sci 185–187

    Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance—deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405. https://doi.org/10.1016/S0022-5193(85)80234-4

    Article  Google Scholar 

  • Sarra S, Peters D (2003) Rice yellow mottle virus is transmitted by cows, donkeys, and grass rats in irrigated rice crops. Plant Dis 87:804–808

    Article  PubMed  Google Scholar 

  • Sasaya T, Nakazono-Nagaoka E, Saika H et al (2014) Transgenic strategies to confer resistance against viruses in rice plants. Front Microbiol 4:409. https://doi.org/10.3389/fmicb.2013.00409

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzadi N, Akhter M, Haider Z et al (2018) Rice in Pakistan: present scenario, trade, problems and prospects. Int J Agric Stat Sci 14:1–6

    Google Scholar 

  • Sharma S, Kumar G, Dasgupta I (2018) Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 255:157–164. https://doi.org/10.1016/j.virusres.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Kaniewska M, Smith C, Beachy RN (1993) Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193:621–630. https://doi.org/10.1006/viro.1993.1170

    Article  CAS  PubMed  Google Scholar 

  • Shen W-J, Ruan X-L, Li X-S et al (2012) RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol 157:1531–1539. https://doi.org/10.1007/s00705-012-1339-2

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Lin L, Wang S et al (2016) Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol 209:1106–1119

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Toriyama S, Takahashi M et al (1996) Non-viral sequences at the 5′ termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. J Gen Virol 77:541–546

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yoshii M, Wei T et al (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 7:24–32

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T et al (2011) Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol J 9:503–512

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Akita F et al (2012) Hairpin RNA derived from the gene for Pns9, a viroplasm matrix protein of Rice gall dwarf virus, confers strong resistance to virus infection in transgenic rice plants. J Biotechnol 157:421–427

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Ogamino T, Hiraguri A et al (2013) Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103:513–519

    Article  PubMed  Google Scholar 

  • Shinkai A, Nakano M, Iwasai M (1980) Occurrence of rice ragged stunt disease in Kyushu, Japan. Ann Phytopathol Soc Jpn 46:411

    Google Scholar 

  • Shirako Y, Falk BW, Haenni AL (2011) Genus tenuivirus. In: Virus taxonomy: classification and nomenclature of viruses: ninth report international committee on taxonomy of viruses, pp 771–776

    Google Scholar 

  • Sivamani E, Huet H, Shen P et al (1999) Rice plant (Oryza sativa L.) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol Breed 5:177–185. https://doi.org/10.1023/A:1009633816713

    Article  CAS  Google Scholar 

  • Srilatha P, Yousuf F, Methre R et al (2019) Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission. Virology 526:117–124

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N (1993) In vitro translation of rice dwarf phytoreovirus genome segments S4 to S10. Arch Virol 130:201–208

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Watanabe Y, Kusano T, Kitagawa Y (1990a) Sequence analysis of rice dwarf phytoreovirus genome segments S4, S5, and S6: comparison with the equivalent wound tumor virus segments. Virology 179:446–454

    Google Scholar 

  • Suzuki N, Watanabe Y, Kusano T, Kitagawa Y (1990b) Sequence analysis of the rice dwarf phytoreovirus segment S3 transcript encoding for the major structural core protein of 114 kDa. Virology 179:455–459

    Google Scholar 

  • Suzuki N, Harada M, Kusano T (1991) Molecular analysis of rice dwarf phytoreovirus segment S11 corresponding to wound tumour phytoreovirus segment S12. J Gen Virol 72:2233–2237

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Tanimura M, Watanabe Y et al (1992) Molecular analysis of rice dwarf phytoreovirus segment S1: interviral homology of the putative RNA-dependent RNA polymerase between plant-and animal-infecting reoviruses. Virology 190(1):240–247

    Google Scholar 

  • Suzuki N, Sugawara M, Kusano T (1992a) Rice dwarf phytoreovirus segment S12 transcript is tricistronic in vitro. Virology 191:992–995

    Google Scholar 

  • Suzuki N, Tanimura M, Watanabe Y et al (1992b) Molecular analysis of rice dwarf phytoreovirus segment S1: interviral homology of the putative RNA-dependent RNA polymerase between plant- and animal-infecting reoviruses. Virology 190:240–247

    Google Scholar 

  • Suzuki N, Sugawara M, Kusano T et al (1994) Immunodetection of rice dwarf phytoreoviral proteins in both insect and plant hosts. Virology 202:41–48

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Kusano T, Matsuura Y, Omura T (1996) Novel NTP binding property of rice dwarf phytoreovirus minor core protein P5. Virology 219:471–474

    Article  CAS  PubMed  Google Scholar 

  • Szittya G, Moxon S, Pantaleo V et al (2010) Structural and functional analysis of viral siRNAs. PLoS Pathog 6:4

    Article  CAS  Google Scholar 

  • Takahashi M, Toriyama S, Kikuchi Y et al (1990) Complementarity between the 5′- and 3′-terminal sequences of rice stripe virus RNAs. J Gen Virol 71:2817–2821

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Toriyama S, Hamamatsu C, Ishihama A (1993) Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J Gen Virol 74:769–773

    Article  CAS  PubMed  Google Scholar 

  • Tomaru M, Maruyama W, Kikuchi A et al (1997) The loss of outer capsid protein P2 results in nontransmissibility by the insect vector of rice dwarf phytoreovirus. J Virol 71:8019–8023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong A, Yuan Q, Wang S et al (2017) Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 68:4357–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toriyama S (1985) Purification and biochemical properties of rice grassy stunt virus. Ann Phytopathol Soc Japan 51:59

    Google Scholar 

  • Toriyama S, Takahashi M, Sano Y et al (1994) Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. J Gen Virol 75:3569–3579

    Article  CAS  PubMed  Google Scholar 

  • Toriyama S, Kimishima T, Takahashi M (1997) The proteins encoded by rice grassy stunt virus RNA5 and RNA6 are only distantly related to the corresponding proteins of other members of the genus Tenuivirus. J Gen Virol 78:2355–2363

    Article  CAS  PubMed  Google Scholar 

  • Traoré O, Pinel A, Hébrard E et al (2006) Occurrence of resistance-breaking isolates of Rice yellow mottle virus in West and Central Africa. Plant Dis 90:259–263

    Article  PubMed  Google Scholar 

  • Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904. https://doi.org/10.1007/s11248-008-9174-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya NM, Yang M, Kositratana W et al (1995) Molecular analysis of rice ragged stunt oryzavirus segment 9 and sequence conservation among isolates from Thailand and India. Arch Virol 140:1945–1956

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Ramm K, Yang M et al (1996) Rice ragged stunt virus synthetic resistance genes and japonica rice transformation. In: Third international rice genetics symposium, Manila, 16–20 Oct 1995. IRRI

    Google Scholar 

  • Upadhyaya NM, Ramm K, Gellatly JA et al (1998) Rice ragged stunt oryzavirus genome segment S4 could encode an RNA dependent RNA polymerase and a second protein of unknown function. Arch Virol 143:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Li Z, Wang MB et al (2001) Engineering for virus resistance in rice. Rice Genet IV 405

    Google Scholar 

  • Usugi T, Saito Y (1976) Purification and serological properties of barley yellow mosaic virus and wheat yellow mosaic virus. Japanese J Phytopathol 42:12–20

    Article  Google Scholar 

  • Usugi T, Kashiwazaki S, Omura T, Tsuchizaki T (1989) Some properties of nucleic acids and coat proteins of soil-borne filamentous viruses. Japanese J Phytopathol 55:26–31

    Article  CAS  Google Scholar 

  • Uyeda I, Suda N, Yamada N et al (1994) Nucleotide sequence of rice dwarf phytoreovirus genome segment 2: completion of sequence analyses of rice dwarf virus. Intervirology 37:6–11

    Article  CAS  PubMed  Google Scholar 

  • Uyeda I, Kimura I, Shikata E (1995) Characterization of genome structure and establishment of vector cell lines for plant reoviruses. Adv Virus Res 45:249–279

    Article  CAS  PubMed  Google Scholar 

  • Valarmathi P, Kumar G, Robin S et al (2016) Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding. Virus Genes 52:521–529. https://doi.org/10.1007/s11262-016-1318-x

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Sharma S, Devi SV et al (2012) Delay in virus accumulation and low virus transmission from transgenic rice plants expressing rice tungro spherical virus RNA. Virus Genes 45:350–359. https://doi.org/10.1007/s11262-012-0787-9

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci 96:14147–14152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZH, Fang SG, Xu JL et al (2003) Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 27(2):163-168

    Google Scholar 

  • Wagh SG, Kobayashi K, Yaeno T et al (2016) Rice necrosis mosaic virus, a fungal transmitted Bymovirus: complete nucleotide sequence of the genomic RNAs and subgrouping of bymoviruses. J Gen Plant Pathol 82:38–42

    Article  Google Scholar 

  • Wang Y, Wu W-H (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tao T, Zhang Y et al (2011) Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9–1. Virol J 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang F, Li W, Zhu J et al (2016) Hairpin RNA targeting multiple viral genes confers strong resistance to rice black-streaked dwarf virus. Int J Mol Sci 17:705. https://doi.org/10.3390/ijms17050705

    Article  CAS  PubMed Central  Google Scholar 

  • Wei T, Shimizu T, Hagiwara K et al (2006) Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes. J Gen Virol 87:429–438

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Chen H, Ichiki-Uehara T et al (2007) Entry of Rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis. J Virol 81:7811–7815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Uehara-Ichiki T, Miyazaki N et al (2009) Association of Rice gall dwarf virus with microtubules is necessary for viral release from cultured insect vector cells. J Virol 83:10830–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  • Wilson TM (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci 90:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Zheng G, Hu Q et al (2018) NS3 protein from rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana. Virol J 15:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie LH, Lin QY (1984) Progress in the research of virus diseases of rice in China. Sci Agric Sin (China)

    Google Scholar 

  • Xie K, Li L, Zhang H et al (2018) Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ 41:2504–2514. https://doi.org/10.1111/pce.13372

    Article  CAS  PubMed  Google Scholar 

  • Xiong G, Liu X, Qiu P et al (2017) Rice grassy stunt virus p5 interacts with two protein components of the plant-specific CBL–CIPK Ca+2 signaling network of rice. Virus Genes 1–8

    Google Scholar 

  • Xu J, Li H-D, Chen L-Q et al (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang J, Qiu B, Tian B (1997) Resistance to rice stripe virus couferred by expression of coat protein in transgenic indica rice plants regenerated from bombarded suspension culture. Virol Sin 12:260–269

    Google Scholar 

  • Yassi MNA, Ritzenthaler C, Brugidou C et al (1994) Nucleotide sequence and genome characterization of rice yellow mottle virus RNA. J Gen Virol 75:249–257

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Jones MC, Barker P et al (1993) Molecular cloning and sequencing of coat protein-encoding cDNA of rice tungro spherical virus—a plant picornavirus. Virus Genes 7:121–132

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Chen JP, Adams MJ (2001) Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol 146:2331–2339

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-M, Yang J, Chen J-P, Adams MJ (2008a) A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Arch Virol 153:1893–1898

    Google Scholar 

  • Zhang H-M, Xin X, Yang J et al (2008b) Completion of the sequence of rice gall dwarf virus from Guangxi, China. Arch Virol 153:1737–1741

    Google Scholar 

  • Zhang C, Song Y, Jiang F et al (2012) Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Biol Plant 56:742–748

    Article  CAS  Google Scholar 

  • Zhang H, Tan X, He Y et al (2019) Rice black-streaked dwarf virus P10 acts as either a synergistic or antagonistic determinant during superinfection with related or unrelated virus. Mol Plant Pathol 20:641–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng LP, Lin C, Xie LY et al (2014) Construction of rice stripe virus NS2 and NS3 Co-RNAi transgenic rice and disease-resistance analysis. Chin J Virol 30(6):661–667

    Google Scholar 

  • Zheng L, Chen H, Liu H et al (2015) Assembly of viroplasms by viral nonstructural protein Pns9 is essential for persistent infection of rice gall dwarf virus in its insect vector. Virus Res 196:162–169

    Article  CAS  PubMed  Google Scholar 

  • Zhong B, Kikuchi A, Moriyasu Y et al (2003) A minor outer capsid protein, P9, of Rice dwarf virus. Arch Virol 148:2275–2280

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Wen J, Cai D et al (2008) Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull 53:3677–3685

    Article  CAS  Google Scholar 

  • Zhou T, Wu L, Wanf Y et al (2011) Transmission of rice black-streaked dwarf virus from frozen infected leaves to healthy rice plants by small brown planthopper (Laodelphax striatellus). Rice Sci 18:152–156. https://doi.org/10.1016/S1672-6308(11)60022-X

    Article  Google Scholar 

  • Zhou Y, Yuan Y, Yuan F et al (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett 34:965–972

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Hayakawa T, Toriyama S, Takahashi M (1991) Complete nucleotide sequence of RNA 3 of rice stripe virus: an ambisense coding strategy. J Gen Virol 72:763–767

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao F, Cao X et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

GK acknowledges the Research Associateship of Council of Scientific and Industrial Research, New Delhi. This work was supported by the J. C. Bose Fellowship, Science and Engineering Research Board, Department of Science and Technology, Government of India to ID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Dasgupta, I. (2021). Transgenic Approaches to Develop Virus Resistance in Rice. In: Sarmah, B.K., Borah, B.K. (eds) Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-63372-1_2

Download citation

Publish with us

Policies and ethics