Skip to main content

Advertisement

Log in

Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Rice stripe disease, with the pathogen Rice stripe virus (RSV), is one of the most widespread and severe virus diseases. Cultivating a resistant breed is an essential and efficient method in preventing rice stripe disease. Following RNA interference (RNAi) theory, we constructed three RNAi binary vectors based on coat protein (CP), special-disease protein (SP) and chimeric CP/SP gene sequence. Transgenic lines of rice cv. Yujing6 were generated through Agrobacterium-mediated transformation. We inoculated T1 generation plants from each line derived from CP/SP, CP, and SP transgenic rice plants with two RSV isolates from Shandong Province and Jiangsu Province using viruliferous vector insects. In these resistance assays, chimeric CP/SP RNAi lines showed stronger resistance against two isolates than CP or SP single RNAi lines. Stable integration and expression of RNAi transgenes were confirmed by Southern and northern blot analysis of independent transgenic lines. In the resistant transgenic lines, lower levels of transgene transcripts and specific short interference RNAs were observed relative to the susceptible transgenic plant, which showed that virus resistance was increased by RNAi. Genetic analysis demonstrated that transgene and virus resistance was stably inherited in the T2 progeny plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Bar:

Bialaphos resistance gene

CP:

Coat protein

dsRNA:

Double-strand RNA

hpRNA:

Hairpin RNA

nt:

Nucleotide

ORF:

Open reading frame

PPT:

Phosphinothricin

PCR:

Polymerase chain reaction

PTGS:

Posttranscriptional gene silencing

RMVR:

RNA-mediated virus resistance

RNAi:

RNA interference

siRNA:

Short interfering RNA

SP:

Special-disease protein

vRNA:

Viral RNA

vcRNA:

Viral complementary RNA

References

  • Chen Z, Xu ZF, Ye JJ, Yao HP, Zheng S, Ding JY (2005) Combination of small interfering RNAs mediates greater inhibition of human hepatitis B virus replication and antigen expression. J Zhejiang Univ Sci 6:236–241

    Article  Google Scholar 

  • Chen XM, Liu J, Li X, Jiang F, Xie XY, Zhu CX, Wen FJ (2010) Inhibiting virus infection by RNA interference of the eight functional genes of the potato virus Y genome. J Phytopathol 158:776–784. doi:10.1111/j.1439-0434.2010.01701.x

    Article  CAS  Google Scholar 

  • Cheng ZB, Ren CM, Zhou YJ, Fan YJ, Xie LH (2008) Pathogenicity of Rice stripe tenuivious isolates from different areas. Acta Phytopathol Sinica 38(2):129–131

    Google Scholar 

  • Cui GR, Wu H, Liu YG (2004) Selecting herbicide-resistant calli of rice and appraising to seedling with PPT and Basta. Seed 23:7–10

    Google Scholar 

  • Ding SW, Li H, Lu R, Li F, Li WX (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102:109–115. doi:10.1016/j.virusres.2004.01.021

    Article  PubMed  CAS  Google Scholar 

  • Duan FP, Liang CY, Li YQ (2001) Research advances of Bar gene and its transgenic crops. Guihaia 21:166–172

    Google Scholar 

  • Dykxhoorn DM, Lieberman J (2006) Silencing viral infection. PLoS Med 3:1000–1004. doi:10.1371/journal.pmed.0030242

    Article  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994. doi:10.1007/BF00014672

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251. doi:10.1038/418244a

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Zhu YF, Itoh K, Kimura Y, Izawa T, Shmamoto K, Toriyama S (1992) Genetieally engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci USA 89:9865–9869

    Article  PubMed  CAS  Google Scholar 

  • Kogenezawa H, Doi Y, Yora K (1996) Purification of rice stripe virus. Annu Phytopathol Soc Jpn 41:148–164

    Article  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plant: Implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759. doi:10.1105/tpc.5.12.1749

    Article  PubMed  CAS  Google Scholar 

  • Liu XC, Pan CX, Song YZ, Chen HL, Wen FJ (1995) A simple procedure of DNA isolation from monocotyledonous plants and its application. J Shandong Agric Univ (Natural science) 26:491–495

    Google Scholar 

  • Ma J, Song YZ, Li KD, Zhu CX, Wen FJ (2008) The analysis of molecular variability of rice stripe virus isolate (RSV-SD-JN2) in Jining Shandong. Zhi Wu Bao Hu Xue Bao 35:415–420

    CAS  Google Scholar 

  • Matzke M, Matzke AJ, Kooter JM (2001) RNA: guiding gene silencing. Science 293:1080–1083

    Article  PubMed  CAS  Google Scholar 

  • Nicola-Negri ED, Brunetti A, Tavazza M, Iiardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transg Res 14:989–994. doi:10.1007/s11248-005-1773-y

    Article  Google Scholar 

  • Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257. doi:10.1089/oli.2006.0063

    Article  PubMed  CAS  Google Scholar 

  • Ramirez BC, Haenni AL (1994) Molecular biology of tenuiviruses, a remarkable group of plant viruses. J Gen Virol 75:467–475. doi:10.1099/0022-1317-75-3-467

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fristsch EF, Maniatis T (2001) Molecular cloning: a libratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanford JC, Johnson SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasite own genome. J Theor Biol 115:395–405. doi:10.1016/S0022-5193

    Article  Google Scholar 

  • Shimizu T, Yoshii M, Wei T, Hirochik H, Omura T (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 7:24–32. doi:10.1111/j.1467-7652.2008.00366.x

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang M, Stoutjesdijk P, Green A, Waterhouse PM (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–320. doi:10.1038/35030305

    Article  PubMed  CAS  Google Scholar 

  • Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Lieberman J, Manjunath N, Shankar P (2003) Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 77:7174–7181. doi:10.1128/JVI.77.13.7174-7181.2003

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Toriyama S, Hamamatsu C, Ishihama A (1993) Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J Gen Virol 74:769–773. doi:10.1099/0022-1317-74-4-769

    Article  PubMed  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976. doi:10.1111/j.1365-313X.2006.02836.x

    Article  PubMed  CAS  Google Scholar 

  • Toriyama S (1986) Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects. Microbiol Sci 3:347–351

    PubMed  CAS  Google Scholar 

  • Toriyama S, Takahashi M, Sano Y, Shimizu T, Ishihama A (1994) Nucleotide sequence of RNA1, the largest genomic segment of rice stripe virus, the proto type of the Tenuiviruses. J Gen Virol 75:3569–3579. doi:10.1099/0022-1317-75-12-3569

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Beclin C, Fagard M (2001) Post transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    PubMed  CAS  Google Scholar 

  • Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356. doi:10.1046/j.1364-3703.2000.00038.x

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in Plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964. doi:0027-8424/98/9513959-6$2.00/0

    Article  PubMed  CAS  Google Scholar 

  • Wei TY, Yang JG, Liao FL, Gao FL, Lu LM et al (2009) Genetic diversity and population structure of rice stripe virus in China. J Gen Virol 90:1025–1034. doi:10.1099/vir.0.006858-0

    Article  PubMed  CAS  Google Scholar 

  • Wu SJ, Zhong H, Zuo H, Gu MH, Liang GH (2006) Research progress in molecular biology of rice stripe virus and gene engineering of virus resistance. Acta Agric Jiangxi 18:72–77

    Google Scholar 

  • Xie L (1986) Research on rice virus disease in China. Trop Agric Res Ser 19:45–50

    Google Scholar 

  • Xue DW, Ma LL, Jiang H, Hua ZH, Guo LB, Huang DN, Qian Q (2005) Safety assessment of herbicide-tolerant transgenic rice. J Agric Biotechnol 13:723–727

    CAS  Google Scholar 

  • Zhou T, Wang L, Chen ZB, Fan YJ, Zhou YJ (2009) Mechanism and inheritance of resistance to rice stripe disease in the japonica rice cultivar Zhendao 88. Sci Agric Sin 42:103–109

    CAS  Google Scholar 

  • Zhu Y, Hayakawa T, Toriyama S, Takahashi M (1991) Complete nucleotide sequence of RNA3 of rice stripe virus: an ambisense coding strategy. J Gen Virol 72:763–767

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Hayakawa T, Toriyama S (1992) Complete nucleotide sequence of RNA4 of rice stripe virus isolate T and comparison with another isolate and with maize stripe virus. J Gen Virol 73:1309–1312. doi:10.1099/0022-1317-73-5-1309

    Article  PubMed  CAS  Google Scholar 

  • Zhu JH, Zhu XP, Wen FJ, Bai QR, Zhu CX, Song YZ (2004) Effect of cDNA fragments in different length derived from Potato Virus Y coat protein gene on the induction of RNA-mediated virus resistance. Sci China Ser C Life Sci 47:382–388. doi:10.1360./03yc0066

    Article  CAS  Google Scholar 

  • Zhu CX, Song YZ, Yin GH, Wen FJ (2009) Induction of RNA-mediated multiple virus resistance to potato virus Y, tobacco mosaic virus and cucumber mosaic virus. J Phytopathol 157:101–107. doi:10.1111/j.1439-0434.2008.01449.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the National High Technology Research and Develop Program of China (No.2007AA10Z417) and National Special Grad Project of the Genetically Modified New Seeds Cultivation (No. 2008ZX08001-002). We acknowledged Zhou Yijun, researcher, and Zhou Tong from Jiangsu Academy of Agricultural Sciences for the help with the RSV-resistance analysis. We thank Professor Xiu-Qing Li from Agriculture and Agri-Food Canada (AAFC) Potato Research Centre for revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changxiang Zhu or Fujiang Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Song, Y., Wu, B. et al. Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res 20, 1367–1377 (2011). https://doi.org/10.1007/s11248-011-9502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9502-1

Keywords

Navigation