Skip to main content

Salinity Stress in Pearl Millet: From Physiological to Molecular Responses

  • Chapter
  • First Online:
Pearl Millet in the 21st Century
  • 98 Accesses

Abstract

Salinity stress is a major constraint for crop growth, development, and yield, worldwide. Salinity stress is among the key abiotic stresses that critically impede plant development, causing yield reductions ranging from 15% to 90% in major crops, under moderate-to-high soil salinity levels. Although regarded as climate resilient, very little information is available on pearl millet, regarding its spectrum of physiological to molecular responses, inherent mechanisms exhibited, yield losses, and stress mitigation strategies compared to other cereal crops. High salinity levels in the soil impact the growth and productivity of pearl millet, which is predominantly grown in several arid and semi-arid zones. Therefore, this chapter highlights the differential responses of pearl millet crop to salinity stress, and the need to evaluate for superior genotypic variability with greater stress tolerance mechanisms. This chapter also discusses different approaches that can be employed for crop improvement programs that target salt-tolerant genotypes suitable for varying agro-ecological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4):1748–1755. https://doi.org/10.1104/pp.102.003616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Idris A (2015) Germination and seedling growth of pearl millet (Pennisetum glaucum L.) cultivars under salinity conditions. Int J Plant Res 1:1–5

    CAS  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Jiao X, Zhu G, Elsiddig AMI, Suliman MSE, Elradi SBM, Yue W (2020) Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron J 112:871–884

    Article  CAS  Google Scholar 

  • Ali M, Afzal S, Parveen A, Kamran M, Javed MR, Abbasi GH, Malik Z, Riaz M, Ahmad S, Chattha MS et al (2021) Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem 158:208–218

    Article  CAS  PubMed  Google Scholar 

  • Altus D, Canny M (1982) Loading of assimilates in wheat leaves. I. The specialization of vein types for separate activities. Funct Plant Biol 9:571

    Article  Google Scholar 

  • Álvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T et al (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290. https://doi.org/10.1007/s11033-012-2403-4

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, Arce-Johnson P (2015) Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol Biochem 92:71–80

    Article  CAS  PubMed  Google Scholar 

  • Amin USM, Sudip B, Elias Sabrina M, Samsad R, Taslima H, Richard M, Seraj Zeba I (2016) Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5′ UTR in transgenic lines of rice. Front Plant Sci 7:14. https://doi.org/10.3389/fpls.2016.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anju UL, Doddagoudar SR, Pattanashetti SK, Gowda B, Vijaykumar K (2019) Influence of seed priming on seed germination, seedling growth, peroxidase activity, proline and total soluble sugar content of pearl millet (Pennisetum glaucum L.) under salinity stress. IJCS 7(5):508–514

    CAS  Google Scholar 

  • Apse MP et al (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Araújo CDA, Lira JBD, Magalhães ALR, Silva TGFD, Gois GC, Andrade APD, Araújo GGLD, Campos FS (2022) Pearl millet cultivation with brackish water and organic fertilizer alters soil properties. Ciência Animal Brasileira 22

    Google Scholar 

  • Asaari MSM, Mertens S, Dhondt S et al (2019) Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput Electron Agric 162:749–758

    Article  Google Scholar 

  • Ashraf M, McNeilly T (1987) Salinity effects on five cultivars/lines of pearl millet (Pennisetum americanum [L] Leeke). Plant Soil 103:13–19

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly T (1992) The potential of exploting variations in salinity tolerance in pearl millet (Pennisetum americanum [L] Leeke). Plant Breed 104:234–240

    Article  Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM et al (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49(3):250–256. https://doi.org/10.1007/s12033-011-9399-1

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Bamminger C, Poll C, Sixt C, Högy P, Wüst D, Kandeler E et al (2016) Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agric Ecosyst Environ 233:308–317

    Article  CAS  Google Scholar 

  • Bayat F, Shiran B, Belyaev DV, Yur’eva NO, Sobol’kova GI, Alizadeh H et al (2010) Potato plants bearing a vacuolar Na+/H+ antiporter HvNHX2 from barley are characterized by improved salt tolerance. Russ J Plant Physiol 57:696–706

    Article  CAS  Google Scholar 

  • Beauchêne K, Leroy F, Fournier A et al (2019) Management and characterization of abiotic stress via PhénoField®, a high-throughput field phenotyping platform. Front Plant Sci 10:904

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under salinated conditions. Mol Microb Ecol Rhizosphere 1:561–573

    Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62(15):5561–5570. https://doi.org/10.1093/jxb/err237

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Horticult 100:215–227

    Article  CAS  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Poggin K, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181

    Article  CAS  Google Scholar 

  • Blummel M, Zerbini E, Reddy BVS, Hash CT, Bidinger F, Khan AA (2003) Improving the production and utilization of sorghum and pearl millet as livestock feed: progress towards dual-purpose genotypes. Field Crops Res 84:143–158

    Article  Google Scholar 

  • Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V et al (2013) BreedVision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13(3):2830–2847

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28(2):187–192

    Article  CAS  Google Scholar 

  • Chai YY, Jiang CD, Shi L, Shi T, Gu W (2010) Effects of exogenous spermine on sweet sorghum during germination under salinity. Biol Plant 54:145–148. https://doi.org/10.1007/s10535-010-0023-1

    Article  Google Scholar 

  • Chaudhry UK, Gökçe ZN, Gökçe AF (2020) Effects of salinity and drought stresses on the physio-morphological attributes of onion cultivars at bulbification stage. Int J Agric Biol 24(6):1681–1689. https://doi.org/10.17957/IJAB/15.1611

    Article  CAS  Google Scholar 

  • Chaudhry UK, Gökçe ZNÖ, Gökçe AF (2021) Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia 76:1–15. https://doi.org/10.1007/s11756-021-00827-5

    Article  CAS  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957. https://doi.org/10.1007/s11248-011-9577-8

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132

    Article  CAS  PubMed  Google Scholar 

  • Chen H, He H, Yu D (2011) Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plant 141(1):11–18. https://doi.org/10.1111/j.1399-3054.2010.01412.x

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress responsive signals. Plant Biotechnol J 17:2341. https://doi.org/10.1111/pbi.13151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary S, Vadez V, Tom Hash C et al (2019) Pearl millet mapping population parents: performance and selection under salt stress across environments varying in evaporative demand. Proc Natl Acad Sci India Sect B Biol Sci 89:201–211

    Article  Google Scholar 

  • Choudhary M, Singh A, Rakshit S (2021) Coping with low moisture stress: remembering and responding. Physiol Plant 172(2):1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44(7–9):483–493

    Article  CAS  PubMed  Google Scholar 

  • Dey RKKP, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394

    Article  CAS  PubMed  Google Scholar 

  • Diatta S (2016) Improving pearl millet (Pennisetum glaucum (L.) R. Br.) productivity in salt-affected soils in Senegal: a greenhouse and field investigation. Doctoral dissertation, Virginia Tech

    Google Scholar 

  • Ding Z, Majrashi MA, Ghoneim AM, Ali EF, Eissa MA, Shal RE (2022) Irrigation and biochar effects on pearl millet and kinetics of ammonia volatilization from saline sandy soils. J Soil Sci Plant Nutr 22:1–13

    Article  Google Scholar 

  • Dua RP (1989) Salinity tolerance in pearl millet. Indian J Agric Res 23:9–14

    Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Senthilvel S, Tom Hash C, Fukunaga K, Diao X, Santra D, Baltensperge D, Prasad M (2012) Millets genet genomic research. In: Janick J (ed) Plant breeding reviews, vol 35. Wiley, New York, pp 247–375

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • FAO (2021) Global symposium on salt affected soils. https://www.fao.org/events/global-symposium-on-salt-affected-soils

  • Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28(5):666–675.e5. https://doi.org/10.1016/j.cub.2018.01.023. Epub 2018 Feb 15. PMID: 29456142; PMCID: PMC5894116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill T, Gill SK, Saini DK, Chopra Y et al (2022) A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Govinda R, Shanta K, Vivek T, Jolly C, Coe R, Samart W, Quick W et al (2012) Towards a C4 rice. Asian J Cell Biol 7:13–31

    Article  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K et al (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Guo KM, Babourina O, Rengel Z (2009) Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Plant Physiol 137:155–165

    Article  CAS  Google Scholar 

  • Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of diferent salinity tolerance traits in rice. Rice (NY) 7:16

    Article  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Davies NW, Shabala L, Zhou M, Brodribb TJ, Shabala S (2017) Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biol 17:107. https://doi.org/10.1186/s12870-017-1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassanein RA, El Khawas SA, Khafaga HS, Abd El-Nabe AS, Abd Elrady AS (2017) Amelioration of drought stress on physiological performance of pearl millet (Pennisetum americanum) plant grown under saline condition using potassium humate and silicon source. Egypt J Exp Biol 13:57–68

    Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Heidari M, Jamshidi P (2011) Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agric Sci China 10(2):228–237

    Article  CAS  Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6:54. https://doi.org/10.1007/s43657-022-00048-z

    Article  Google Scholar 

  • Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745

    Article  CAS  PubMed  Google Scholar 

  • Hussain K, Nawaz K, Majeed A, Khan F, Lin F, Ghani A, Raza G, Afghan S, Zia-ul-Hussain S, Ali K, Shahazad A (2010) Alleviation of salinity effects by exogenous applications of salicylic acid in pearl millet (Pennisetum glaucum (L.) R. Br.) seedlings. Afr J Biotechnol 9(50):8602–8607

    CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678. PMID:11006339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Dev Sharma A (2005) The effect of phytoharmones (ABA, GA3) on germination, osmoprotectant solution and enzymes of carbohydrates maetabolism in pearl millet. Israel J Plant Sci 12:56–60

    Google Scholar 

  • Jansen M, Gilmer F, Biskup B et al (2009) Simultaneous phenotyping of leaf growth and chlorophyll fuorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan M, Bose J, Babourina O (2013) Salycilic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt induced K+ loss via GORK channel. J Exp Bot 64(8):2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeudy C, Adrian M, Baussard C et al (2016) RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha S (2018) Proteomics of salinity stress: opportunities and challenges. In: Ramakrishna A, Gill SS (eds) Metabolic adaptations in plants during abiotic stress. CRC Press, Boca Raton

    Google Scholar 

  • Jha S (2019) Transgenic approaches for enhancement of salinity stress tolerance in plants. In: Singh SP et al (eds) Molecular approaches in plant biology and environmental challenges. Springer Nature, Singapore

    Google Scholar 

  • Jha S (2022) Proteome responses of pearl millet genotypes under salinity. Plant Gene 29:100347. https://doi.org/10.1016/j.plgene.2021.100347

    Article  CAS  Google Scholar 

  • Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R et al (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31:4359–4370. https://doi.org/10.1038/emboj.2012.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jidda MB, Anaso AB (2017) Effects of crop improvement technologies on downy mildew of pearl millet [Pennisetum glaucum (L.) R. Br]. J Cereals Oilseeds 8(3):14–20

    Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130(2):837–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Govindjee BK, Kocielniakd J, Zuk-Golaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kaur B, Sandhu KS, Kamal R et al (2021) Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: applications, challenges, and prospects. Plants 10:1989

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34(6):529–538

    Google Scholar 

  • Kayasth M, Kumar V, Gera R (2014) Gordonia sp.: a salt tolerant bacterial inoculant for growth promotion of pearl millet under saline soil conditions. 3 Biotech 4(5):553–557

    Article  PubMed  Google Scholar 

  • Keskin BC, Sarikaya AT, Ykel B, Memon AR (2010) Abscicic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4(8):617–625

    CAS  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    Article  CAS  PubMed  Google Scholar 

  • Khushdil F, Jan FG, Jan G, Hamayun M, Iqbal A, Hussain A, Bibi N (2019) Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus. Plant Physiol Biochem 144:127–134

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Serraj RC, Hash T, Dakheel AJ, Reddy BVS (2007a) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24

    Article  Google Scholar 

  • Krishnamurthy L, Serraj R, Rai KN, Hash CT and Dakheel AJ (2007b). Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158: 179–188

    Google Scholar 

  • Krishnamurthy L, Upadhyaya HD, Purushothaman R, Gowda CLL, Kashiwagi J, Dwivedi SL, Singh S, Vadez V (2014) The extent of variation in salinity tolerance of the minicore collection of finger millet germplasm. Plant Sci 227(2014):51–59

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytol 218:414. https://doi.org/10.1111/nph.14966

    Article  PubMed  Google Scholar 

  • Kulkarni VN, Rai KN, Dakheel AJ, Ibrahim M, Hebbara M, Vadez V (2006) Pearl millet germplasm adapted to saline conditions. SAT eJournal 2(1):1–4

    Google Scholar 

  • Kumar A, Krishnamurthy SL, Lata C, Kumar P, Devi R, Kulshrestha N, Yadav RK, Sharma SK (2016) Salinity and drought induced changes in gas exchange attributes and chlorophyll fluorescence characteristics of rice (Oryza sativa) varieties. Ind J Agric Sci 86(6):718–726

    CAS  Google Scholar 

  • Kumar A, Sharma SK, Lata C, Devi R, Kulshrestha N, Krishnamurthy SL, Singh K, Yadav RK (2018) Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Ind J Agric Sci 88(10):1624–1632

    Article  CAS  Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2020) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 154(4):503–514

    Article  Google Scholar 

  • Lakra N, Kaur C, Anwar K, Singla-Pareek SL, Pareek A (2018) Proteomics of contrasting rice genotypes: identification of potential targets for raising crops for saline environment. Plant Cell Environ 41(5):947–969

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi TV, Varalaxmi Y, Yadav S, Maheswari M (2017) Differential response of antioxidative enzymes to various abiotic stresses in Pennisetum glaucum seedlings. Russ J Plant Physiol 64:889–898

    Article  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111. https://doi.org/10.3390/s141120078

    Article  PubMed  PubMed Central  Google Scholar 

  • Litalien A, Zeeb B (2019) Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ 698:134235. https://doi.org/10.1016/j.scitotenv.2019.134235

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Q, Zhang Y, Cui J, Chen G, Xie B, Wu C, Liu H (2014) Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.). PLoS One 9:e85282

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  PubMed  Google Scholar 

  • Lynch J, Polito VS, Lauchli A (1989) Salinity stress increases cytoplasmic Ca activity in maize root protoplasts. Plant Physiol 90:1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma DM, Wr WX, Li HW, Jin FX, Guo LN, Wang J et al (2014) Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251:219–231. PMID:24022678

    Article  CAS  PubMed  Google Scholar 

  • Maiti RK, Singh VP, Sarkar NC, Purohit SS, Hernandez-Pinero J (2007) Physical basis of crop growth and productivity. In: Reaearch advances in pearl millet. Springer, Berlin, pp 39–67

    Google Scholar 

  • Martins SM, de Brito GG, da Gonçalves WC et al (2020) PhenoRoots: an inexpensive non-invasive phenotyping system to assess the variability of the root system architecture. Sci Agric 77. https://doi.org/10.1590/1678-992x-2018-0420

  • Mbarki S, Sytar O, Zivcak M, Abdelly C, Cerda A, Brestic M (2018) Anthocyanins of coloured wheat genotypes in specific response to salt stress. Molecules 23:1518. https://doi.org/10.3390/molecules23071518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbinda W, Mukami A (2021) A review of recent advances and future directions in the management of salinity stress in finger millet. Front Plant Sci 12:734798. https://doi.org/10.3389/fpls.2021.734798

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena MD, Narjary B, Sheoran P, Jat HS, Joshi PK, Chinchmalatpure AR, Yadav G, Yadav RK, Meena MK (2018) Changes of phosphorus fractions in saline soil amended with municipal solid waste compost and mineral fertilizers in a mustard-pearl millet cropping system. Catena 160:32–40

    Article  CAS  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4(2):92–96

    CAS  Google Scholar 

  • Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant J 97:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukami A, Ng’etich A, Syombua E, Odour R, Mbinda W (2020) Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol Mol Biol Plants 26:1569–1582. https://doi.org/10.1007/s12298-020-00853-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B et al (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Panuccio MR, Sidari M (2003) Effect of salinity on growth, carbohydrate metabolism and nutritive properties of Kikuyu grass (Pennisetum clandestinum Hochst). Plant Sci 104:1103–1110

    Article  Google Scholar 

  • Nakashima K, Tran L-SP, Van Nguyen D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LSP (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Pérez-Ruiz M, Prior A, Martinez-Guanter J et al (2020) Development and evaluation of a self-propelled electric platform for high-throughput field phenotyping in wheat breeding trials. Comput Electron Agric 169:105237

    Article  Google Scholar 

  • Pessarakli M (2019) Handbook of plant and crop stress, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Pooja, Nandwal AS, Chand M, Kumari A, Rani B, Goel V, Kulshreshtha N (2020) Soil moisture deficit induced changes in antioxidative defense mechanism of four sugarcane varieties differing in their maturity. Ind J Agric Sci 90(3):56–61

    Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(7):1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Proc Natl Acad Sci U S A 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279(1):207–215. https://doi.org/10.1074/jbc.M307982200. Epub 2003 Oct 21. PMID: 14570921

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Wang J, Hui J et al (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8:2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhouane L (2013) Agronomic and physiological responses of pearl millet ecotype (Pennisetum glaucum (L.) R. Br.) to saline irrigation. Emir J Food Agric 25(2):109–116

    Article  Google Scholar 

  • Rahim Z, Gulnaz P, Gul S, Rehman K (2020) Ameliorating effect of salt stress (KCl, NaCl) on growth and germination parameters of pearl millet (Pennisetum americanum). Pak J Agric Res 33(4):951–956

    Google Scholar 

  • Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Cardenas Perez S, Piernik A (2020) Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 10:859. https://doi.org/10.3390/agronomy10060859

    Article  CAS  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W et al (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151. https://doi.org/10.1007/s11032-006-9052-z

    Article  CAS  Google Scholar 

  • Reddy PS, Reddy GM, Pandey P et al (2012) Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39:7163–7174. https://doi.org/10.1007/s11033-012-1548-5

    Article  CAS  PubMed  Google Scholar 

  • Riaz M, Yan L, Wu X, Hussain S, Aziz O, Wang Y, Imran M, Jiang C (2018) Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J Environ Manag 208:149–158

    Article  CAS  Google Scholar 

  • Ribadiya TR, Savalia SG, Vadaliya BM, Davara MA (2018) Efect of salinity on yield, yield attributes and quality of pearl millet (Pennisetum glaucum L) varieties. Int J Chem Studies 6(6):878–882

    Google Scholar 

  • Sadok W, Naudin P, Boussuge B et al (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 30:135–146

    Article  PubMed  Google Scholar 

  • Sage RF, Zhu XG (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000. https://doi.org/10.1093/jxb/err179

    Article  CAS  PubMed  Google Scholar 

  • Salem E (2020) Cooperative effect of salicylic acid and boron on the productivity of pearl millet crop under the degraded saline soils conditions. Egypt J Agron 42(2):185–195

    Article  Google Scholar 

  • Sandhu KS, Patil SS, Pumphrey MO, Carter AH (2021a) Multi-trait machine and deep learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 14:e20119. https://doi.org/10.1002/TPG2.20119

    Article  CAS  PubMed  Google Scholar 

  • Sandhu KS, Aoun M, Morris CF, Carter AH (2021b) Genomic selection for end-use quality and processing traits in soft white winter wheat breeding program with machine and deep learning models. Biology 10:689. https://doi.org/10.3390/BIOLOGY10070689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santosh Rama Bhadra Rao T, Vijaya Naresh J, Sudhakar Reddy P, Reddy MK, Mallikarjuna G (2017) Expression of Pennisetum glaucum eukaryotic translational initiation factor 4A (PgeIF4A) confers improved drought, salinity, and oxidative stress tolerance in groundnut. Front Plant Sci 8:453. https://doi.org/10.3389/fpls.2017.00453

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9(12):e110507

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada H, Shim I-S, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis: modulation by salt stress in rice seedlings. Plant Sci 171:263–270. https://doi.org/10.1016/j.plantsci.2006.03.020

    Article  CAS  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten H-M et al (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra T, Figueiredo DD, Cordeiro AM et al (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82:439–455

    Article  CAS  PubMed  Google Scholar 

  • Sezer S (2014) Effect of boron fertilizer applications on the growth and B, N uptake of maize (Zea mays L.) under the different soils. J Food Agric Environ 12(2):1323–1327

    Google Scholar 

  • Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A (2021) Salt stress in Brassica: effects, tolerance mechanisms, and management. J Plant Growth Regulat 41:781–795. https://doi.org/10.1007/s00344-021-10338-x

    Article  CAS  Google Scholar 

  • Shang G, Li Y, Hong Z, Liu CL, Shao-Zhen HE, Liu QC (2012) Overexpression of SOS genes enhanced salt tolerance in Sweetpotato. J Integr Agric 11:378–386

    Article  Google Scholar 

  • Sharma PC, Sehgal D, Singh D, Singh G, Yadav RS (2011) A major terminal drought tolerance QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Mol Breed 27(2):207–222

    Article  CAS  Google Scholar 

  • Sharma PC, Singh D, Sehgal D, Singh G, Hash CT, Yadav RS (2014) Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environ Exp Bot 102:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomol Ther 9(7):285. https://doi.org/10.3390/biom9070285

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) Proc Natl Acad Sci U S A 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Gupta SK, Liu S, Takano T (2018) Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155:619–627., ISSN 0098-8472. https://doi.org/10.1016/j.envexpbot.2018.07.008

    Article  CAS  Google Scholar 

  • Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553. https://doi.org/10.1016/j.plaphy.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  • Shinde H, Dudhate A, Anand L, Tsugama D, Gupta SK, Liu S, Takano T (2020) Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. South African J Bot 132:395–402. https://doi.org/10.1016/j.sajb.2020.06.011. ISSN 0254-6299

    Article  CAS  Google Scholar 

  • Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S et al (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneha S, Anirudha R, Amit D, Subhash C (2013) Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br. Pak J Biol Sci 16:877–881. https://doi.org/10.3923/pjbs.2013.877.881

    Article  CAS  PubMed  Google Scholar 

  • Song S-Y, Chen Y, Chen J, Dai X-Y, Zhang W-H (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Sorahinobar M, Niknam V, Ebrahimzadeh H, Soltanloo H, Behmanesh M, Enferadi ST (2016) Central role of salicylic acid in resistance of wheat against Fusarium graminearum. J Plant Growth Regul 35:477–491. https://doi.org/10.1007/s00344-015-9554-1

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Srivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  Google Scholar 

  • Toderich K, Shuyakaya E, Rakhmankulova Z, Bukerev R, Khujanazarov T, Zhapaev R, Ismail S, Gupta SK, Yamanaka N, Boboev F (2018) Threshold tolerance of new genotypes of Pennisetum glaucum (L.) R. Br. to salinity and drought. Agronomy 8:230

    Article  CAS  Google Scholar 

  • Tyagi W, Rajagopal D, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant Cell Physiol 46(8):1411–1422. https://doi.org/10.1093/pcp/pci154

    Article  CAS  PubMed  Google Scholar 

  • Tyagi W, Singla-Pareek S, Nair S et al (2006) A novel isoform of ATPase c subunit from pearl millet that is differentially regulated in response to salinity and calcium. Plant Cell Rep 25:156–163. https://doi.org/10.1007/s00299-005-0055-8

    Article  CAS  PubMed  Google Scholar 

  • Uma S, Prasad TG, Udaya Kumar M (1995) Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet. Ann Bot 76(1):43–49

    Article  CAS  Google Scholar 

  • Vadez V, Hash T, Kholova J (2012) Phenotyping pearl millet for adaptation to drought. Front Physiol 3:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney R, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerangamallaiah G, Jyothsnakumari G, Thippaswamy M, Reddy PCO, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italic L. cv. Prasad). Plant Sci 175:631

    Article  Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32(6):21–628

    Google Scholar 

  • Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ (2016) Field Scanalyzer: an automated robotic feld phenotyping platform for detailed crop monitoring. Funct Plant Biol 44:143–153

    Article  PubMed  Google Scholar 

  • Wang K, Shangguan Z (2010) Photosynthetic characteristics and resource utilization efficiency of maize (Zea mays L.) and millet (Setaria italica L.) in a semi-arid hilly loess region in China. N Z J Crop Hortic Sci 38:247–254. https://doi.org/10.1080/01140671.2010.503987

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Hill CB, Stefano G, Bose J (2021) New insights into salinity sensing, signaling and adaptation in plants. Front Plant Sci 11:1843

    Article  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX et al (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859. https://doi.org/10.1016/j.plantsci.2004.05.034

    Article  CAS  Google Scholar 

  • Yadav RK, Dagar JC (2016) Innovations in utilization of poor-quality water for sustainable agricultural production. In: Dagar et al (eds) Innovative saline agriculture. Springer, Berlin, pp 219–261. ISBN 978-81-322-2770-0

    Chapter  Google Scholar 

  • Yadav OP, Rai KN, Gupta SK (2012) Pearl millet: genetic improvement for tolerance to abiotic stresses. In: Improving crop productivity in sustainable agriculture. Wiley Blackwell, Hoboken, pp 261–268. ISBN 978-3-527-33242-7

    Chapter  Google Scholar 

  • Yadav T, Kumar A, Yadav RK, Yadav G, Kumar R, Kushwaha M (2020) Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J Biol Sci 27(8):2010–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YK, Wang T, Zhang WS, Li X (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189:1122–1134. PMID: 21087263

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Reynolds D, Websdale D et al (2017) CropQuant: an automated and scalable feld phenotyping platform for crop monitoring and trait measurements to facilitate breeding and digital agriculture. BioRxiv. https://doi.org/10.1101/161547

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2004) Plant salt tolerance and the SOS pathway. In: Proceedings of Italian Society of Agricultural Genetics. ISBN 88-900622-5-8

    Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D-X, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Saluja M, Dharni JS et al (2021) PhenoImage: an open-source graphical user interface for plant image analysis. Plant Phenome J 4:e20015. https://doi.org/10.1002/ppj2.20015

    Article  Google Scholar 

  • Zida PE, Soalla WR, Paco SÃ (2017) Hydropriming of pearl millet (Pennisetum glaucum L.) in northern and Central Burkina Faso applying six hours of soaking and overnight drying of seeds. Afr J Agric Res 12(49):3441–3446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Swarna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

S, S., Swarna, R., Jinu, J., Dheeraj, C., Talwar, H.S. (2024). Salinity Stress in Pearl Millet: From Physiological to Molecular Responses. In: Tonapi, V.A., Thirunavukkarasu, N., Gupta, S., Gangashetty, P.I., Yadav, O. (eds) Pearl Millet in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-5890-0_14

Download citation

Publish with us

Policies and ethics