Skip to main content

Advertisement

Log in

Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Saline soils are a major issue for agriculture because salt turns agronomically useful lands into unproductive areas. The United Nations Environment Program estimates that approximately 20 % of agricultural land and 50 % of cropland in the world is salt-stressed. Soil salinisation is reducing the area that can be used for agriculture by 1–2 % every year, hitting hardest in the arid and semi-arid regions. Salinity decreases the yield of many crops because salt inhibits plant photosynthesis, protein synthesis and lipid metabolism. Plant-growth-promoting rhizobacteria (PGPR), beneficial bacteria that live in the plant root zone named the rhizosphere, is one of the solutions to solve this issue. Indeed rhizobacteria counteract osmotic stress and help plant growth. This article reviews the benefits of plant-growth-promoting rhizobacteria for plants growing in saline soils. The major points are (1) plants treated with rhizobacteria have better root and shoot growth, nutrient uptake, hydration, chlorophyll content, and resistance to diseases; (2) stress tolerance can be explained by nutrient mobilisation and biocontrol of phytopathogens in the rhizosphere and by production of phytohormones and 1-aminocyclopropane-1-carboxylate deaminase; (3) rhizobacteria favour the circulation of plant nutrients in the rhizosphere; (4) rhizobacteria favour osmolyte accumulation in plants; (5) plants inoculated with rhizobacteria have higher K+ ion concentration and, in turn, a higher K+/Na+ ratio that favour salinity tolerance; and (6) rhizobacteria induce plant synthesis of antioxidative enzymes that degrade reactive oxygen species generated upon salt shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Soils Bull. 39, Rome, Italy

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–8. doi:10.1128/AEM.66.8.3393-3398.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–15. doi:10.1007/s11104-007-9233-5

    CAS  Google Scholar 

  • Armstrong W, Wright EJ, Lythe S, Gaynard TJ (1985) Plant zonation and the effects of the spring–neap tidal cycle on soil aeration in humber salt marsh. J Ecol 73(3):323–39. doi:10.2307/2259786

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–16. doi:10.1016/j.envexpbot.2005.12.006

    CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40(3):157–62. doi:10.1007/s00374-004-0766-y

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–66. doi:10.1146/annurev.arplant.57.032905.105159

    CAS  PubMed  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1–2):93–105. doi:10.1007/s11104-012-1402-5

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–13. doi:10.1007/s00374-008-0344-9

    Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic-Amst 109(1):8–14. doi:10.1016/j.scienta.2006.02.025

    CAS  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29(3):246–56. doi:10.1007/s003740050549

    CAS  Google Scholar 

  • Bharathkumar S, Paul D, Nair S (2008) Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem. J Basic Microbiol 48(1):10–5. doi:10.1002/jobm.200700282

    CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2011) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. doi:10.1007/s11274-011-0979-9

    PubMed  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL et al (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bot AJ, Nachtergaele FO, Young A (2000) Land resource potential and constraints at regional and country levels. World Soil Resources Reports. 90, Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome, Italy

  • Botella MA, del Amor FM, Amoros A, Serrano M, Martinez V, Cerda A (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109(4):428–34. doi:10.1034/j.1399-3054.2000.100409.x

    CAS  Google Scholar 

  • Botella MA, Martinez V, Pardines J, Cerdá A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150(1–2):200–05. doi:10.1016/S0176-1617(97)80203-9

    CAS  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–6. doi:10.1016/j.chemosphere.2008.09.013

    PubMed  Google Scholar 

  • Burrow DP, Surapaneni A, Rogers ME, Olsson KA (2002) Groundwater use in forage production: the effect of saline–sodic irrigation and subsequent leaching on soil sodicity. Aust J Exp Agric 42(3):237–247. doi:10.1071/EA00157

    Google Scholar 

  • Caravaca F, Figueroa D, Barea JM, Azcon-Aguilar C, Roldan A (2004) Effect of mycorrhizal inoculation on nutrient acquisition, gas exchange, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. J Plant Nutr 27(1):57–74. doi:10.1081/PLN-120027547

    CAS  Google Scholar 

  • Casanovas EM, Barassi CA, Andrade FH, Sueldo RJ (2003) Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res Commun 31(3–4):395–402

    Google Scholar 

  • Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S (2013) Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase1[W]. Plant Physiol 162(1):364–78. doi:10.1104/pp. 112.209197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler SF, Thorpe TA (1986) Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol Adv 4(1):117–35. doi:10.1016/0734-9750(86)90007-8

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–48. doi:10.2135/cropsci2005.0437

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses (1). Plant Physiol Biochem 35(12):939–944

    CAS  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG et al (2008) Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40(11):2713–21. doi:10.1016/j.soilbio.2008.06.016

    CAS  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90. doi:10.1071/FP11173

    Google Scholar 

  • Diby P, Bharathkumar S, Sudha N (2005a) Osmotolerance in biocontrol strain of pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55(4):243–47

    CAS  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005b) Pseudomonas fluorescens mediated vigour in black pepper (piper nigrum L.) under green house cultivation. Ann Microbiol 55(3):171–74

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–94. doi:10.1111/j.1365-3040.2009.02028.x

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–49. doi:10.1080/713610853

    CAS  Google Scholar 

  • Dodd IC (2009) Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60(9):2454–59. doi:10.1093/jxb/erp192

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–71. doi:10.1007/s00374-009-0366-y

    Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34(2):751–56. doi:10.1007/s11738-011-0875-9

    CAS  Google Scholar 

  • Egamberdieva D (2011) Survival of pseudomonas extremorientalis TSAU20 and P. Chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–7

    Google Scholar 

  • El-Fouly MM, Zeinab MM, Zeinab AS et al (2001) Micronutrient sprays as a tool to increase tolerance of faba bean and wheat plants to salinity. In: Horst WJ (ed) Plant nutrition, 92. Springer, Netherlands, pp 422–423. doi:10.1007/0-306-47624-X_204

    Google Scholar 

  • Elmer WH (2003) Local and systemic effects of NaCl on root composition, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathol 93(2):186–92. doi:10.1094/PHYTO.2003.93.2.186

    Google Scholar 

  • Esquivel-Cote R, Ramirez-Gama RM, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337(1–2):65–75. doi:10.1007/s11104-010-0499-7

    CAS  Google Scholar 

  • The Food and Agriculture Organization of the United Nations (FAO) (2002) Crops and drops: making the best use of water for agriculture. FAO, Rome, Italy, http://www.fao.org/docrep/w5146e/w5146e0a.htm

  • The Food and Agriculture Organization of the United Nations (FAO) (1988) Salt-affected soils and their management. Soils Bulletin, 39, Rome, Italy, http://www.fao.org/docrep/x5871e/x5871e04.htm

  • The Food and Agriculture Organization of the United Nations (FAO) (2005) Salt-affected soils from sea water intrusion: strategies for rehabilitation and management. Report of the regional workshop. Bangkok, Thailand, http://www.fao.org/docrep/008/ae551e/ae551e00.HTM

  • Feigin A (1985) Fertilization management of crops irrigated with saline water. Plant Soil 89:285–99. doi:10.1007/BF02182248

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aus J Plant Physiol 22(6):875–84. doi:10.1071/PP9950875

    Google Scholar 

  • Francius G, Polyakov P, Merlin J, Abe Y, Ghigo JM, Merlin C, Beloin C, Duval JF (2011) Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress. PloS one 6(5):e20066. doi:10.1371/journal.pone.0020066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu QL, Liu C, Ding NF, Lin YC, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agr Water Manag 97(12):1994–2000. doi:10.1016/j.agwat.2010.02.003

    Google Scholar 

  • Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74(4):467–72. doi:10.1111/j.1365-2672.1993.tb05155.x

    CAS  Google Scholar 

  • Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess W (2009) Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 5:305. doi:10.1038/msb.2009.63

    PubMed Central  PubMed  Google Scholar 

  • Ghassemi AJ, Jakeman HA (1995) Nix salinisation of land and water resources human causes, extent, management and case studies. CAB International, Wallingford

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Sci 2012:15. doi:10.6064/2012/963401

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–39. doi:10.1007/s10658-007-9162-4

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–8. doi:10.1006/jtbi.1997.0532

    CAS  PubMed  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Brady-rhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–84. doi:10.1139/m92-079

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of Plant and Crop Stress, 2nd edn. Marcel Dekker, New York, pp 203–26. doi:10.1201/9780824746728.ch9

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–40. doi:10.1007/s11274-010-0572-7

    Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55(1–3):47–51. doi:10.1016/S0168-1605(00)00193-8

    CAS  PubMed  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21(6–7):553–60. doi:10.1051/agro:2001144

    Google Scholar 

  • Hamdia MBE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44(2):165–74. doi:10.1023/B:GROW.0000049414.03099.9b

  • Han HS, Lee KD (2005) Physiological responses of soybean inoculation of Bradyrhizobium japonicum PGPR in saline soil conditions. Res J Agri Biol Sci 1(3):216–21

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–99. doi:10.1146/annurev.arplant.51.1.463

    CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–98. doi:10.1007/s13213-010-0117-1

    Google Scholar 

  • Hichem H, Naceur EA, Mounir D (2009) Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 47(4):517–26. doi:10.1007/s11099-009-0077-5

    CAS  Google Scholar 

  • Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93(2):281–9. doi:10.2134/agronj2001.932281x

    Google Scholar 

  • Ibekwe AM, Papiernik SK, Yang CH (2010) Influence of soil fumigation by methyl bromide and methyl iodide on rhizosphere and phyllosphere microbial community structure. J Environ Sci Health B 45(5):427–36. doi:10.1080/03601231003800131

    CAS  PubMed  Google Scholar 

  • Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agric Ecosyst Environ 34(1–4):279–303. doi:10.1016/0167-8809(91)90115-E

    Google Scholar 

  • Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food Syst 37(3):340–62. doi:10.1080/10440046.2012.672376

    Google Scholar 

  • Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9(10):2603–21. doi:10.1111/j.1462-2920.2007.01377.x

    CAS  PubMed  Google Scholar 

  • Jofre E, Fischer S, Rivarola V, Balegno H, Mori G (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44(5):416–22. doi:10.1139/w98-024

    CAS  Google Scholar 

  • Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62(6):919–28. doi:10.1016/S0031-9422(02)00722-7

    CAS  PubMed  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–79

    CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Se YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38(2):218–24. doi:10.5483/BMBRep.2005.38.2.218

    CAS  PubMed  Google Scholar 

  • Klein W, Weber MH, Marahiel MA (1999) Cold shock response of bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181(17):5341–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radish. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Ed. Station de pathologic Vegetal et Phytobacteriologic. Agners, France 2:879–82

  • Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42(3):429–34. doi:10.1016/j.soilbio.2009.11.021

    CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–52. doi:10.1016/j.envexpbot.2008.09.008

    CAS  Google Scholar 

  • Kotuby-Amacher J, Koenig K, Kitchen B (2000) Salinity and plant tolerance. https://extension.usu.edu/files/publications/publication/AG-SO-03.pdf.

  • Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by thermococcus spp. Appl Environ Microbiol 64(10):3591–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larcher W. (1980) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 2nd edn. Springer-Verlag, Berlin

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of pseudomonas fluorescens. Phytopathol 85(9):1021–27

    CAS  Google Scholar 

  • Li YQ, Zhao HL, Yi XY, Zuo XA, Chen YP (2006) Dynamics of carbon and nitrogen storages in plant–soil system during desertification process in horqin sandy land. Huan Jing Ke Xue 27(4):635–40

    PubMed  Google Scholar 

  • Liu Y, Gao W, Wang Y, Wu L, Liu X, Yan T et al (2005) Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J Bacteriol 187(7):2501–7. doi:10.1128/JB.187.7.2501-2507.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56. doi:10.1146/annurev.micro.62.081307.162918

    CAS  PubMed  Google Scholar 

  • Makela A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Agren GI et al (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20(5–6):289–98. doi:10.1023/A:1004295714181

    PubMed  Google Scholar 

  • Malik KAB, Rakhshanda S, Mehnaz G, Rasul MS, Mirza S (1997) Association of nitrogen-fixing plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194(1–2):37–44. doi:10.1023/A:1004742713538

    CAS  Google Scholar 

  • Marcelis LFM, Van Hooijdonk J (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215(1):57–64. doi:10.1023/A:1004742713538

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plant (second ed.) Academic Press, New York 889 pp.

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–43. doi:10.1007/s00425-010-1196-8

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–30. doi:10.1016/j.plantsci.2003.10.025

    CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76. doi:10.1016/S0098-8472(02)00058-8

    CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115(3):393–400. doi:10.1034/j.1399-3054.2002.1150309.x

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26(6):845–56. doi:10.1046/j.1365-3040.2003.01016.x

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–81. doi:10.1146/annurev.arplant.59.032607.092911

    CAS  PubMed  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M et al (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29(1):6–22. doi:10.1007/s00344-009-9107-6

    CAS  Google Scholar 

  • Nadeem SM, Shaharoona B, Arshad M, Crowley DE (2012) Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl Soil Ecol 62:147–54. doi:10.1016/j.apsoil.2012.08.005

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53(10):1141–9. doi:10.1139/W07-081

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–42. doi:10.2136/sssaj2008.0240

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–32. doi:10.1007/s13213-012-0465-0

    CAS  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agr Food Chem 56(12):4474–81. doi:10.1021/jf073258i

    CAS  Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39(1):340–51. doi:10.1016/j.soilbio.2006.08.004

    CAS  Google Scholar 

  • Nie M, Zhang XD, Wang JQ, Jiang LF, Yang J, Quan ZX, Cui XH, Fang CM, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41(12):2535–42. doi:10.1016/j.soilbio.2009.09.012

    CAS  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–15. doi:10.1007/s00374-010-0475-7

    CAS  Google Scholar 

  • Omar SA, Abdel-Sater MA, Khallil AM, Abdalla MH (1994) Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiol 39(1):23–28. doi:10.1007/BF02814524

    CAS  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Savic R (2010) Environmental salinisation processes in agro-ecosystem of neretva river estuary. Novenytermeles 59:223–226

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60(3):324–49. doi:10.1016/j.ecoenv.2004.06.010

    CAS  Google Scholar 

  • Park KS, Paul D, Kim JS, Park JW (2009) L-Alanine augments rhizobacteria-induced systemic resistance in cucumber. Folia Microbiol (Praha) 54(4):322–6. doi:10.1007/s12223-009-0041-6

    CAS  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31(1):53–62. doi:10.1007/s00344-011-9219-7

    CAS  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microb Biot 22(4):369–74. doi:10.1007/s11274-005-9043-y

    CAS  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–84. doi:10.1002/jobm.200700365

    CAS  PubMed  Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–10. doi:10.1002/jobm.201100288

    CAS  PubMed  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizobacteria [PGPR] mediated root proliferation in Black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Prot 39(4):311–314. doi:10.1080/03235400500301190

    CAS  Google Scholar 

  • Peng YL, Gao ZW, Gao Y, Liu GF, Sheng LX, Wang DL (2008) Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J Integr Plant Biol 50(1):29–39. doi:10.1111/j.1744-7909.2007.00607.x

    CAS  PubMed  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98(1):84–95. doi:10.1111/j.1365-2672.2004.02428.x

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev 32(1):181–200. doi:10.1007/s13593-011-0029-x

    CAS  Google Scholar 

  • Postel SL (1998) Water for food production: will there be enough in 2025? Bioscience 48(8):629–637. doi:10.2307/1313422

    Google Scholar 

  • Principe A, Alvarez F, Castro MG, Zachi L, Fischer SE, Mori GB, Jofre E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55(4):314–22. doi:10.1007/s00284-006-0654-9

    CAS  PubMed  Google Scholar 

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153. doi:10.1016/S1161-0301(00)00070-8

    Google Scholar 

  • Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251(1):73–82. doi:10.1023/A:1022950811520

    Google Scholar 

  • Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon thermococcus kodakaraensis. J Bacteriol 186(13):4185–91. doi:10.1128/JB.186.13.4185-4191.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35(6):845–54. doi:10.1016/S0038-0717(03)00125-1

    CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil pseudomonas sp. Appl Environ Microbiol 58(4):1284–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319–39. doi:10.1016/S0734-9750(99)00014-2

    CAS  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–14. doi:10.1093/jxb/erm342

    CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–72. doi:10.1016/j.apsoil.2012.01.006

    Google Scholar 

  • Romic D, Ondrasek G, Romic M, Josip B, Vranjes M, Petosic D (2008) Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus Lanatus L.) growing. Irrig Drain 57(4):463–9. doi:10.1002/ird.358

    Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Longman Group Ltd., UK

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–26. doi:10.1104/pp. 103.026583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microb Biot 28(4):1503–9. doi:10.1007/s11274-011-0952-7

    CAS  Google Scholar 

  • Salama ZA, Shaaban MM, Abou El-Nour EA (1996) Effect of iron foliar application on increasing tolerance of maize seedlings to saline irrigation water. Egypt J Appl Sci 11(1):169–175

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biot 34(10):635–48. doi:10.1007/s10295-007-0240-6

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30. doi:10.1007/s10725-010-9479-4

    CAS  Google Scholar 

  • Sandhya V, ASK Z, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46(1):17–26. doi:10.1007/s00374-009-0401-z

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–92. doi:10.1111/j.1365-2672.2006.03179.x

    CAS  PubMed  Google Scholar 

  • Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23(3):237–44. doi:10.1016/S0929-1393(03)00027-1

    Google Scholar 

  • Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer Berlin, Heidelberg, pp 225–238. doi:10.1007/978-3-642-23465-1_11

    Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59(4):432–8. doi:10.1007/s00284-009-9456-1

    CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–41. doi:10.1046/j.1365-3040.2002.00754.x

    PubMed  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60(3):709–12. doi:10.1093/jxb/erp013

    CAS  PubMed  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78(1–4):5–38. doi:10.1016/S0304-4238(98)00189-7

    CAS  Google Scholar 

  • Sharpley AN, Meisinger JJ, Power JF, Suarez DL (1992) Root extraction of nutrients associated with long-term soil management. In: Hatfiedl JL and Stewart BA (Ed.), Limitations to plant growth, Adv Soil Sci 19:151–217. Springer, New York, USA, http://dx.doi.org/10.1007/978-1-4612-2894-3_6

  • Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206. doi:10.1007/s00344-011-9231-y

    CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–84. doi:10.4014/jmb.1007.07011

    CAS  PubMed  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74(1):72–6. doi:10.1104/pp. 74.1.72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97(2):204–10. doi:10.1016/j.biortech.2005.02.021

    CAS  PubMed  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312(1–2):15–23. doi:10.1007/s11104-008-9560-1

    CAS  Google Scholar 

  • Spychalla JP, Desborough SL (1990) Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol 94(3):1214–8. doi:10.1104/pp. 94.3.1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steil L, Hoffmann T, Budde I, Volker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185(21):6358–70. doi:10.1128/JB.185.21.6358-6370.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103(38):13997–4002. doi:10.1073/pnas.0606236103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, Orozco MD, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21(7):958–66. doi:10.1094/MPMI-21-7-0958

    CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–8. doi:10.1080/17429140903125848

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–27. doi:10.1093/aob/mcg058

    CAS  PubMed  Google Scholar 

  • Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathol 95(12):1438–44. doi:10.1094/PHYTO-95-1438

    Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenases in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44(5):363–367. doi:10.1007/s00284-001-0022-8

    CAS  PubMed  Google Scholar 

  • Tripathi NK, Annachchatre A, Patil AA (2000) Role of remote sensing in environmental impact analysis of shrimp farming. Proceedings of the Map India 2000, New Delhi, India, April 10–11, pp. 14–16

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–96. doi:10.1007/s00284-009-9464-1

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–11. doi:10.1111/j.1438-8677.2011.00533.x

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–22. doi:10.1016/S1002-0160(11)60120-3

    CAS  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–83. doi:10.1146/annurev.phyto.36.1.453

    PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–86. doi:10.1023/A:1026037216893

    CAS  Google Scholar 

  • Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(4):741–52. doi:10.1099/00221287-140-4-741

    PubMed  Google Scholar 

  • Weber A, Jung K (2002) Profling early osmostress-dependant gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184(19):5502–07. doi:10.1128/JB.184.19.5502-5507.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408. doi:10.1007/s11104-008-9686-1

    CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136(12):2527–35. doi:10.1099/00221287-136-12-2527

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88(6):967–88. doi:10.1006/anbo.2001.1540

    CAS  Google Scholar 

  • Xu ZH, Saffigna PG, Farquhar GD, Simpson JA, Haines RJ, Walker S et al (2000) Carbon isotope discrimination and oxygen isotope composition in clones of the F (1) hybrid between slash pine and Caribbean pine in relation to tree growth, water-use efficiency and foliar nutrient concentration. Tree Physiol 20(18):1209–17. doi:10.1093/treephys/20.18.1209

    CAS  PubMed  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54. doi:10.1016/j.ejsobi.2009.11.002

    CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–46. doi:10.1016/j.soilbio.2011.11.006

    CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21(6):737–44. doi:10.1094/MPMI-21-6-0737

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diby Paul.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, D., Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron. Sustain. Dev. 34, 737–752 (2014). https://doi.org/10.1007/s13593-014-0233-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0233-6

Keywords

Navigation