Skip to main content

Microbes: The Next-Generation Bioenergy Producers

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications
  • 357 Accesses

Abstract

An amalgamation of eternal-increasing energy outlay and global warming concerns has created an international imperative to seek alternative energy that is renewable and can be produced sustainably. Methodical studies have consistently shown that liquid fuels through microbial conversion derived from plant biomass are one of the excellent alternatives if it is lucrative means of commercial production. Yield, titre, and competent reconstruction of feedstock into fuel are the three most imperative factors for engineering microbes that can produce biofuels on an industrial scale. The role of microbial population is indispensable not only in the conversion of plant biomass into liquid fuels but also gaining momentum in the conversion of organic material into other forms of renewable energy sources: bioethanol, biodiesel, biohydrogen, and bioelectricity. Hence, contemporary research demands to understand the metabolomics of these microbial populations and ways and means to transform them to utilize organic waste into renewable energy source effectively. Recombinant technology combined with genomics and proteomics helps to understand and modulate the microbial communities to a better yielding strain. This review will discuss the role of different microbes in bioenergy production and highlight the techniques involved in their transformation, pros and cons of these microbial bioenergy producers in fulfilling the future energy demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abendroth C, Simeonov C, Peretó J et al (2017) From grass to gas microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. Biotechnol Biofuels 10:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aden A (2008) Biochemical production of ethanol from corn stover. State of Technology Model, National Renewable Energy Laboratory, Tech report NREL/TP-510-43205

    Google Scholar 

  • Aden A, Ruth M, Ibsen K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing concurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, Tech report NREL/TP-510-32438

    Google Scholar 

  • Akyol C, Aydin S, Ince O et al (2016) A comprehensive microbial insight into single-stage and two-stage anaerobic digestion of oxytetracycline-medicated cattle manure. Chem Eng J 303:675–684

    Article  CAS  Google Scholar 

  • Ali M, Elreedy A, Ibrahim MG et al (2019) Hydrogen and methane bio-production and microbial community dynamics in a multi-phase anaerobic reactor treating saline industrial wastewater. Energy Convers Manag 186:1–14

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosichydrolysates by Saccharomyces cerevisia. J Cheml Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Jin YS, Moxley JF et al (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  PubMed  Google Scholar 

  • Alvarez H, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376

    Article  CAS  PubMed  Google Scholar 

  • Alves DMG (1994) Factors affecting the formation of organic acids as well as other parameters of alcoholic fermentation. ESALQ, Piracicaba

    Google Scholar 

  • Balvociute M, Huson DH (2017) SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? BMC Genomics 18(2):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreiro DL, Prins W, Ronsse F et al (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  CAS  Google Scholar 

  • Basso LC, Oliveira AJ, Orelli VFDM et al (1993) Dynamics of contaminating yeasts on industrial strains evaluated by the karyotyping technique. Anais Congresso Nacional STAB 5:246–250

    Google Scholar 

  • Beer LL, Boyd ES, Peters JW et al (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  CAS  PubMed  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101

    Article  CAS  PubMed  Google Scholar 

  • Bilal T, Malik B, Hakeem KR (2018) Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. J Microbiol Methods 155(2018):65–69

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2006) Biotechnological & Environmental Applications of microalgae. Biotech Environ Appl Microalgae, Murdoch University, Murdoch

    Google Scholar 

  • Campanaro S, Treu L, Kougias PG et al (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111

    Article  CAS  PubMed  Google Scholar 

  • Chang MC, Eachus RA, Trieu W et al (2007) Engineering Escherichia coli for production of function-alizedterpenoids using plant P450s. Nat Chem Biol 3:274–277

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Lam MQ, Thevarajoo S, Abd Manan F, Yahya A, Chong CS (2020a) Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22. 3 Biotech 10(4):1–10

    Google Scholar 

  • Chen Y, Wu C, Fan X, Zhao X, Zhao X, Shen T, Wang W (2020b) Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Biotechnol Biofuels 13:1–14

    Article  CAS  Google Scholar 

  • Cheryan M, Mehaia MA (1984) Ethanol production in a membrane recycle bioreactor. Conversion of glucose using Saccharomyces cerevisiae. Process Biochem 19:204–208

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    Article  CAS  Google Scholar 

  • Cho KM, Yoo YJ (1999) Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast,L2612δGC. J Microbiol Biotechnol 9:340–345

    CAS  Google Scholar 

  • Cho HY, Yukawa H, Inui M et al (2004) Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol 70:5704–5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Tiedje JM (2014) History and impact of RDP: a legacy from Carl Woese to microbiology. RNA Biol 11(3):239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds R. J. Craggs et al. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63(4):660–665

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Yang H, Liu X et al (2016) Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–256

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Das A, Ghosh P, Ghosh U, Mondal KC (2020) Prospect of microbes for future fuel. In: Frontiers in soil and environmental microbiology. CRC Press, Boca Raton, pp 159–166

    Chapter  Google Scholar 

  • Debowski M, ZieliÅ„ski M, Grala A et al (2013) Algae biomass as an alternative substrate in biogas production technologies. Renew Sustain Energy Rev 27:596–604

    Article  CAS  Google Scholar 

  • Dmytruk OV, Dmytruk KV, Abbas CA et al (2008) Engineering of xylose reductase and over expression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenulapolymorpha. Microb Cell Factories 7:21

    Article  CAS  Google Scholar 

  • Dorta C, Oliva-Neto P, de-Abreu-Neto MS et al (2006) Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22(2):177

    Article  CAS  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32. http://www.biotechnologyforbiofuels.com/content/4/1/32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21(5):657–662. https://doi.org/10.1016/j.copbio.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Elmahdy MH, Azmy AF, El-Gebaly E, Saafan A, Gaber Y (2020) A comparative proteomic study of thermobifida cellulosilytica TB100T secretome grown on carboxymethylcellulose and rice straw. Open Biotechnol J 14(1):2020

    Article  CAS  Google Scholar 

  • Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A (2019) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res 151:349–361

    Article  CAS  PubMed  Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11(11):543–549

    Article  CAS  PubMed  Google Scholar 

  • Farghali M, Mayumi M, Syo K, Satoshi A, Seiichi Y, Takashima S, Kotb S (2020) Potential of biogas production from manure of dairy cattle fed on natural soil supplement rich in iron under batch and semi-continuous anaerobic digestion. Bioresour Technol 309:123298

    Article  CAS  PubMed  Google Scholar 

  • Feldmann SD, Sahm H, Sprenger GA (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38(3):354–361

    Article  CAS  Google Scholar 

  • Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015a) High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol 186:81–88. https://doi.org/10.1016/j.biotech.2015.03.035

    Article  PubMed  Google Scholar 

  • Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015b) Mesophilic hydrogen production in acido-genic packed-bed reactors (apbr) using raw sugarcane vinasse as substrate: influence of support materials. Anaerobe 34:94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008

    Article  CAS  Google Scholar 

  • Ferraz Júnior ADN, Koyama MH, de Araújo Júnior MM et al (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252. https://doi.org/10.1016/j.renene.2015.11.064

    Article  CAS  Google Scholar 

  • Ferraz Júnior ADN, Damásio ARL, Paixão DAA et al (2017) Applied metagenomics for biofuel development and environmental sustainability. In: Advances of basic science for second generation bioethanol from sugarcane. Springer, Cham, pp 107–129

    Chapter  Google Scholar 

  • Fulton L, Howes T, Hardy J (2004) Biofuels for transport—an international perspective. International Energy Agency, Paris

    Google Scholar 

  • Geiger MR, Gibbons WR, Westa TP (2014) Thermostable Candida molischiana mutant capable of ethanol production at elevated temperatures. J Pure Appl Microbiol 8:1743–1748

    CAS  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237(1):239–253

    Article  CAS  PubMed  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  CAS  Google Scholar 

  • Goachet BN, Gunasekaran P, Cami B et al (1989) Transfer and expression of an Erwinia chrysanthemum. Biotechnol Lett 15:979–984

    Google Scholar 

  • Goncalves ECS, Perez MM, Vici AC, Salgado JCS, de Souza Rocha M, de Almeida PZ, de Faria AM (2020) Potential biodiesel production from Brazilian plant oils and spent coffee grounds by Beauveria bassiana lipase 1 expressed in Aspergillus nidulans A773 using different agroindustry inputs. J Clean Prod 256:120513

    Article  CAS  Google Scholar 

  • Goux X, Calusinska M, Lemaigre S et al (2015) Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels 8:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullert S, Fischer MA, Turaev D et al (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonasmobilis. J Bacteriol 172(12):6727–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M (2014) Enhancement of biohydrogen production from co-fermentation of glucose, starch, and cellulose. Dissertation, Western university

    Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  PubMed  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanreich A, Schimpf U, Zakrzewski M et al (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36:330–333

    Article  CAS  PubMed  Google Scholar 

  • Hari Krishna S, Janardhan Reddy T, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77(2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102:5045–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726

    Article  CAS  Google Scholar 

  • Heyer R, Kohrs F, Benndorf D et al (2013) Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnol 30:614–622

    Article  CAS  Google Scholar 

  • Heyer R, Benndorf D, Kohrs F et al (2016) Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol Biofuels 9:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtwick R, Meinhardt F, Keweloh H (1997) Cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Conway T, Clark DP et al (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Gomez PF, Lai X et al (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58(2–3):204–214

    Article  CAS  PubMed  Google Scholar 

  • Ingram L, Aldrich H, Borges A (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  PubMed  Google Scholar 

  • Jeon YS, Park SC, Lim J et al (2015) Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J Microbiol 53(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Junker F, Ramos J (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Kameshwar AKS, Qin W (2017) Qualitative and quantitative methods for isolation and characterization of lignin-modifying enzymes secreted by microorganisms. BioEnergy Res 10(1):248–266

    Article  CAS  Google Scholar 

  • Khan S, Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 62:146–152

    Article  CAS  PubMed  Google Scholar 

  • Kieboom J, Dennis JJ, de Bont JAM et al (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(2):346–351

    Article  CAS  PubMed  Google Scholar 

  • Kiran M, Prakash J, Annapoorni S et al (2004) Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401–410

    Article  CAS  PubMed  Google Scholar 

  • Kircher M, Kelso J (2010) High-throughput DNA sequencing–concepts and limitations. BioEssays 32(6):524–536

    Article  CAS  PubMed  Google Scholar 

  • Ko JK, Enkh-Amgalan T, Gong G, Um Y, Lee SM (2020) Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid. GCB Bioenergy 12(1):90–100

    Article  CAS  Google Scholar 

  • Koch C, Harnisch F, Schröder U et al (2014) Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Front Microbiol 5:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosaric N, Nguyen HT, Bergougn MA (1974) Growth of Spirulina maxima algae in effluents from secondary wastewater treatment plants. Biotechnol Bioeng 16:881–896

    Article  CAS  Google Scholar 

  • Krakat N, Westphal A, Satke K et al (2010) The microcosm of a biogas fermenter. Comparison of moderate hyperthermophilic (60°C) with thermophilic (55°C) conditions. Eng Life Sci 10:520–527

    Article  CAS  Google Scholar 

  • Krause L, Diaz NN, Goesmann A et al (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36:2230–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kumar V, Kumar S, Singh J, Kumar P (2020) Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined physical, microbial and chemical pretreatments. Bioresour Technol 297:122484

    Article  CAS  PubMed  Google Scholar 

  • Larkum AW, Ross IL, Kruse O et al (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30(4):198–205

    Article  CAS  PubMed  Google Scholar 

  • Larson ED, Kartha S (2000) Expanding roles for modernized biomass energy. Energy Sustain Dev 4(3):15–25

    Article  Google Scholar 

  • Lazaro CZ, Perna V, Etchebehere C et al (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int J Hydrog Energy 39:6407–6418. https://doi.org/10.1016/j.ijhydene.2014.02.058

    Article  CAS  Google Scholar 

  • Lee SK, Chou H, Ham TS (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563. https://doi.org/10.1016/j.copbio.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Piumi F, Coutinho PM et al (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Gen Biol 45(5):638–645

    Article  CAS  Google Scholar 

  • Li Y, Zhu Q, Ding P, You S, Zhang Q, Jiang H (2020) Effects of Fe0 and Ni0 nanoparticles on hydrogen production from cotton stalk hydrolysate using Klebsiella sp. WL1316: evaluation of size and concentration of the nanoparticles. Int J Hydrog Energy 45(11):6243–6253

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, De Vrieze J, Li J et al (2016) Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresour Technol 209:228–236

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:53–69

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18):e120–e120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logan BE, Wallack MJ, Kim KY et al (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2:206–214. https://doi.org/10.1021/acs.estlett.5b00180

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Y, Percival Zhang Y, Lee R et al (2006) Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci 103(44):16165–16169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Over production of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Angelidaki I (2014) Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and ion torrent sequencing. Water Res 60:156–163

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Gosnell JH (2007) Autothermal reformer-reforming exchanger arrangement for hydrogen production. U.S. Patent No. 7,220,505, May 22, 2007

    Google Scholar 

  • Matuszewska A (2016) Microorganisms as direct and indirect sources of alternative fuels. https://www.intechopen.com/books/alternative-fuels-technical-and-environmental-conditions/microorganisms-as-direct-and-indirect-sources-of-alternative-fuels

  • Maus I, Koeck DE, Cibis KG et al (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17(5–6):477–489

    Article  CAS  Google Scholar 

  • Mhuantong W, Charoensawan V, Kanokratana P et al (2015) Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8:16. https://doi.org/10.1186/s13068-015-0200-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingardon F, Perret S, Belaich A et al (2005) Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa N, Okamoto T, Nakamura K (1988) Expression of a cellulase gene in Zymomonas mobilis. J Biotechnol 7(3):167–177

    Article  CAS  Google Scholar 

  • Mohanty SK, Swain MR (2019) Bioethanol production from corn and wheat: food, fuel, and future. In: Bioethanol production from food crops. Academic Press, Cambridge, pp 45–59

    Chapter  Google Scholar 

  • Mota VT, Santos FS, Amaral MCS (2013) Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance. Bioresour Technol 146:494–503. https://doi.org/10.1016/j.biortech.2013.07.110

    Article  CAS  PubMed  Google Scholar 

  • Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 60(3):871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T et al (1998) Assimilation of cello oligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxy methyl cellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  CAS  PubMed  Google Scholar 

  • Narwal E, Choudhary J, Singh S, Nain L, Kumar S, Dotaniya ML, Kumar A (2020) Microbial biofuels: renewable source of energy. Front Soil Environ Microbiol 19:181–192

    Article  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metabol Eng 12:307–331

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    Article  CAS  Google Scholar 

  • Nyren P, Petersson B, Uhlen M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208(1):171–175

    Article  CAS  PubMed  Google Scholar 

  • Okuda K (2002) Structure and phylogeny of cell coverings. J Plant Res 115(4):283–288

    Article  CAS  PubMed  Google Scholar 

  • Ortseifen V, Stolze Y, Maus I et al (2016) An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279

    Article  CAS  PubMed  Google Scholar 

  • Ozbayram EG, Kleinsteuber S, Nikolausz M et al (2017) Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 46:122–130

    Article  CAS  PubMed  Google Scholar 

  • Pachiega R, Rodrigues MF, Rodrigues CV, Sakamoto IK, Varesche MBA, De Oliveira JE, Maintinguer SI (2019) Hydrogen bioproduction with anaerobic bacteria consortium from brewery wastewater. Int J Hydrog Energy 44(1):155–163

    Article  CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388

    Article  CAS  Google Scholar 

  • Peng L, Fu D, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett 18:1–13

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162. https://doi.org/10.1002/biot.200900220

    Article  CAS  PubMed  Google Scholar 

  • Perret S, Casalot L, Fierobe HP (2004) Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol 186:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  PubMed  Google Scholar 

  • Pore SD, Shetty D, Arora P et al (2016) Metagenome changes in the biogas producing community during anaerobic digestion of rice straw. Bioresour Technol 213:50–53

    Article  CAS  PubMed  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lon Ser B 84(571):260–276

    Article  Google Scholar 

  • Poudyal RS, Tiwari I, Najafpour MM et al (2015) Current insights to enhance hydrogen production by photosynthetic organisms. In: Stolten D, Emonts B (eds) Hydrogen science and engineering. Wiley, Hoboken, p 461e87

    Google Scholar 

  • Ramos JL, Duque E, Gallegos MT et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Ranjan R, Rani A, Metwally A et al (2016) Analysis of the microbiome. Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977

    Article  CAS  PubMed  Google Scholar 

  • Ratti RP, Delforno TP, Okada DY et al (2015) Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing. Microbiol Res 173:10–17

    Article  CAS  PubMed  Google Scholar 

  • Razaghifard R (2013) Algal biofuels. Photosynth Res 117:207–219

    Article  CAS  Google Scholar 

  • Rincon AM, Codón AC, Castrejón F et al (2001) Improved properties of baker’s yeast mutants resistant to 2-deoxy-D-glucose. Appl Environ Microbiol 67(9):4279–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML et al (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng Biotechnol 23:37–84

    Google Scholar 

  • Santos SC, Ferreira Rosa PR, Sakamoto IK (2014) Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugarcane stillage. Int J Hydrog Energy 39:9000–9011. https://doi.org/10.1016/j.ijhydene.2014.03.241

    Article  CAS  Google Scholar 

  • Sarangi PK, Nanda S (2020) Biohydrogen production through dark fermentation. Chem Eng Technol 43(4):601–612

    Article  CAS  Google Scholar 

  • Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22(6):818–823

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Seibert M, King P, Posewitz MC et al (2008) Photosynthetic water-splitting for hydrogen production. In: Wall J, Harwood C, Demain A (eds) Bioenergy. ASM Press, Washington DC, p 273e91

    Google Scholar 

  • Shanmugam KT, Yomano LP, York SW, Ingram LO (2020) Advanced fermentation technologies: conversion of biomass to ethanol by organisms other than yeasts, a case for Escherichia coli. In: Green energy to sustainability: strategies for global industries, pp 219–238

    Chapter  Google Scholar 

  • Shao W, Wang Q, Rupani PF, Krishnan S, Ahmad F, Rezania S, Din MFM (2020) Biohydrogen production via thermophilic fermentation: a prospective application of Thermotoga species. Energy 197:117199

    Article  CAS  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF et al (2012) Next generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Silva-Filho EA, Dos Santos SKB, do Monte Resende A et al (2005) Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie Van Leeuwenhoek 88(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable and based fuels. Bioresour Technol 102:10e6

    Article  CAS  Google Scholar 

  • Siqueira JGW, Rodrigues C, de Souza Vandenberghe LP, Woiciechowski AL, Soccol CR (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132:105419

    Article  CAS  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Souza ME, Fuzaro G, Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci Technol 25:213–222

    Article  CAS  Google Scholar 

  • Speda J, Jonsson BH, Carlsson U et al (2017) Metaproteomics-guided selection of targeted enzymes for bioprospecting of mixed microbial communities. Biotechnol Biofuels 10:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spiller R, Knoshaug EP, Nagle N, Dong T, Milbrandt A, Clippinger J, Pienkos PT (2020) Upgrading brown grease for the production of biofuel intermediates. Bioresour Technol Rep 9:100344

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Stephenson PG, Moore CM, Terry MJ et al (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623

    Article  CAS  PubMed  Google Scholar 

  • Stolze Y, Bremges A, Rumming M et al (2016) Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. Biotechnol Biofuels 9:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Liu T, Muller B et al (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials. Biol Res 2:472–499

    CAS  Google Scholar 

  • Takatsuka Y, Chen C, Nikaido H (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 107:6559–6565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theuerl S, Kohrs F, Benndorf D et al (2015) Community shifts in a well-operating agricultural biogas plant. How process variations are handled by the microbiome. Appl Microbiol Biotechnol 99:7791–7803

    Article  CAS  PubMed  Google Scholar 

  • Tran PHN, Ko JK, Gong G, Um Y, Lee SM (2020) Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels 13(1):12

    Article  CAS  Google Scholar 

  • Treu L, Campanaro S, Kougias PG et al (2016) Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environ Sci Technol 50:6079–6090

    Article  CAS  PubMed  Google Scholar 

  • Tsouko E, Papanikolaou S, Koutinas AA (2016) Production of fuels from microbial oil using oleaginous microorganisms. In: Handbook of biofuels production: processes and technologies, 2nd edn, pp 201–236. https://doi.org/10.1016/B978-0-08-100455-5.00008-4

    Chapter  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43. https://doi.org/10.1038/nature02340

    Article  CAS  PubMed  Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1996) Co-expression of a Phanerochaete chrysosporium cellobiohydrolase gene and a Butyrivibriofibrisolvens endo-β-1,4-glucanase gene in Saccharomyces cerevisiae. Curr Genet 30:246–250

    Article  PubMed  Google Scholar 

  • Varaprasad D, Ragasudha N, Paramesh K, Shankar PC, Parveen SN, Chandrasekhar T (2020) Production of bioethanol from green alga Chlorella vulgaris: an important approach to utilize algal feedstock or waste. In: Bioresource utilization and bioprocess. Springer, Singapore, pp 57–65

    Chapter  Google Scholar 

  • Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC et al (2020) Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metabol Eng Commun 10:e00116

    Article  Google Scholar 

  • Wang W, Xie L, Luo G et al (2013) Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresour Technol 146:234–239

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Z, Zhou X et al (2016) Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresour Technol 219:150–157

    Article  CAS  PubMed  Google Scholar 

  • Wang WT, Dai LC, Wu B, Qi BF, Huang TF, Hu GQ, He MX (2020) Biochar-mediated enhanced ethanol fermentation (BMEEF) in Zymomonas mobilis under furfural and acetic acid stress. Biotechnol Biofuels 13(1):1–10

    Article  CAS  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313

    Article  CAS  PubMed  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK et al (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Witarsa F, Lansing S, Yarwood S et al (2016) Incubation of innovative methanogenic communities to seed anaerobic digesters. Appl Microbiol Biotechnol 100:9795–9806

    Article  CAS  PubMed  Google Scholar 

  • Woertz I, Feffer A, Lundquist T et al (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng ASCE 135:1115–1122

    Article  CAS  Google Scholar 

  • Wongluang P, Chisti Y, Srinophakun T (2013) Optimal hydrodynamic design of tubular photo bioreactors. J Chem Technol Biotechnol 88:55–61

    Article  CAS  Google Scholar 

  • Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostablecellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58(7):2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman CE, Dale BE, Elander RT et al (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Wang Y, Fang HHP et al (2014) Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by meta transcriptomic and metagenomic analysis. Sci Rep 4:6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamei G, Anyi Y, Jun B et al (2017) Bioreactor performance and microbial community dynamics in a production-scale biogas plant in northeastern China. Int J Agric Biol Eng 10:191–201

    Google Scholar 

  • Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform 17(1):135

    Article  CAS  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635

    Article  CAS  PubMed  Google Scholar 

  • Yi S, Zheng Y (2006) Research and application of oleaginous microorganism. J China Foreign Energy 2:21–32

    Google Scholar 

  • Yoo M, Soucaille P (2020) Trends in systems biology for the analysis and engineering of Clostridium acetobutylicum metabolism. Trends Microbiol 28(2):118–140

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H et al (2007) Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol 74:754–760

    Article  CAS  PubMed  Google Scholar 

  • Zabranska J, Pokorna D (2018) Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv 36(3):707–720

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S et al (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Xian M, Liu M, Zhao G (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou S, Ingram LO (2001) Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol Lett 23:1455–1462

    Article  CAS  Google Scholar 

  • Zhu N, Yang J, Ji L et al (2016) Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol Biofuels 9:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatesh, S., Krishnaveni, M. (2020). Microbes: The Next-Generation Bioenergy Producers. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_2

Download citation

Publish with us

Policies and ethics