Skip to main content
Log in

Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains

  • Applied Genetics and Regulation
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme activities of the pentose phosphate pathway in the ethanologenic, Gram-negative bacterium Zymomonas mobilis were studied in order to construct a xylose catabolic pathway. In cell-free extracts of wild-type Z. mobilis CP4, activities of the enzymes transketolase (TKT) [2 munits (U)/mg], phosphoribose epimerase (640 mU/mg), phosphoribose isomerase (1600 mU/mg) and 6-phosphogluconate dehydrogenase (2 mU/mg) were determined. However, no transaldolase activity could be detected. Recombinant strains of Z. mobilis were constructed that carried the xylAB genes of the xylose catabolic pathway from Klebsiella pneumoniae. Expression of xylose isomerase (XI, 150 mU/mg) and xylulokinase (XK) (1300 mU/mg) were found in recombinant strains but no growth on pentose as sole carbon source occurred. The xyl-recombinant cells were moreover growth-inhibited in the presence of xylose and were found to accumulate xylitol phosphate due to the subsequent action of a novel enzyme, an NADPH-dependent aldose reductase, and a side reaction of XK on xylitol. From the xylAB recombinant strains, mutants were isolated that were less inhibited and formed less xylitol phosphate when grown in the presence of xylose. The tkt gene of E. coli was cloned on the xylAB plasmid and introduced into Z. mobilis strains. This led to higher TKT activities (150 mU/mg) and, in cooperation with the enzymes XI and XK, mediated a conversion of small amounts of xylose to CO2 and ethanol. However, no growth on xylose as sole carbon source was detected, instead sedoheptulose 7-P accumulated intracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algar EM, Scopes RK (1985) Studies on cell-free metabolism: ethanol production by extracts of Zymomonas mobilis. J Biotechnol 2:275–287

    Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Google Scholar 

  • Boehringer Mannheim (1984) Methoden der Lebensmittelanalytik

  • Bohren KM, Bullock B, Wermuth B, Gabbay KH (1989) The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem 264:9547–9551

    Google Scholar 

  • Boyer HW, Roulland-Dussoix (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bringer S, Sahm H, Swyzen W (1984) Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotechnol Bioeng Symp 14:311–319

    Google Scholar 

  • DiMarco AA, Romano AH (1985) d-Glucose transport system of Zymomonas mobilis. Appl Environ Microbiol 49:151–157

    Google Scholar 

  • Fein JE, Charley RC, Hopkins KA, Lawers B, Lawford HG (1983) Development of a simple defined medium for continuous ethanol production by Zymomonas mobilis. Biotechnol Lett 5:1–6

    Google Scholar 

  • Feldmann SD, Sahm H, Sprenger GA (1992) Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K-12. Mol Gen Genet 234:201–210

    Google Scholar 

  • Gibbs M, DeMoss RD (1951) Ethanol formation in Pseudomonas lindneri. Arch Biochem Biophys 34:478–479

    Google Scholar 

  • Gonçalves de Lima O, De Araujo JM, Schumacher IF, Cavalcanti da Silva E (1970) Estudos de microorganismos antagonistas presentes nas bebidas fermentadas usadas pelo povo do Recife. I Sobre uma variedade de Zymomonas mobilis (Lindner) (1928). Rev Inst Antibiot Univ Recife 10:3–15

    Google Scholar 

  • Ingram LO, Eddy C, Mackenzie K, Conway T, Alterthum F (1989) Genetics of Zymomonas mobilis and ethanol production. Dev Ind Microbiol 30:53–59

    Google Scholar 

  • Izumori K, Watanabe Y, Sugimoto S (1980) Evolution of d-arabinose, l-xylose and l-ribose utilization in Mycobacterium smegmatis: mutants with a novel enzyme “pentose reductase”. Agric Biol Chem 44:1443–1446

    Google Scholar 

  • Josephson BL, Fraenkel DG (1969) Transketolase mutants of Escherichia coli. J Bacteriol 100:1289–1295

    Google Scholar 

  • Khym JX, Zill LP (1951) The separation of monosaccharides by ion exchange. J Am Chem Soc 73:2399–2400

    Google Scholar 

  • Klingenberg M, Pfaff E (1967) Means of terminating reactions. Methods Enzymol 10:680–684

    Article  CAS  Google Scholar 

  • Liu C-Q, Goodman AE, Dunn NW (1988) Expression of the cloned Xanthomonas d-xylose catabolic genes in Zymomonas mobilis. J Biotechnol 7:61–70

    Google Scholar 

  • London J (1990) Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol Rev 87:103–112

    Google Scholar 

  • McGill DJ, Dawes EA (1971) Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J 125:1059–1068

    Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell; a molecular approach. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Neuberger MS, Hartley BS, Walker JE (1981) Purification and properties of d-ribulokinase and d-xylulokinase from Klebsiella aerogenes. Biochem J 193:513–524

    Google Scholar 

  • Park IL, Kwon SH, Lee KJ (1988) Effect of ethanol on selected enzymes of the Entner-Doudoroff pathway in Z. mobilis. Korean J Appl Microbiol Biotechnol 16:402–406

    Google Scholar 

  • Reynen M, Reipen I, Sahm H, Sprenger GA (1990) Construction of expression vectors for the Gram-negative bacterium Zymomonas mobilis. Mol Gen Gen 223:335–341

    Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production in Zymomonas mobilis. Adv Biochem Eng 23:27–84

    Google Scholar 

  • Sahm H, Bringer-Meyer S, Sprenger G (1992) The genus Zymomonas. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol III, 2nd edn. Springer, Berlin Heidelberg New York, pp 2287–2301

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Scangos GA, Reiner AM (1979) A unique pattern of toxic synthesis in pentitol catabolism: implications for evolution. J Mol Evol 12:189–195

    Google Scholar 

  • Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin Heidelberg New York, pp 98–106

    Google Scholar 

  • Simpson FJ (1966) d-Xylulokinase. Methods Enzymol 9:454–458

    Google Scholar 

  • Sprenger GA (1991) Cloning and preliminary characterization of the transketolase gene from Escherichia coli K-12. In: Bisswanger H, Ulrich J (eds) Biochemistry and physiology of thiamin diphosphate enzymes. VCH, Weinheim, pp 322–326

    Google Scholar 

  • Struch T, Neuss B, Bringer-Meyer S, Sahm H (1991) Osmotic adjustment of Zymomonas mobilis to concentrated glucose solutions. Appl Microbiol Biotechnol 34:518–523

    Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    Google Scholar 

  • Tanaka S, Lerner SA, Lin ECC (1967) Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol 93:642–648

    Google Scholar 

  • Tchola O, Horecker BL (1966) Transaldolase. Methods Enzymol 9:499–505

    Google Scholar 

  • Uhlenbusch I, Sahm H, Sprenger GA (1991) Expression of an l-alanine dehydrogenase gene in Zymomonas mobilis and excretion of l-alanine. Appl Environ Microbiol 57:1360–1366

    Google Scholar 

  • Viikari L, Korhola M (1986) Fructose metabolism in Zymomonas mobilis. Appl Microbiol Biotechnol 24:471–476

    Google Scholar 

  • Yanase H, Kotani T, Yasuda M, Matsuzawa A, Tonomura K (1991) Metabolism of galactose in Zymomonas mobilis. Appl Microbiol Biotechnol 35:364–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. Sprenger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmann, S.D., Sahm, H. & Sprenger, G.A. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38, 354–361 (1992). https://doi.org/10.1007/BF00170086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170086

Keywords

Navigation