Skip to main content
Log in

Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26)

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSOl−1, 6 g lactic acid l−1, 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basso L.C., Alves D.M.G., Amorin H.V., 1997 The antibacterial action of succinic acid produced by yeast during fermentation Revista de Microbiologia 28: 77–82

    Google Scholar 

  • Brin M., 1966. Tranketalose: clinical aspects Methods in Enzymology 9: 506–514

    Article  Google Scholar 

  • Calahorra M., Ramirez J., Clemente S.M., Peña A., 1987 Electrochemical potential at ion transport in vesicles of yeasts plasma membrane Biochimica et Biophysica Acta 899: 229–238

    Article  PubMed  CAS  Google Scholar 

  • Cartwright, C.P., Rose, A.H., Calderbank, J. & Keenan, M.H.J. 1989 Solute transport. In The Yeasts, ed. Rose, A.H. London: Academic Press. ISBN 0-12-596413-7

  • Cássio F., Leão C., Van Uden N., 1987 Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae Applied and Environmental Microbiology 53: 509–513

    PubMed  Google Scholar 

  • Daeschel M.A., Fleming H.P., MC Felters R.F., 1988 Mixed culture fermentation of cucumber juice with Lactobacillus plantarum and yeasts Journal of Food Science 53: 863–864

    Article  Google Scholar 

  • Eraso P., Gancedo C., 1987 Activation of yeast plasma membrane ATPase by acid pH during growth FEBS Letters 224: 187–192

    Article  PubMed  CAS  Google Scholar 

  • François J., Neves M.J., Hers H.G., 1991 The control of trehalose biossinthesis in Saccharomyces cerevisiae: evidence for catabolite inativation and repression of Trehalose-6-phosphatase Yeast 7: 575–587

    Article  PubMed  Google Scholar 

  • Gibbons W.R., Westby C.A., 1987 Effects of sodium meta bisulfite on diffusion fermentation of fodder beets fuel ethanol production Biotechnology and Bioengineering 30: 906–916

    Article  Google Scholar 

  • Hallsworth J.E., 1998 Ethanol-induced water stress in Yeast Journal of Fermentation and Bioengineering. 85: 125–137

    Article  CAS  Google Scholar 

  • Hynes S.H., Kjarsgaard D.M., Thomas K.C., Ingledew W.M., 1997 Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation Journal of Industrial Microbiology and Biotechnology 18: 284–291

    Article  PubMed  CAS  Google Scholar 

  • Leão C., Van Uden N., 1982 Effects of ethanol and other alkanois on the glucose transport system of Saccharomyces cerevisiae Biotechnology and Bioengineering 24: 2601–2604

    Article  Google Scholar 

  • Lillie S.H., Pringle J.R., 1980 Reserve carbohydrate metabolism in Saccharomyces cerevisiae responses to nutrient limitation Journal of Bacteriology 143: 1384–1394

    PubMed  CAS  Google Scholar 

  • Macris, B.J. & Markakis, P. 1974 In The Yeasts, ed. Rose, A.H. London: Academic Press. ISBN 0-12-596413-7: 3, 16

  • Maiorella B., Blanch H.W., Wilke C.R., 1983 By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae Biotechnology and Bioengineering 25: 103–121

    Article  CAS  Google Scholar 

  • Martini S., Ricci M., Bonechi C., Trabalzini L., Santucci A., Rossi C., 2004 In vivo C-CMR and modeling study of metabolic yield response to ethanol stress in a wild-type strain of Saccharomyces cerevisiae FEBS Letters 564: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Nelson N.A., 1944 Photometric adaptation of the Somogyi method for the determination of glucose Journal of Biological Chemistry 153: 375–380

    CAS  Google Scholar 

  • Ngang J.J.E., Letourneau F., Villa P., 1989 Alcoholic fermentation of beet molasses: effects of lactic acid on yeast fermentation parameters Applied Microbiology and Biotechnology 31: 125–128

    Article  CAS  Google Scholar 

  • Oliva-Neto P., Yokoya F., 1994 Evaluation of bacterial contamination in fed-batch alcoholic fermentation process World Journal of Microbiology and Biotechnology 10: 697–699

    Article  Google Scholar 

  • Oliva-Neto P., Yokoya F., 1997 Effects of nutritional factors on growth of Lactobacillus fermentum mixed with Saccharomyces cerevisiae in alcoholic fermentation Brazilian Journal of Microbiology 28: 25–31

    Google Scholar 

  • Oliva-Neto P., Ferreira M.A., Yokoya F., 2004 Screening for yeast with antibacterial properties from an ethanol distillery Bioresource Technology 92: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Panek A.D., 1975. Trehalose synthesis during starvation of baker’s yeast European Journal of Applied Microbiology 2: 39–46

    Article  CAS  Google Scholar 

  • Ramos M.T., Madeira-Lopes A., 1990 Effects of acetic acid on temperature profile of ethanol tolerance in Saccharomyces cerevisiae Biotechnology Letters 12: 229–234

    Article  CAS  Google Scholar 

  • Thevelein J.M., 1984 Regulation of trehalose mobilization in fungi Microbiological Reviews 48: 42–59

    PubMed  CAS  Google Scholar 

  • Trevelyan W.E., Harrison J.S., 1956. Studies on yeast metabolism. 5. The trehalose content of baker’s yeast during anaerobic fermentation Biochemical Journal 62: 177–183

    PubMed  CAS  Google Scholar 

  • Viegas C.A., Rosa M.F., Sá-Correia I., Novais J.M., 1989. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation Applied and Environmental Microbiology 55: 21–28

    PubMed  CAS  Google Scholar 

  • Walker-Caprioglio H., Rodriguez R.J., Parks L.W., 1985 Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition Applied and Environmental Microbiology 50: 685–689

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Usina Nova America (Tarumã/SP/Brazil) and Imesa (Instituto Municipal de Ensino Superior de Assis/SP/Brazil) for lending the HPLC and CG for the sample analysis. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dorta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorta, C., Oliva-Neto, P., de -Abreu-Neto, M. et al. Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22, 177–182 (2006). https://doi.org/10.1007/s11274-005-9016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9016-1

Keywords

Navigation