Skip to main content
Log in

Biodiversity and application of microalgae

  • Published:
Journal of Industrial Microbiology

Abstract

The algae are a polyphyletic, artificial assemblage of O2-evolving, photosynthetic organisms (and secondarily nonphotosynthetic evolutionary descendants) that includes seaweeds (macroalgae) and a highly diverse group of microorganisms known as microalgae. Phycology, the study of algae, developed historically as a discipline focused on the morphological, physiological and ecological similarities of the subject organisms, including the prokaryotic bluegreen algae (cyanobacteria) and prochlorophytes. Eukaryotic algal groups represent at least five distinct evolutionary lineages, some of which include protists traditionally recognized as fungi and protozoa. Ubiquitous in marine, freshwater and terrestrial habitats and possessing broad biochemical diversity, the number of algal species has been estimated at between one and ten million, most of which are microalgae. The implied biochemical diversity is the basis for many biotechnological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akatsuka I (ed). 1990. Introduction to Applied Phycology. SPB Academic Publishing, The Hague.

    Google Scholar 

  2. Andersen RA. 1992. Diversity of eukaryotic algae. Biodiversity and Conservation 1: 267–292.

    Google Scholar 

  3. Andersen RA. 1996. Algae. In: Maintaining Cultures for Biotechnology and Industry (Hunter-Cevera JC and A Belt, eds), pp 29–64, Academic Press, San Diego.

    Google Scholar 

  4. Bar-Or Y and M Shilo. 1988. Unique characteristics and exopolysaccharides of benthic cyanobacteria of potential importance for their mass cultivation. In: Polysaccharides from Microalgae: A New Agroindustry (Ramus J and MC Jones, eds), pp 26–32, International Workshop Proceedings, Duke University Marine Laboratory, Beaufort.

  5. Belay A, Y Ota, K Miyakawa and H Shimamatsu. 1993. Current knowledge on potential health benefits ofSpirulina. J Appl Phycol 5: 235–241.

    Google Scholar 

  6. Belay A, Y Ota, K Miyakawa and H Shimamatsu. 1994. Production of high qualitySpirulina at Earthrise Farms. In: Algal Biotechnology in the Asia-Pacific Region (Phang SM et al, eds), pp 92–102, University of Malaya, Kuala Lumpur.

    Google Scholar 

  7. Ben-Amotz A and M Avron. 1980. Glycerol, β-carotene and dry algal meal production by commercial cultivation ofDunaliella. In: Algae Biomass. Production and Use (Shelef G and CJ Soeder, eds), pp 603–610, Elsevier, Amsterdam.

    Google Scholar 

  8. Benemann JR. 1992. Microalgae aquaculture feeds. J Appl Phycol 4: 233–245.

    Google Scholar 

  9. Bjornland T and S Liaanen-Jensen. 1989. Distribution pattern of carotenoids in relation to chromophyte phylogeny and systematics. In: The Chromophyte Algae: Problems and Perspectives (Green JC, BSC Leadbetter and WL Diver, eds), pp 37–60, Clarendon Press, Oxford.

    Google Scholar 

  10. Bold HC and MJ Wynne. 1985. Introduction to the Algae. 2nd edn. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  11. Borowitzka MA. 1988. Fats, oils and hydrocarbons. In: Micro-algal Biotechnology (MA Borowitzka and LJ Borowitzka, eds), pp 257–287, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  12. Borowitzka MA. 1988. Vitamins and fine chemicals from micro-algae. In: Micro-algal Biotechnology (MA Borowitzka and LJ Borowitzka, eds), pp 153–196, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  13. Borowitzka MA. 1988. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7: 3–15.

    Google Scholar 

  14. Borowitzka MA and LJ Borowitzka (eds) 1988. Micro-algal Biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  15. Borowitzka MA and LJ Borowitzka. 1988.Dunaliella. In: Micro-algal Biotechnology (MA Borowitzka and LJ Borowitzka, eds), pp 27–58, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  16. Brown MR and CL Farmer. 1994. Riboflavin content of six species of microalgae in mariculture. J Appl Phycol 6: 61–65.

    Google Scholar 

  17. Brown Mr and KA Miller. 1992. The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4: 205–212.

    Google Scholar 

  18. Burlew JS (ed). 1953. Algal Culture from Laboratory to Pilot Plant. Carnegie Institute. Washington, DC.

    Google Scholar 

  19. Carmichael WW. 1992. Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72: 445–459.

    PubMed  Google Scholar 

  20. Castenholz RW. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476–504.

    PubMed  Google Scholar 

  21. Castenholz RW. 1992. Species useage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28: 737–745.

    Google Scholar 

  22. Castenholz RW and JB Waterbury. 1989. Oxygenic photosynthetic bacteria. Group I. Cyanobacteria. In: Bergey's Manual of Systematic Bacteriology, Vol 3 (Staley JT et al, eds), pp 1710–1798, Williams and Wilkens, Baltimore, Maryland.

    Google Scholar 

  23. Cavalier-Smith T. 1989. The kingdom Chromista. In: The Chromophyte Algae: Problems and Perspectives (Green JC, BSC Leadbetter and WL Diver, eds), pp 381–407, Clarendon Press, Oxford.

    Google Scholar 

  24. Chen H, SE Bingham, V Chantler, B Pritchard and DJ Kyle. 1990.13C-labeled fatty acids from microalgae. Dev Ind Microbiol 31: 57–64.

    Google Scholar 

  25. Chishom SW, SL Frankel, R Goericke, RJ Olson, B Palenik, JB Waterbury, L West-Johnsrud and ER Zettler. 1992.Prochlorococcus marinus nov gen sp: an oxyphototrophic marine prokaryote containing divinyl chlorophylla andb. Archive fur Mikrobiologie 157: 297–300.

    Google Scholar 

  26. Cox ER (ed). 1980. Phytoflagellates. Developments in Marine Biology 2: Elsevier/North Holland, New York.

    Google Scholar 

  27. Cox J, H Chen, C Kabacoff, J Singer, S Hoeksema and D Kyle. 1989. The production of2H-,13C-, and15N-labelled biochemicals using microalgae. In: Stable Isotopers in Pediatric, Nutritional, and Metabolic Research (Chapman T, ed), Intercept Ltd Press, Andover.

    Google Scholar 

  28. Darley WM. 1982. Algal Biology: a Physiological Approach. Blackwell Scientific Publictions, Oxford.

    Google Scholar 

  29. De Roeck-Holtzman Y, I Quere and C Claire. 1991. Vitamin analysis of five planktonic microalgae and one macroalga. J Appl Phycol 3: 259–264.

    Google Scholar 

  30. DePauw N and G Persoone. 1988. Micro-algae for aquaculture. In: Micro-algal Biotechnology (MA Borowitzka and LA Borowitzka, eds), pp 197–221, Cambridge University Press, Cambridge.

    Google Scholar 

  31. Fogg GE. 1987. Marine planktonic cyanobacteria. In: The Cyanobacteria (Fay P and C Van Baalen, eds), pp 393–414, Elsevier, Amsterdam.

    Google Scholar 

  32. Geitler L. 1932. Cyanophyceae. In: L. Rabenhorst's Kryptogammenflora. Reprinted in 1985 by Koeltz Scientific Books, Koenigstein.

  33. Giovannoni SJ, S Turner, GJ Olsen, S Barns, DJ Lane and NR Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592.

    PubMed  Google Scholar 

  34. Glazer AN. 1987. Phycobilisomes: assembly and attachment. In: The Cyanobacteria (Fay P and C Van Baalen, eds), pp 69–94, Elsevier, Amsterdam.

    Google Scholar 

  35. Glazer AN. 1994. Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6: 105–112.

    Google Scholar 

  36. Gleason FK, J Porwoll, JL Flippen-Anderson and C George. 1986. X-ray structure determination of the naturally occurring isomer of cyanobacterin. J Org Chem 51: 1615–1616.

    Google Scholar 

  37. Goodwin TW. 1974. Sterols. In: Algal Physiology and Biochemistry (Stewart WDP ed), pp 266–280, Botanical Monographs 10, University of California Press, Berkeley.

    Google Scholar 

  38. Gorham PR and WW Carmichael. 1988. Hazards of freshwater bluegreen algae. In: Algae and Human Affairs (Lembi CA and JR Waaland, eds), pp 403–432, Cambridge University Press, Cambridge.

    Google Scholar 

  39. Greene B and GW Bedell. 1990. Algal gels or immobilized algae for metal recovery. In: Introduction to Applied Phycology (Akatsuka I, ed), pp 137–150, SPB Academic Publishing, The Hague.

    Google Scholar 

  40. Gustafson KR, JH Cardellina, RW Fuller, OW Weislow, RF Kiser, KM Snader, GML Patterson and MR Boyd. 1989. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Canc Inst 81: 1252–1258.

    Google Scholar 

  41. Harlin MM and WM Darley. 1988. The algae: an overview. In: Algae and Human Affairs (Lembi CA and RA Waaland, eds), pp 3–27, Cambridge University Press, Cambridge.

    Google Scholar 

  42. Hellebust JA. 1988. Polysaccharides produced by chromophyte microalgae. In: Polysaccharides from Microalgae: A New Agroindustry (Ramus J and MC Jones, eds), pp 13–19, International Workshop Proceedings, Duke University Marine Laboratory, Beaufort, North Carolina.

  43. Hodgson J. 1996. Heliosynthese takes on Martek infant formula market. Nature Biotechnol 14: 700.

    Google Scholar 

  44. Hoeksema SD, PW Behrens, R Gladue, KL Arnett, MS Cole, JM Rutten and DJ Kyle. 1989. An EPA-containing oil from microalgae in culture. In: Health Effects of Fish and Fish Oils (Chandra RK, ed), pp 337–347, ARTS Biomedical Publishers, St John's, Newfoundland.

    Google Scholar 

  45. Hoppe HA, T Levring and Y Tanaka (eds). 1979. Marine Algae in Pharmaceutical Sciences, Vol 1. de Gruyter, Berlin.

    Google Scholar 

  46. Hoppe HA and T Levring (eds). Marine Algae in Pharmaceutical Sciences, Vol 2. de Gruyter, Berlin.

  47. Ikawa M and JJ Sasner. 1990. The chemistry and physiology of algal toxins. In: Introduction to Applied Phycology. I. (Akatsuka I, ed), pp 27–65, SPB Academic Publishing, The Hague.

    Google Scholar 

  48. Jassby A. 1988.Spirulina: a model for microalgae as human food. In: Algae and Human Affairs (Lembi CA and JR Waaland, eds), pp 149–179, Cambridge University Press, Cambridge.

    Google Scholar 

  49. John DM. 1994. Biodiversity and conservation: an algal perspective. The Phycologist 38: 3–15.

    Google Scholar 

  50. Kates M. 1987. Lipids of diatoms and of halophilic species. In: The Metabolism, Structure, and Function of Plant Lipids (Stumpf PK, JB Mudd and WD Nes, eds), pp 613–621, Plenum Press, New York.

    Google Scholar 

  51. Kyle DJ. 1989. Biodeuteration: a novel method for the production of deuterated lipids. Lubrication Engineering 45: 355–359.

    Google Scholar 

  52. Laws EA and JL Berning. 1991. A study of the energetics and economics of microalgal mass culture with the marine chlorophyteTetraselmis suecica. Implications for use of power stack gases.Biotechnol Bioeng 37: 936–947.

    Google Scholar 

  53. Leavitt R. 1986. Osmotic regulation inChlorella sp 580 as a mechanism for the production ofl-proline. Beihefte zur Nova Hedwigia Heft 83: 139–141.

    Google Scholar 

  54. Lembi CA, SW O'Neil and DF Spencer. 1988. Algae as weeds: economic impact, ecology, and management alternatives. In: Algae and Human Affairs (Lembi CA and JR Waaland, eds), pp 455–481, Cambridge University Press, Cambridge.

    Google Scholar 

  55. Lembi CA and JR Waaland (eds). Algae and Human Affairs. Cambridge University Press, Cambridge.

  56. Lewin RA. 1989. Group II. Order Prochlorales. In: Bergey's Manual of Systematic Bacteriology, Vol 3 (Staley JT et al, eds), pp 1799–1806, Williams and Wilkens, Baltimore.

    Google Scholar 

  57. Lincoln EP and JFK Earle. 1990. Wastewater treatment with microalgae. In: Introduction to Applied Phycology. (Akatsuka I, ed), pp 429–446, SPB Academic Publishing, The Hague.

    Google Scholar 

  58. Manhart JR and RM McCourt. 1992. Molecular data and species concepts in the algae. J Phycol 28: 730–737.

    Google Scholar 

  59. margulis L, JO Corliss, M Melkonian and DJ Chapman (eds). 1990. Handbook of Protoctista. Jones and Bartlett, Boston.

    Google Scholar 

  60. Mattox KR and KD Stewart. 1984. Classification of the green algae: a concept based on comparative cytology. In: Systematics of the Green Algae (Irvine DEG and DM John, eds), pp 27–72, Academic Press, London.

    Google Scholar 

  61. Meeks JC. 1974. Chlorophylls. In: Algal Physiology and Biochemistry (Stewart SDP, ed), pp 161–175, Botanical Monographs 10, University of California Press, Berkeley.

    Google Scholar 

  62. Metting FB. 1981. The systematics and ecology of soil algae. Botan Rev 47: 195–312.

    Google Scholar 

  63. Metting FB. 1991. Biological surface features of semi-arid lands and deserts. In: Semi-Arid Lands and Deserts. Soil Resource and Reclamation (Skujins J, ed), pp 257–293, Marcel Dekker, New York.

    Google Scholar 

  64. Metting FB. 1990. Microalgae applications in agriculture. Dev Ind Microbiol 31: 265–270.

    Google Scholar 

  65. Metting FB and JW Pyne. 1986. Biologically active compounds from microalgae. Enzyme Microb Technol 8: 386–394.

    Google Scholar 

  66. Metting FB, WR Rayburn and PA Reynaud. 1988. Algae and agriculture. In: Algae and Human Affairs (Lembi CA, and JR Waaland, eds), pp 335–370, Cambridge University Press, Cambridge.

    Google Scholar 

  67. Murray RGE. 1989. The higher taxa, or a place for everything...? In: Bergey's Manual of Systematic Bacteriology, Vol 3 (Staley JT et al, eds), pp 1631–1634, Williams and Wilkens, Baltimore.

    Google Scholar 

  68. Norton TA, RA Andersen and M Melkonian. 1996. Algal biodiversity. Phycologia 35: 308–326.

    Google Scholar 

  69. Okada S, M Murakami and Y Yamaguchi. 1995. Hydrocarbon composition of newly isolated strains ofBotryococcus braunii. J Appl Phycol 7: 555–559.

    Google Scholar 

  70. O'Kelley CJ. 1993. Relationships of eukaryotic algal groups to other protists. In: Ultrastructure of Microalgae (Berner T, ed), pp 269–293, CRC Press, Boca Raton.

    Google Scholar 

  71. Oswald WJ. 1988. Micro-algae and waste-water treatment. In: Micro-algal Biotechnology (MA Borowitzka and LJ Borowitzka, eds), pp 305–328, Cambridge University Press, Cambridge.

    Google Scholar 

  72. Palenik B and R Haselkorn. 1992. Multiple evolutionary origins of prochlorophytes, the chlorophyll-b containing prokaryotes. Nature 355: 265–267.

    PubMed  Google Scholar 

  73. Patterson DL. Stramenopiles: chromophytes from a protistan perspective. In: The Chromophyte Algae: Problems and Perspectives (Green, JC, BSC Leadbetter and WL Diver, eds), pp 357–379, Clarendon Press, Oxford.

  74. Patterson GML, KK Baker, CL Baldwin, CM Bolis, FR Caplan, LK Larsen, IA Levine, RE Moore, CS Nelson, KD Tschappat, GD Tuang, MR Boyd, JH Cardellina II, RP Collins, KR Gustafson, KM Snader, OW Weislow and RA Lewin. 1993. Antiviral activity of cultured bluegreen algae (Cyanophyta). J Phycol 29: 125–130.

    Google Scholar 

  75. Patterson GW. 1987. Sterol synthesis and distribution and algal phylogeny. In: The Metabolism, Structure, and Function of Plant Lipids (Stumpf PK, JB Mudd and WD Nes, eds), pp 631–636, Plenum Press, New York.

    Google Scholar 

  76. Pesando D. 1990. Antibacterial and antifungal activities of marine algae. In: Introduction to Applied Phycology (Akatsuka, I, ed), pp 3–26, SPB Academic Publishing, The Hague.

    Google Scholar 

  77. Radmer RJ. 1996. Algal diversity and commercial algal products. BioScience 46: 263–270.

    Google Scholar 

  78. Radmer RJ and BC Parker. 1994. Commercial applications of algae: opportunities and constraints. J Appl Phycol 6: 93–98.

    Google Scholar 

  79. Rayburn WR. 1988. Polysaccharides of chlorophytes. In: Polysaccharides from Microalgae: A New Agroindustry (Ramus J and MC Jones, eds), pp 20–25, International Workshop Proceedings, Duke University Marine Laboratory, Beaufort.

  80. Reith M. 1995. Molecular biology of rhodophyte and chromophyte plastids. Annu Rev Plant Physiol Plant Mol Biol 46: 549–575.

    Google Scholar 

  81. Richmond A. 1986. Microalgae of economic potential. In: Handbook of Microalgal Mass Culture (Richmond A, ed), pp 199–243, CRC Press, Boca Raton.

    Google Scholar 

  82. Richmond A. 1986. Cell response to environmental factors. In: Handbook of Microalgal Mass Culture (Richmond A, ed), pp 69–99, CRC Press, Boca Raton.

    Google Scholar 

  83. Richmond A and EW Becker. 1986. Technological aspects of mass cultivation—a general outline. In: Handbook of Microalgal Mass Culture (Richmond, A, ed), pp 245–263, CRC Press, Boca Raton.

    Google Scholar 

  84. Roger PA and SA Kulasooriya. 1980. Blue-Green Algae and Rice. International Rice Research Institute, Los Baños, The Philippines.

    Google Scholar 

  85. Rogers LJ and JR Gallon (eds). 1988. Biochemistry of the Algae and Cyanobacteria. Oxford Scientific Publications, Clarendon Press, Oxford.

    Google Scholar 

  86. Round FE, RM Crawford and DG Mann. 1990. The Diatoms. Cambridge University Press, Cambridge.

    Google Scholar 

  87. Running JA, RH Huss and PT Olsen. 1994. Heterotrophic production of ascorbic acid by microalgae. J Appl Phycol 6: 99–104.

    Google Scholar 

  88. Saunders GW, D Potter, MP Paskind and RA Andersen. 1995. Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci USA 92: 244–248.

    PubMed  Google Scholar 

  89. Shapiro LP and RRL Guillard. 1986. Physiology and ecology of the marine eukaryotic ultraplankton. Can Bull Fish Aquat Sci 214: 371–389.

    Google Scholar 

  90. Sieburth J McN, V Smetacek and J Lang. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relation to plankton size fractions. Limnol Oceanogr 23: 1256–1263.

    Google Scholar 

  91. Stewart WDP (ed). 1974. Algal Physiology and Biochemistry. Botanical Monographs 10. University of California Press, Berkeley.

    Google Scholar 

  92. Thomsen HA. 1986. A survey of the smallest eukaryotic organisms of the marine phytoplankton. Can Bull Fish Aquat Sci 214: 121–158.

    Google Scholar 

  93. van den Hoek C, D Mann and HM Jahns. 1994. An introduction to Phycology. Cambridge University Press, Cambridge.

    Google Scholar 

  94. Vonshak A. 1988. Porphyridium. In: Micro-algal Biotechnology (MA Borowitzka and LJ Borowitzka, eds), pp 85–134, Cambridge University Press, Cambridge.

    Google Scholar 

  95. Waterbury JB, SW Watson, RRL Guillard and LE Brand. 1979. Widespread occurrence of a unicellular marine, planktonic cyanobacterium. Nature 277: 293–294.

    Google Scholar 

  96. Wilde EA, JR Benemann, JC Weissmann and DW Tillett. 1991. Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3: 159–167.

    Google Scholar 

  97. Wilmotte A and S Golubic. 1991. Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algo Stud 64: 1–24.

    Google Scholar 

  98. Winter A, RW Jordan and PH Roth. 1994. Biogeography of living coccolithophores in ocean waters. In: Coccolithophores (Winter A and WG Siesser, eds), pp 161–176, Cambridge University Press, Cambridge.

    Google Scholar 

  99. Woese CR, O Kandler and ML Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci USA 87: 4576–4579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metting, F.B. Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology 17, 477–489 (1996). https://doi.org/10.1007/BF01574779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574779

Keywords

Navigation