Skip to main content

Advertisement

Log in

Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA ++, ΔhycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 ± 5.0 mmol h−1 g−1 dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 ΔldhA ΔfrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 ± 6.9 mmol h−1 g−1. Furthermore, a maximum hydrogen production rate of 144.2 mmol h−1 g−1 was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h−1 was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam KY, Clark DP (1989) Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol 171:6213–6217

    Article  CAS  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243

    Article  Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19:383–388

    Article  CAS  Google Scholar 

  • Hirshfield IN, Terzulli S, O’Byrne C (2003) Weak organic acids: a panoply of effects on bacteria. Sci Prog 86:245–269

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287

    Article  CAS  Google Scholar 

  • Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS (2004) Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87:648–657

    Article  CAS  Google Scholar 

  • Leonhartsberger S, Korsa I, Böck A (2002) The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4:269–276

    CAS  PubMed  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  Google Scholar 

  • Nandi R, Bhattacharya PK, Bhaduri AN, Sengupta S (1992) Synthesis and lysis of formate by immobilized cells of Escherichia coli. Biotechnol Bioeng 39:775–780

    Article  CAS  Google Scholar 

  • Presser KA, Ratkowsky DA, Ross T (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360

    Article  CAS  Google Scholar 

  • Rossmann R, Sawers G, Böck A (1991) Mechanism of regulation of the formate-hydrogen lyase pathway by oxygen, nitrate, and pH: Definition of the formate regulon. Mol Microbiol 5:2807–2814

    Article  CAS  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  CAS  Google Scholar 

  • Takahashi CM, Takahashi DF, Carvalhal ML, Alterthum F (1999) Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl Biochem Biotechnol 81:193–203

    Article  CAS  Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578

    Article  CAS  Google Scholar 

  • Van Ginkel S, Logan BE (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9351–9356

    Article  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73:67–72

    Article  CAS  Google Scholar 

  • Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210

    Article  CAS  Google Scholar 

  • Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage 74:65–70

    Article  CAS  Google Scholar 

  • Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650–4654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Omumasaba (Research Institute of Innovative Technology for the Earth) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, A., Nishimura, T., Kawaguchi, H. et al. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol 74, 754–760 (2007). https://doi.org/10.1007/s00253-006-0721-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0721-y

Keywords

Navigation