Skip to main content

Developments in Fungal Phytase Research: Characteristics and Multifarious Applications

  • Chapter
  • First Online:
Progress in Mycology

Abstract

Phytases, a class of phosphatases, catalyse the stepwise removal of soluble phosphate from phytates. Plants contain phytates, which are a major organic form of phosphorus. Phytates act as an antinutrient and is not utilizable by monogastrics. Human and animal diets can therefore be supplemented with phytases to ameliorate their nutritional status. Phytases also have potential utility in aquaculture, plant growth promotion, soil amendment and environmental pollution control and as therapeutics. Among microbes, fungi are the predominant phytase producers with potential applicability in various areas due to their characteristic features of broad substrate spectrum and specificity and broad pH and temperature ranges for their activities. This chapter focuses on the various types, methods of production, characteristics and potential utilities of fungal phytases. Developments in fungal phytase research in India are specially highlighted. This chapter focuses on reviewing the significant work done on fungal phytases in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elhalem BT, El-Sawy M et al (2015) Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann Agric Sci 60(2):193–202

    Article  Google Scholar 

  • Abranches R, Marcel S et al (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol 120:121–134

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Rahman MS et al (2004) Performance of broiler on phytase supplemented soybean meal based diet. Int J Poult Sci 3:266–271

    Article  Google Scholar 

  • Ajith S, Shet D et al (2018) Immobilised phytase production from Aspergillus foetidus MTCC 11682 using an optimized media. Biotechnol J Int 21(3):1–13

    Article  Google Scholar 

  • Ajith S, Ghosh J et al (2019) Partial purification & characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Exp 9:3

    Article  Google Scholar 

  • Anno T, Nakanishi K et al (1985) Enzymatic elimination of phytate in soybean milk. J Jpn Soc Food Sci Technol 32:174–180

    Article  CAS  Google Scholar 

  • Antai SP, Nkwelang G (1998) Reduction of some toxicants in Icacina mannii by fermentation with Saccharomyces cerevisiae. Plant Foods Human Nutr 53:103–111

    Article  Google Scholar 

  • Ariza A, Moroz OV et al (2013) Degradation of phytate by the 6-phytase from Hafnia alvei: a combined structural & solution study. PLoS One 8(5):e65062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Dubey M et al (2017) Effect of mixing events on the production of a thermo-tolerant & acid-stable phytase in a novel solid-state fermentation bioreactor. Process Biochem 61:12–23

    Article  CAS  Google Scholar 

  • Awad GEA, Helal MMI et al (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi J Biol Sci 21:81–88

    Article  CAS  PubMed  Google Scholar 

  • Ayanwale BA, Kpe M, Ayanwale VA (2006) The effect of supplementing Saccharomyces cerevisiae in the diets on egg laying and egg quality characteristics of pullets. Int J Poult Sci 5:759–763

    Article  Google Scholar 

  • Azeem M, Riaz A et al (2015) Microbial phytase activity & their role in organic P mineralization. Arch Agron Soil Sci 61:751–766

    Article  CAS  Google Scholar 

  • Bala A, Sapna et al (2014) Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation & its application in dephytinization. Biocatal Agric Biotechnol 3:259–264

    Article  Google Scholar 

  • Balaban NP, Suleimanova AD et al (2017) Microbial phytases & phytate: exploring opportunities for sustainable phosphorus management in agriculture. Am J Mol Biol 7:1–29

    Article  Google Scholar 

  • Belgaroui N, Berthomieu P et al (2016) The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth. Plant Biotechnol J 14(9):1914–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley ME, Caulfield LE et al (1997) Zinc supplementation affects the activity patterns of rural Guatemalan infants. J Nutr 127:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Berka RM, Rey MW et al (1998) Molecular characterization & expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhavsar K, Khire JM (2014) Current research and future perspectives of phytase bioprocessing. RSC Adv 4:26677–26691

    Article  CAS  Google Scholar 

  • Bhavsar K, Shah P et al (2008) Influence of pretreatment of agriculture residues on phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. Afr J Biotechnol 7(8):1101–1106

    CAS  Google Scholar 

  • Bhavsar K, Kumar RV, Khire JM (2011) High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up scaling & its partial characterization. J Ind Microbiol Biotechnol 38:1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar K, Kumar RV, Khire JM (2012) Downstream processing of extracellular phytase from Aspergillus niger: chromatography process vs. aqueous two-phase extraction for its simultaneous partitioning and purification. Process Biochem 47:1066–1072

    Article  CAS  Google Scholar 

  • Bhavsar K, Gujar P et al (2013a) Combinatorial approach of statistical optimization & mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition. Appl Microbiol Biotechnol 97:673–679

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar K, Buddhiwant P et al (2013b) Phytase isozymes from Aspergillus niger NCIM 563 under solid state fermentation: biochemical characterization & their correlation with submerged phytases. Process Biochem 48:1618–1625

    Article  CAS  Google Scholar 

  • Bilgicli N, Elgun A, Turker S (2006) Effects of various phytase sources on phytic acid content, mineral extractability & protein digestibility of Tarhana. Food Chem 98:329–337

    Article  CAS  Google Scholar 

  • Billington DC (1993) The inositol phosphates. In: Chemical synthesis & biological significance. Verlag Chemie, Weinhiem, p 153

    Google Scholar 

  • Bindu S, Varadaraj MC (2005) Process for the preparation of Chapathi dough with reduced phytic acid level. US Pat. #20050048165. Dated 3 Mar 2005

    Google Scholar 

  • Bindu S, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Appl Microbiol Lett 27:336–340

    Article  CAS  Google Scholar 

  • Boyce A, Walsh G (2007) Purification & characterisation of an acid phosphatase with phytase activity from Mucor hiemalis. Wehmer J Biotechnol 132:82–87

    Article  CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Hatzack F et al (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breeding 6:195–206

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Hatzack F et al (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649–659

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Rossander-Hulten L et al (1992) Iron absorption from bread in humans: inhibiting effects of cereal fibre, phytase and inositol phosphates from different numbers of phosphate groups. J Nutr 122:442–449

    Article  CAS  PubMed  Google Scholar 

  • Buckle KA (1988) Characterization of extra- and intra-cellular phytases from Rhizopus oligosporus used in tempeh production. Int J Food Microbiol 6:67–79

    Article  PubMed  Google Scholar 

  • Buddhiwant P, Bhavsar K et al (2016) Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications. Prep Biochem Biotechnol 46(6):531–538

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Wang W et al (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507

    Article  CAS  Google Scholar 

  • Casey A, Walsh G (2003) Purification & characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour Technol 86:183–188

    Article  CAS  PubMed  Google Scholar 

  • Chadha BS, Harmeet G et al (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  • Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41:79–83

    Article  CAS  Google Scholar 

  • Chen R, Xue G et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Cheng KJ et al (2015) Current progresses in phytase research: three-dimensional structure & protein engineering. Chem Bioeng Rev 2:76–86

    Google Scholar 

  • Chow Y, Ting AS (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6(6):869–876

    Article  CAS  PubMed  Google Scholar 

  • Coban HB, Demirci A (2014) Screening of phytase producers and optimization of culture conditions for submerged fermentation. Bioprocess Biosyst Eng 37(4):609–616

    Article  CAS  PubMed  Google Scholar 

  • Collopy PD, Royse DJ (2004) Characterization of phytase activity from cultivated edible mushrooms & their production substrates. J Agric Food Chem 52:7518–7524

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Confalonieri M et al (2018) Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene & study of the PvMRPs promoters in two different plant systems. Plant Sci 270:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dailin DJ, Hanapi SZ et al (2019) Fungal phytases: biotechnological applications in food & feed industries. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advances in white biotechnology through fungi. Springer, Cham, pp 65–99

    Chapter  Google Scholar 

  • Das S, Ghosh U (2014) Effect of nutritional supplementation of solid-state fermentation medium on biosynthesis of phytase from Aspergillus niger NCIM 612. J Sci Ind Res 73:593–597

    CAS  Google Scholar 

  • de Oliveira Ornela PH, Guimaraes LHS (2019) Purification & characterization of an alkalistable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem 81:70–76

    Article  Google Scholar 

  • Dersjant-Li Y, Awati A et al (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract & influencing factors. J Sci Food Agric 95:878–896

    Article  CAS  PubMed  Google Scholar 

  • Doyle MP, Erickson MC (2006) Reducing the carriage of food-borne pathogens in livestock & poultry. Poult Sci 85:960–973

    Article  CAS  PubMed  Google Scholar 

  • Dvorakova J, Kopecky J et al (2000) Formation of myo-inositol phosphates by Aspergillus niger 3-phytase. Folia Microbiol (Praha) 45:128–132

    Article  CAS  Google Scholar 

  • Fardiaz D, Markakis P (1981) Degradation of phytic acid in Omcom (fermented peanut press cake). J Food Sci 46:523–525

    Article  CAS  Google Scholar 

  • Gaind S, Nain L (2015) Soil-phosphorus mobilization potential of phytate mineralizing fungi. J Plant Nutr 38:2159–2175

    Article  CAS  Google Scholar 

  • Gaind S, Singh S (2015) Production, purification & characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int Biodeterior Biodegradation 99:15–22

    Article  CAS  Google Scholar 

  • Gautam P, Sabu A et al (2002) Microbial production of extra-cellular phytase using polystyrene as inert support. Bioresour Technol 83:229–233

    Article  CAS  PubMed  Google Scholar 

  • George TS, Simpson RJ et al (2007) Differential interaction of Aspergillus niger & Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803

    Article  CAS  Google Scholar 

  • Gessler NN, Serdyuk EG et al (2018) Phytases & the prospects for their application. Appl Biochem Microbiol 54:352–360

    Article  CAS  Google Scholar 

  • Golovan SP, Meidinger RG et al (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  CAS  PubMed  Google Scholar 

  • Gontia I, Tantwai K et al (2012) Transgenic plants expressing phytase gene of microbial origin & their prospective application as feed. Food Technol Biotechnol 50:3–10

    CAS  Google Scholar 

  • Gontia-Mishra I, Tiwari S (2013) Molecular characterization & comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol Biotechnol 51:313–326

    CAS  Google Scholar 

  • Graf E, Eaton JW (1993) Suppression of colonic cancer by dietary phytic acid. Nutr Cancer 19:11–19

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J Biotechnol 48:153–159

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140

    CAS  Google Scholar 

  • Greiner R, Konietzny U (2012) Update on characteristics of commercial phytases. In: International phytase summit. AB Vista, Rome, pp 96–107

    Google Scholar 

  • Greiner R, Alminger ML, Carlsson NG (2001) Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker’s yeast. J Agric Food Chem 49:2228–2233

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Silva LC, Couri S (2009) Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9. Braz J Microbiol 40(4):795–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Olazarán M, Rodríguez-Blanco L et al (2010) Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol 76(16):5601–5608

    Article  PubMed  PubMed Central  Google Scholar 

  • Gujar PD, Bhavsar KP, Khire JM (2013) Effect of phytase from Aspergillus niger on plant growth & mineral assimilation in wheat (Triticum aestivum Linn.) & its potential for use as a soil amendment. J Sci Food Agric 93:2242–2247

    Article  CAS  PubMed  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007a) Production of feed enzymes (phytase & plant cell wall hydrolyzing enzymes) by Mucor indicus MTCC 6333: purification & characterization of phytase. Folia Microbiol 52:491–497

    Article  CAS  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007b) Production, purification & characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung 54(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007c) Production & characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34:91–98

    Article  CAS  PubMed  Google Scholar 

  • Gunashree BS, Venkateswaran G (2008) Effect of different cultural conditions for phytase production by Aspergillus niger CFR 335 in submerged & solid-state fermentations. J Ind Microbiol Biotechnol 35:1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Gurung N, Ray S et al (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn T, Tag T et al (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21:2078–2085

    Article  CAS  PubMed  Google Scholar 

  • Hamada A, Yamaguchi K et al (2005) High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence & codon modification of the phytase gene. Plant Biotechnol J 3:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hamada A, Yamaguchi K et al (2006) Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed & extreme stability during ensilage treatment. Biosci Biotechnol Biochem 70:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochim Biophys 364:83–90

    Article  CAS  Google Scholar 

  • Han YW, Wilfred AG (1988) Hydrolysis of phytate in soybean & cottonseed meals by Aspergillus ficuum phytase. J Agric Food Chem 36:259–262

    Article  CAS  Google Scholar 

  • Han YW, Gallagher DJ, Wilfred AG (1987) Phytase production by Aspergillus ficcum on semisolid substrate. J Ind Microbiol 2:195–200

    Article  CAS  Google Scholar 

  • Haraldsson AK, Veide J et al (2005) Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. J Agric Food Chem 53:5438–5444

    Article  CAS  PubMed  Google Scholar 

  • Harland BF, Harland J (1980) Fermentative reduction of phytase in rye, white & whole wheat breads. Cereal Chem 57:226–229

    CAS  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential breadmaking additive. Eur Food Res Technol 213:317–322

    Article  CAS  Google Scholar 

  • Hassan S, Altaff K, Satyanarayana T (2009) Use of soybean meal supplemented with cell-bound phytase for replacement. Pak J Nutr 8:341–344

    Article  CAS  Google Scholar 

  • Hassouni H, Alaoui MI et al (2006) Effect of culture media and fermentation parameters on phytase production by the thermophilic fungus Myceliophthora thermophila in solid state fermentation. Micologia Aplicada Int 18:29–36

    Google Scholar 

  • Hong CY, Cheng KJ et al (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation & induced systemic resistance. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 135–191

    Google Scholar 

  • Hostetler HA, Collodi P et al (2005) Improved phytate phosphorus utilization by Japanese medaka transgenic for the Aspergillus niger phytase gene. Zebrafish 2:19–31

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Shen Z et al (2020) A novel fungal beta-propeller phytase from nematophagous Arthrobotrys oligospora: characterization & potential application in phosphorous & mineral release for feed processing. Microb Cell Factories 19:1–13

    Article  Google Scholar 

  • Howson SJ, Davis RP (1983) Production of phytate-hydrolysing enzyme by some fungi. Enzyme Microb Technol 5:377–382

    Article  CAS  Google Scholar 

  • Huang HQ, Shi PJ et al (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SJ, Chen CH, Tsai SY (2018) Phytase production by Grifola frondosa & its application in inositol-enriched solid-state fermentation brown rice. Int J Food Eng 4:263–267

    Article  Google Scholar 

  • Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78:57–61

    Article  CAS  PubMed  Google Scholar 

  • Idriss EE, Makarewicz O et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Takahashi M et al (2012) Dynamic changes in the 333 distribution of minerals in relation to phytic acid accumulation during rice seed 334 develop. Plant Physiol 160:2007–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain J, Kumar A et al (2018) Purification & kinetics of a protease-resistant, neutral, & thermostable phytase from Bacillus subtilis subsp. subtilis JJBS250 ameliorating food nutrition. Prep Biochem Biotechnol 48:718–724

    Article  CAS  PubMed  Google Scholar 

  • Jatuwong K, Suwannarach N et al (2020) Bioprocess for production, characteristics, & biotechnological applications of fungal phytases. Front Microbiol 11:188

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin UH, Chun JA et al (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochem 40(12):3754–3762

    Article  CAS  Google Scholar 

  • Jondreville C, Dourmad JY (2005) Phosphorous in pig nutrition. INRA Prod Anim 18:183–192

    Article  CAS  Google Scholar 

  • Joshi S, Satyanarayana T (2014) Optimization of heterologous expression of the phytase (PPHY) of Pichia anomala in P. pastoris & its applicability in fractionating allergenic glycinin from soy protein. J Ind Microbiol Biotechnol 41:977–987

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2015a) Bioprocess for efficient production of recombinant Pichia anomala phytase & its applicability in dephytinizing chick feed & whole flat Indian breads. J Ind Microbiol Biotechnol 42:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2015b) Characteristics & applicability of phytase of the yeast Pichia anomala in synthesizing haloperoxidase. Appl Biochem Biotechnol 176:1351–1369

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2017) Characteristics and multifarious potential applications of HAP phytase of the unconventional yeast Pichia anomala. In: Satyanarayana T, Deshmukh S, Johri B (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 265–278

    Chapter  Google Scholar 

  • Kanti A, Sudiana IM (2018) Production of phytase, amylase and cellulase by Aspergillus, Rhizopus and Neurospora on mixed rice straw powder and soybean curd residue. In: Proceedings of the IOP conference series: earth and environmental science. IOP Publishing, Bristol, pp 1–9

    Google Scholar 

  • Kaur P, Satyanarayana T (2005) Production of cell-bound phytase by Pichia anomala in an economical cane molasses medium: optimization using statistical tools. Process Biochem 40:3095–3102

    Article  CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2010) Improvement in cell-bound phytase activity of Pichia anomala by permeabilization & applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108:2041–2049

    CAS  PubMed  Google Scholar 

  • Kaur P, Kunze G, Satyanarayana T (2007a) Yeast phytases: present scenario & future perspectives. Crit Rev Biotechnol 27:93–109

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Singh B, Satyanarayana T (2007b) Microbial phytases in combating environmental phosphorus pollution. In: Singh KK, Tomar A, Phogat V, Phogat S (eds) Air, water and soil pollution. M.D. Publications Pvt. Ltd., New Delhi, pp 150–190

    Google Scholar 

  • Kaur P, Singh B et al (2010) Pphy-a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY & characterization of the recombinant enzyme. J Biotechnol 149:8–15

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Verma D, Satyanarayana T (2011) Recycling of spent medium from Pichia anomala MTCC-4133 phytase fermentation for the production of useful microbial products. Kavaka 39:19–24

    Google Scholar 

  • Kaur R, Saxena A et al (2017) Production & characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Biosci 9:68–76

    Article  Google Scholar 

  • Kemme PA, Jongbloed AW et al (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs in influenced by pig physiological status. J Anim Sci 75:2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Khare SK, Jha K, Gupta MN (1994) Entrapment of wheat phytase in polyacrylamide gel & its application in soy milk phytate hydrolysis. Biotechnol Appl Biochem 19:193–198

    CAS  Google Scholar 

  • Klosowski G, Mikulski D, Jankowiak O (2018) Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules 23(4):848

    Article  PubMed Central  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular & catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R (2003) Phytic acid: nutritional impact. In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of food science and nutrition. Elsevier, London, pp 4555–4563

    Chapter  Google Scholar 

  • Konietzny U, Greiner R, Jany KD (1995) Purification and characterization of a phytase from spelt. J Food Biochem 18:165–183

    Article  CAS  Google Scholar 

  • Kumari A, Satyanarayana T, Singh B (2016) Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile & its application in beneficiation of poultry feed. Appl Biochem Biotechnol 178:197–210

    Article  CAS  PubMed  Google Scholar 

  • Lassen SF, Breinholt J et al (2001) Expression, gene cloning, & characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp. & Trametes pubescens. Appl Environ Microbiol 67:4701–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laumen K, Ghisalba O (1994) Preparative scale chemo enzymatic synthesis of optically pure D- myo-inositol 1-phosphate. Biosci Biotechnol Biochem 58:2046–2049

    Article  CAS  Google Scholar 

  • Lei X, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition & environmental protection. Appl Microbiol Biotechnol 57:474–481

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Ku PK et al (1993) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr 123:1117–1123

    CAS  PubMed  Google Scholar 

  • Lei XG, Weaver JD et al (2013) Phytase, a new life for an ‘Óld’ enzyme. Ann Rev Anim Biosci 1:283–309

    Article  Google Scholar 

  • Li J, Hegeman CE et al (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Lu W et al (2012) Molecular characterization & functional analysis of OsPHY1, a purple acid phosphatase (PAP)-type phytase gene in rice (Oryza sativa L.). J Integr Agric 11:1217–1226

    Article  CAS  Google Scholar 

  • Liebert F, Portz L (2007) Different sources of microbial phytase in plant based low phosphorus diets for Nile tilapia Oreochromis niloticus may provide different effects on phytate degradation. Aquaculture 267:292–299

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anaemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    Article  CAS  PubMed  Google Scholar 

  • Mak WC, Ng YM et al (2004) Novel biosensors for quantitative phytic acid & phytase measurement. Biosens Bioelectron 19:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Maller A, Mota AMDO et al (2014) Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion by Aspergillus japonicus differently but not the particle size. Biocatal Biotransformation 32(1):39–44

    Article  CAS  Google Scholar 

  • Mandviwala TN, Khire JM (2000) Production of high activity thermo stable phytase from thermo tolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Matsui T, Nakagawa Y et al (2000) Efficacy of yeast phytase in improving phosphorus bioavailability in a corn-soybean meal-based diet for growing pigs. J Anim Sci 78:94–99

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Parashar DP, Satyanarayana T (2017) Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile & its structural & biochemical characteristics. Int J Biol Macromol 94:36–44

    Article  CAS  PubMed  Google Scholar 

  • Modlin M (1980) Urinary phosphorylated inositols & renal stone. Lancet 2:1113–1114

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  PubMed  Google Scholar 

  • Mullen M (2005) Phosphorus in soils: biological interactions. In: Hillel D (ed) Encyclopaedia of soils in the environment. Elsevier Ltd., Oxford, pp 210–215

    Chapter  Google Scholar 

  • Murlidhar RV, Panda T (2000) Fungal protoplast fusion-a revisit. Bioprocess Biosyst Eng 22(5):429–431

    Article  Google Scholar 

  • Nampoothiri KM, Tomes GJ et al (2004) Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118(1–3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Navert B, Sandstrom B, Cederblad A (1985) Reduction of the phytate content of bran by leavening in bread & its effect on zinc absorption in man. Br J Nutr 53:47–53

    Article  CAS  PubMed  Google Scholar 

  • Neira-Vielma AA, Aguilar CN et al (2018) Optimized production of phytase by solid-state fermentation using triticale as substrate & source of inducer. Afr J Biotechnol 17:81–90

    Article  CAS  Google Scholar 

  • Nelson TS (1967) The utilization of phytate phosphorus by poultry. Poult Sci. 46:862–871

    Article  CAS  PubMed  Google Scholar 

  • Nelson TS, Shieh TR et al (1968) The availability of phytate phosphorus in soybean meal before & after treatment with a mold phytase. Poult Sci. 47:1842–1848

    Article  CAS  PubMed  Google Scholar 

  • Nelson TS, Sheih TR et al (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J Nutr 101:1289–1294

    Article  CAS  PubMed  Google Scholar 

  • Olstorpe M, Schnurer J, Passoth V (2009) Screening of yeast strains for phytase activity. FEMS Yeast Res 9:478–488

    Article  CAS  PubMed  Google Scholar 

  • Pable A, Gujar P, Khire JM (2014) Selection of phytase producing yeast strains for improved mineral mobilization and dephytinization of chickpea flour. J Food Biochem 38(1):18–27

    Article  CAS  Google Scholar 

  • Pandey A, Szakacs G et al (2001) Production, purification & properties of microbial phytases. Bioresour Technol 77:203–214

    Article  CAS  PubMed  Google Scholar 

  • Pasamontes L, Haiker M et al (1997) Cloning of the phytases from Emericella nidulans & the thermophilic fungus Talaromyces thermophilus. Biochim Biophys Acta 1353:217–223

    Article  CAS  PubMed  Google Scholar 

  • Pen J, Verwoerd TC et al (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat Biotechnol 11:811–814

    Article  CAS  Google Scholar 

  • Pires EBE, de Freitas AJ et al (2019) Production of fungal phytases from agroindustrial byproducts for pig diets. Sci Rep 9:9256

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponstein AS, Bade JB et al (2002) Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breeding 10:31–44

    Article  CAS  Google Scholar 

  • Potter SM (1995) Overview of proposed mechanisms for the hypercholasterolemic effect of soy. J Nutr 125:606S–611S

    CAS  PubMed  Google Scholar 

  • Puhl AA, Greiner R, Selinger LB (2008) A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int. J Biochem Cell Biol 40:2053–2064

    Article  CAS  Google Scholar 

  • Puhl AA, Greiner R, Selinger LB (2009) Stereospecificity of myo-inositol hexakisphosphate hydrolysis by a protein tyrosine phosphatase-like inositol polyphosphatase from Megasphaera elsdenii. Appl Microbiol Biotechnol 82:95–103

    Article  CAS  PubMed  Google Scholar 

  • Puppala KR, Naik T et al (2018) Evaluation of Candida tropicalis (NCIM 3321) extracellular phytase having plant growth promoting potential & process development. Biocatal Agric Biotechnol 13:225–235

    Article  Google Scholar 

  • Quan CS, Fan SD, Ohta Y (2003) Immobilization of Candida krusei cells producing phytase in alginate gel beads: an application of the preparation of myo-inositol phosphates. Appl Microbiol Biotechnol 62:41–47

    Article  CAS  PubMed  Google Scholar 

  • Quan CS, Tian WJ et al (2004) Purification & properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Krishnan R et al (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oil cakes as substrates. Process Biochem 40(5):1749–1754

    Article  CAS  Google Scholar 

  • Rani R, Ghosh S (2011) Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach & studies on purification & characterization. Biores Technol 102(22):10641–10649

    Article  CAS  Google Scholar 

  • Rani R, Kumar S, Ghosh S (2014a) Optimization of aqueous extraction process to enhance the production of phytase by Rhizopus oryzae using response surface methodology coupled with artificial neural network. Afr J Biotechnol 13(7):874–883

    Article  CAS  Google Scholar 

  • Rani R, Arora S et al (2014b) Optimization of medium components for the production of phytase by R. oryzae using statistical approaches. J Bioremed Biodegred. https://doi.org/10.4172/2155-6199.S18-003

  • Ranjan K, Sahay S (2013) Identification of phytase producing yeast & optimization & characterization of extracellular phytase from Candida parapsilosis. Int J Sci Nat 4:583–590

    CAS  Google Scholar 

  • Ranjan B, Satyanarayana T (2016) Recombinant HAP phytase of the thermophilic mould Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris & applications. Mol Biotechnol 58:137–147

    Article  CAS  PubMed  Google Scholar 

  • Ranjan B, Singh B, Satyanarayana T (2015) Characteristics of recombinant phytase (rSt-Phy) of the thermophilic mould Sporotrichum thermophile & its applicability in dephytinizing foods. Appl Microbiol Biotechnol 177:1753–1766

    CAS  Google Scholar 

  • Reddy CS, Vani K et al (2013) Manipulating microbial phytases for heterologous expression in crops for sustainable nutrition. Ann Plant Sci 2:436–454

    Google Scholar 

  • Richardson NL, Higgs DA et al (1985) Influence of dietary calcium, phosphorus, zinc & sodium phytate level on cataract incidence, growth & histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). J Nutr 115:553–567

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Rodehutscord M, Pfeffer E (1995) Effects of supplemental microbial phytase on phosphorus digestibility & utilization in rainbow trout (Oncorhynchus mykiss). Water Sci Technol 31(10):143–147

    Article  CAS  Google Scholar 

  • Roopashri AN, Varadaraj MC (2015) Functionality of phytase of Saccharomyces cerevisiae MTCC 5421 to lower inherent phytate in selected cereal flours & wheat/pearl millet-based fermented foods with selected probiotic attribute. Food Biotechnol 29:131–155

    Article  CAS  Google Scholar 

  • Roopesh K, Ramachandran S et al (2006) Comparison of phytase production on wheat bran & oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97(3):506–511

    Article  CAS  PubMed  Google Scholar 

  • Rosell CM, Santos E et al (2009) Wholemeal wheat bread: a comparison of different breadmaking processes & fungal phytase addition. J Cereal Sci 50:272–277

    Article  CAS  Google Scholar 

  • Rumsey GL (1993) Fish meal & alternate source of protein in fish feeds: update. Fisheries 18:14–19

    Article  Google Scholar 

  • Sabu A, Sarita S et al (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102:251–260

    Article  PubMed  Google Scholar 

  • Sandberg AS, Hulthen LR, Turk M (1996) Dietary Aspergillus niger phytase increases iron absorption in humans. J Nutr 126(2):476–580

    Article  CAS  PubMed  Google Scholar 

  • Sands JS, Ragland D et al (2009) Response of pigs to Aspergillus niger phytase supplementation of low-protein or high-phytin diets. J Anim Sci 87:2581–2589

    Article  CAS  PubMed  Google Scholar 

  • Sanni DM, Lawal OT, Enujiugha VN (2019) Purification & characterization of phytase from Aspergillus fumigatus isolated from African Giant Snail (Achatina fulica). Biocatal Agric Biotechnol 17:225–232

    Article  Google Scholar 

  • Sapna, Singh B (2013) Improved production of protease-resistant phytase by Aspergillus oryzae & its applicability in the hydrolysis of insoluble phytates. J Ind Microbiol Biotechnol 40:891–899

    Article  CAS  PubMed  Google Scholar 

  • Sapna, Singh B (2014) Phytase production by Aspergillus oryzae in solid-state fermentation & its applicability in dephytinization of wheat ban. Appl Biochem Biotechnol 173:1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Sapna, Singh B (2015) Biocatalytic potential of protease-resistant phytase of Aspergillus oryzae SBS50 in ameliorating food nutrition. Biocatal Biotransformation 33:167–174

    Article  CAS  Google Scholar 

  • Sapna, Singh B (2017a) Free & immobilized Aspergillus oryzae SBS50 producing protease-resistant & thermostable phytase. 3 Biotech 7:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapna, Singh B (2017b) Purification & characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement. Int J Biol Macromol 103:458–466

    Article  CAS  PubMed  Google Scholar 

  • Sariyska MV, Gargova SA et al (2005) Aspergillus niger phytase: purification & characterization. Biotechnol Biotechnol Equip 19:98–105

    Article  CAS  Google Scholar 

  • Schafer A, Koppe WM et al (1995) Effects of microbial phytase on the utilization of native phosphorous by carp in a diet based on soybean milk. Water Sci Technol 31(10):149–155

    Article  Google Scholar 

  • Schenk G, Ge Y et al (1999) Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato & Fe-Zn in soybean. Arch Biochem Biophys 370:183–189

    Article  CAS  PubMed  Google Scholar 

  • Schröder B, Hattenhauer O, Breves G (1998) Phosphate transport in pig proximal small intestines during postnatal development: lack of modulation by calcitriol. Endocrinology 139(4):1500–1507

    Article  PubMed  Google Scholar 

  • Segueilha L, Moulin G, Galzy P (1993) Reduction of phytate content in wheat bran & glandless cotton flour by Schwanniomyces castellii. J Agric Food Chem 41:2451–2454

    Article  CAS  Google Scholar 

  • Sethi RP, Subba-Rao NS (1968) Solubilization of tricalcium phosphate & calcium phytate by soil fungi. J Gen Appl Microbiol 14:329–331

    Article  CAS  Google Scholar 

  • Shah P, Bhavsar K et al (2009) Strain improvement & up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. J Ind Microbiol Biotechnol 36:373

    Article  CAS  PubMed  Google Scholar 

  • Shah PC, Kumar VR et al (2017) Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Exp 7:1–11

    Google Scholar 

  • Shamsuddin AM, Vucenik I (1999) Mammary tumor inhibition by IP6: a review. Anticancer Res 19:36–71

    Google Scholar 

  • Sharma R, Kumar P et al (2018) A novel protein tyrosine phosphatase like phytase from Lactobacillus fermentum NKN51: cloning, characterization & application in mineral release for food technology applications. Bioresour Technol 249:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Shivanna GB, Venkateswaran G (2014) Phytase production by Aspergillus niger CFR 335 & Aspergillus ficuum SGA 01 through submerged & solid-state fermentation. Sci World J 392615:1–6

    Article  Google Scholar 

  • Simell M, Turunen M et al (1989) Feed and food applications of phytase. In: Lecture at 3rd meet. Industrial applications of enzymes, Barcelona, Spain

    Google Scholar 

  • Simon O, Igbasan F (2002) In vitro properties of phytases from various microbial origins. J Food Sci Technol 37:813–822

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2006a) Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation & its application in dephytinization of sesame oil cake. Appl Microbiol Biotechnol 133(3):239–250

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2006b) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101:344–352

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2008a) Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation & its application in bread. J Appl Microbiol 105:1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2008b) Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation & its potential applications. Bioresour Technol 99:2824–2830

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2008c) Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical designs. Bioresour Technol 99:824–830

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2009) Characterization of HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100:2046–2051

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mould Sporotrichum thermophile. Appl Microbiol Biotechnol 160:1267–1276

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2012) Production of phytate-hydrolyzing enzymes by thermophilic moulds. Afr J Biotechnol 11:12314–12324

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2015) Fungal phytases: characteristics & amelioration of nutritional quality & growth of non-ruminants. J Anim Physiol Anim Nutr 99:646–660

    Article  CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects & biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  • Singh N, Kumari A et al (2015) Enhanced cost-effective phytase production by Aspergillus niger & its applicability in dephytinization of food ingredients. Microbiology 84:219–226

    Article  CAS  Google Scholar 

  • Singh B, Sharma KK et al (2018) Molecular modeling & docking of recombinant HAP-phytase of a thermophilic mould Sporotrichum thermophile reveals insights into molecular catalysis & biochemical properties. Int J Biol Macromol 115:501–508

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Sukumaran RK et al (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases: review. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Siren M (1986a) Stabilized pharmaceutical & biological material composition. Patent no. SE 003 165

    Google Scholar 

  • Siren M (1986b) New myo-inositol triphosphoric acid isomer. Patent no. SW 052 950

    Google Scholar 

  • Siren M (1995) Method of treating pain using inositol triphosphate. US Pat. 5407924

    Google Scholar 

  • Soni SK, Khire JM (2007) Production & partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J Microbiol Biotechnol 23:1585–1593

    Article  CAS  Google Scholar 

  • Soni S, Magdum A, Khire J (2010) Purification & characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World J Microbiol Biotechnol 26:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni SK, Sarkar S et al (2015) Intrinsic therapeutic & biocatalytic roles of ionic liquid mediated self-assembled platinum-phytase nanospheres. RSC Adv 5(77):62871–62881

    Article  CAS  Google Scholar 

  • Srikanthithasan K, Macelline SP et al (2020) Effect of adding phytase from Aspergillus niger to a low phosphorous diet on growth performance, tibia characteristics, phosphorous excretion & meat quality of broilers 35 days after hatching. J Poult Sci 57(1):28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M (1907) Ãœbereinenzym ‘Phytase’ das ‘anhydro-oxy-methylendiphosphorsaure’ spalter. Bull Coll Agric Tokyo Imperial Univ 7:503–512

    Google Scholar 

  • Tarafdar JC, Marschner H (1995) Dual inoculation with Aspergillus fumigatus & Glomus mosseae enhances biomass production & nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173:97–102

    Article  CAS  Google Scholar 

  • Tarafdar JC, Rao AV (1996) Contribution of Aspergillus strains to acquisition of phosphorous by wheat (Triticum aestivum L.) & chick pea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl Soil Ecol 3(2):109–114

    Article  Google Scholar 

  • Tatala S, Svanberg U, Mduma B (1998) Low dietary iron availability is a major cause of anaemia: a nutrition survey in the Lindi district of Tanzania. Am J Clin Nutr 68:171–178

    Article  CAS  PubMed  Google Scholar 

  • Tseng YH, Fang TJ, Tseng SM (2000) Isolation & characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol 45:121–127

    Article  CAS  Google Scholar 

  • Turk M, Sandberg AS (1992) Phytate degradation during breadmaking: effect of phytase addition. J Cereal Sci 15:281–294

    Article  CAS  Google Scholar 

  • Turk M, Carlsson NG, Sandberg AS (1996) Reduction in the levels of phytate during wholemeal bread making; effect of yeast & wheat phytases. J Cereal Sci 23:257–264

    Article  Google Scholar 

  • Turk M, Sandberg AS et al (2000) Inositol hexaphosphate hydrolysis by baker’s yeast. Capacity, kinetics & degradation products. J Agric Food Chem 48(1):100–104

    Article  CAS  PubMed  Google Scholar 

  • Tyagi PK, Tyagi PK, Verma SVS (1998) Phytate phosphorus content of some common poultry feed stuffs. Ind J Poult Sci 33:86–88

    Google Scholar 

  • Tye AJ, Siu FK et al (2002) Molecular cloning & the biochemical characterization of two novel phytases from B. subtilis 168 & B. licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  CAS  PubMed  Google Scholar 

  • Ullah AHJ, Sethumadhavan K et al (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Commun 264(1):201–206

    Article  CAS  PubMed  Google Scholar 

  • Ullah AHJ, Sethumadhavan K et al (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290(4):1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Ullah AHJ, Sethumadhavan K et al (2003) Fungal phyA gene expressed in potato leaves produces active & stable phytase. Biochem Biophys Res Commun 306:603–609

    Article  CAS  PubMed  Google Scholar 

  • Ullah AH, Sethumadhavan K, Mullaney EJ (2011) Vanadate inhibition of fungal PhyA & bacterial AppA2 histidine acid phosphatases. J Agric Food Chem 59(5):1739–1743

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde F, Konemann L et al (2000) The rational design of semisynthetic peroxidases. Biotechnol Bioeng 67:87–96

    Article  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2002) Studies on production of phytase by a newly isolated strain of A. niger van Tieghem obtained from rotten wood-logs. Process Biochem 38:211–217

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2005) Biochemical characterization of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolases) from a hyperproducing strain of A. niger van Tieghem. J Ind Microbiol Biotechnol 32:141–147

    Article  CAS  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2006) Catalytic characterization of phytase (myo- inositol hexakisphosphate phosphohydrolases) from A. niger van Tieghem: glycosylation pattern, kinetics & molecular properties. Enzyme Microb Technol 39:596–600

    Article  CAS  Google Scholar 

  • Vats P, Sahoo DK, Banerjee UC (2004) Studies on the production of phytase (myo-inositol hexakisphosphate phosphohydrolase) by A. niger van Tieghem in laboratory scale fermenter. Biotechnol Prog 20:737–743

    Article  CAS  PubMed  Google Scholar 

  • Vats P, Bhushan B, Banerjee UC (2009) Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Tieghem. Bioresour Technol 100:287–291

    Article  CAS  PubMed  Google Scholar 

  • Veide J, Andlid T (2006) Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int J Food Microbiol 108(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Satyanarayana T (2012) Phytase production by the unconventional yeast Pichia anomala in fed batch & cyclic fed batch fermentations. Afr J Biotechnol 11(72):13705–13709

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast Pichia anomala. Biotechnol Lett 23:551–554

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002a) Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem 37:999–1004

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002b) Purification & characterization of the thermostable & acid stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, & potential biotechnological applications. Crit Rev Biotechnol 23(1):29–60

    Article  CAS  PubMed  Google Scholar 

  • Vohra A, Satyanarayana T (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476

    Article  CAS  PubMed  Google Scholar 

  • Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth & phosphate assimilation of poultry birds using cell-bound phytase of Pichia anomala. World J Microbiol Biotechnol 22:553–558

    Article  CAS  Google Scholar 

  • Vohra A, Kaur P, Satyanarayana T (2011) Production, characteristics & applications of the cell-bound phytase of Pichia anomala. Antonie van Leeuwenhoek 99:51–55

    Article  CAS  PubMed  Google Scholar 

  • Walton J, Gray TK (1979) Absorption of inorganic phosphate in the human small intestine. Clin Sci (Lond) 56:407–412

    Article  CAS  Google Scholar 

  • Wang Y, Ye X et al (2013) Overexpression of phyA & appA genes improves soil organic phosphorus utilization & seed phytase activity in Brassica napus. PLoS One 8(4):e60801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZP, Deng LH et al (2017) Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. J Integr Agric 16(4):774–788

    Article  CAS  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Brugger R et al (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase & phosphatase producing fungi in arid & semi-arid soils & their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Article  Google Scholar 

  • Yao M-Z, Zhang Y-H et al (2012) Phytases: crystal structures, protein engineering & potential biotechnological applications. J Appl Microbiol 112:1–14

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Kornegay ET et al (1996) Improving phytate phosphorus availability in corn & soybean meal for broilers using microbial phytase & calculations of phosphorus equivalency values for phytase. Poult Sci 75:240–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, An L et al (2003) Properties of A. ficuum AS3. 324 phytase expressed in tobacco. Process Biochem 40:213–216

    Article  Google Scholar 

  • Zhang GQ, Dong XF et al (2010) Purification, characterization, & cloning of a novel phytase with low pH optimum & strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour Technol 101:4125–4131

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Chen QJ et al (2013a) Purification & characterization of a novel acid phosphatase from the split gill mushroom Schizophyllum commune. J Basic Microbiol 53:868–875

    CAS  PubMed  Google Scholar 

  • Zhang GQ, Wu YY et al (2013b) A phytase characterized by relatively high pH tolerance & thermostability from the shiitake mushroom Lentinus edodes. Biomed Res Int 2013:1–7

    Google Scholar 

  • Zhang F, Meng X et al (2016) Hydrolytic amino acids employed as a novel organic nitrogen source for the preparation of PGPF-containing bioorganic fertilizer for plant growth promotion & characterization of substance transformation during BOF production. PLoS One 11(3):e0149447

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu MJ, Wang HW, Ng TB (2011) Purification & identification of a phytase from fruity bodies of the winter mushroom, Flammulina velutipes. Afr J Biotechnol 10:17845–17852

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P., Vohra, A., Satyanarayana, T. (2021). Developments in Fungal Phytase Research: Characteristics and Multifarious Applications. In: Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V. (eds) Progress in Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3307-2_4

Download citation

Publish with us

Policies and ethics