Skip to main content

Fungal Phytases: Biotechnological Applications in Food and Feed Industries

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Abstract

Phytases are found naturally in many organisms especially in different classes of plants and microbes. Interest in these enzymes has been motivated by the fact that phytase supplements increase the bioavailability of phosphorus in food and feed which also reduce phosphorus pollution resulting from its excretion by livestock. Although phytases are reported to be produced by different biofactories, fungal microorganisms are widely used for their production on the commercial scale. Phytases can be produced by fungi in different cultivation systems including both solid-state and submerged fermentation systems. Different factors influence the yield of produced phytases including carbon and nitrogen sources, pH, temperature, incubation time, inoculum age, and size. Variety of natural and recombinant expression systems employing different types of fungi are used to enhance the overall productivity. This chapter focuses on the production of fungal phytases, their downstream processing and formulation, as well as their applications in food and feed industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elhalem BT, El-Sawy M, Gamal RF, Abou-Taleb KA (2015) Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann Agric Sci 60(2):193–202

    Article  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8(7):e68161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alias N, Shunmugam S, Ong PY (2017) Isolation and molecular characterization of phytase producing bacteria from Malaysia hot springs. J Fundam Appl Sci 9(2S):852–865

    Article  CAS  Google Scholar 

  • Andrabi ST, Bhat B, Gupta M, Bajaj BK (2016) Phytase-producing potential and other functional attributes of lactic acid bacteria isolates for prospective probiotic applications. Probiotics Antimicrob Proteins 8(3):121–129

    Article  CAS  PubMed  Google Scholar 

  • Antrim RL, Mitchinson C, Solheim LP (1998) Method for liquefying starch. US Patent No 5,756,714. U.S. Patent and Trademark Office, Washington, D.C.

    Google Scholar 

  • Aseri GK, Jain N, Tarafdar JC (2009) Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am Eurasian J Agric Environ Sci 5(4):564–570

    CAS  Google Scholar 

  • Ashok A, Doriya K, Rao DRM, Kumar DS (2017) Design of solid state bioreactor for industrial applications: an overview to conventional bioreactors. Biocatal Agric Biotechnol 9:11–18

    Article  Google Scholar 

  • Awad GE, Helal MM, Danial EN, Esawy MA (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi J Biol Sci 21(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Ballardo C, Abraham J, Barrena R, Artola A, Gea T, Sánchez A (2016) Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties. J Environ Manag 169:126–131

    Article  Google Scholar 

  • Balwani I, Chakravarty K, Gaur S (2017) Role of phytase producing microorganisms towards agricultural sustainability. Biocatal Agric Biotechnol 12:23–29

    Article  Google Scholar 

  • Belgaroui N, Berthomieu P, Rouached H, Hanin M (2016) The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth. Plant Biotechnol J 14(9):1914–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64(11):4423–4427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhavsar K, Khire JM (2014) Current research and future perspectives of phytase bioprocessing. RSC Adv 4:26677–26691

    Article  CAS  Google Scholar 

  • Bhavsar K, Ravi Kumar V, Khire JM (2011) High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. J Ind Microbiol Biotechnol 38(9):1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar K, Ravi Kumar V, Khire JM (2012) Downstream processing of extracellular phytase from Aspergillus niger: chromatography process vs. aqueous two phase extraction for its simultaneous partitioning and purification. Process Biochem 47:1066–1072

    Article  CAS  Google Scholar 

  • Bindu A, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett Appl Microbiol 27(6):336–340

    Article  CAS  Google Scholar 

  • Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC, Tengerdy RP (2003) Production of phytase by Mucorracemosus in solid-state fermentation. Biotechnol Prog 19(2):312–319

    Article  CAS  PubMed  Google Scholar 

  • Bradbury E, Wilkinson S, Cronin G, Thomson P, Walk C, Cowieson A (2017) Evaluation of the effect of a highly soluble calcium source in broiler diets supplemented with phytase on performance, nutrient digestibility, foot ash, mobility and leg weakness. Anim Prod Sci 57(10):2016–2026

    Article  CAS  Google Scholar 

  • Brune M, Rossander-Hultén L, Hallberg L, Gleerup A, Sandberg AS (1992) Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 122(3):442–449

    Article  CAS  PubMed  Google Scholar 

  • Cassia Pereira J, Paganini Marques N, Rodrigues A, Brito de Oliveira T, Boscolo M, Silva RD, Gomes E, Bocchini Martins DA (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118(4):928–939

    Article  CAS  PubMed  Google Scholar 

  • Castillo S, Gatlin DM III (2015) Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: a review. Aquaculture 435:286–292

    Article  CAS  Google Scholar 

  • Chadha BS, Harmeet G, Mandeep M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20(1):105–109

    Article  CAS  Google Scholar 

  • Chen R, Zhang C, Yao B, Xue G, Yang W, Zhou X, Zhang J, Sun C, Chen P, Fan Y (2013) Corn seeds as bioreactors for the production of phytase in the feed industry. J Biotechnol 165(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Cheng KJ, Ko TP, Guo RT (2015) Current progresses in phytase research: three dimensional structure and protein engineering. ChemBioEng Rev 2(2):76–86

    Article  CAS  Google Scholar 

  • Chéreau D, Videcoq P, Ruffieux C, Pichon L, Motte JC, Belaid S, Ventureira J, Lopez M (2016) Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications. OCL 23(4):D406

    Article  Google Scholar 

  • Chow Y, Ting AS (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6(6):869–876

    Article  CAS  PubMed  Google Scholar 

  • Coban HB, Demirci A (2014) Screening of phytase producers and optimization of culture conditions for submerged fermentation. Bioprocess Biosyst Eng 37(4):609–616

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Confalonieri M, Carlessi M, Cortinovis G, Daminati MG, Porch TG, Losa A, Sparvoli F (2018) Phytic acid transport in Phaseolus vulgaris: a new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. Plant Sci 270:1–12

    Article  CAS  PubMed  Google Scholar 

  • Corrêa TLR, de Queiroz MV, de Araújo EF (2015) Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. Microbiol Res 170:205–212

    Article  CAS  Google Scholar 

  • Dahiya S (2016) Industrial applications of phytases. Int J Appl Res 2:95–98

    Google Scholar 

  • Dan SK, Ray AK (2014) Characterization and identification of phytase-producing bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Ann Microbiol 64(1):297–306

    Article  CAS  Google Scholar 

  • Dan SK, Banerjee G, Nandi A, Ghosh P, Ray AK (2015) Autochthonous phytase-producing bacteria isolated from the gastrointestinal tracts of four Indian freshwater teleosts: characterization and identification. J Microbiol Biotechnol Food Sci 4(4):342

    Article  Google Scholar 

  • Dersjant-Li Y, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878–896

    Article  CAS  PubMed  Google Scholar 

  • Dewettinck K, Van Bockstaele F, Kühne B, Van de Walle D, Courtens TM, Gellynck X (2008) Nutritional value of bread: influence of processing, food interaction and consumer perception. J Cereal Sci 48(2):243–257

    Article  CAS  Google Scholar 

  • Diouf-Lewis A, Commereuc S, Verney V (2017) Toward greener polyolefins: antioxidant effect of phytic acid from cereal waste. Eur Polym J 96:190–199

    Article  CAS  Google Scholar 

  • Dokuzparmak E, Sirin Y, Cakmak U, Saglam Ertunga N (2017) Purification and characterization of a novel thermostable phytase from the thermophilic Geobacillus sp. TF16. Int J Food Prop 20(5):1104–1116

    Article  CAS  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, Chesson A, Flachowsky G, Gropp J, Kolar B, Kouba M, López-Alonso M, Puente SL, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Brantom P, Dierick NA, Glandorf B, Herman L, Kärenlampi S, Aguilera J, Anguita M, Cocconcelli PS (2017) Safety and efficacy of Natuphos® E (6-phytase) as a feed additive for avian and porcine species. EFSA J 15(11):e05024

    Article  CAS  Google Scholar 

  • El Enshasy HA, Elsayed EA (2017) Kinetics of cell growth and invertase production by the biotherapeutic yeast, Saccharomyces boulardii. J Sci Ind Res 76(8):477–484

    Google Scholar 

  • El Enshasy H, Abdel Fattah Y, Othman NZ (2013) Amylases. In: Yang S-T, El Enshasy HA, Thongchul N (eds) Bioprocessing technologies in integrated biorefinery from production of biofuels, biochemicals, and biopolymers from biomass. Wiley, Hoboken, pp 111–130

    Google Scholar 

  • El Enshasy HA, Othman NZ, Elsayed EA, Sarmidi MR, Wadaan MA, Aziz R (2016) Functional enzymes for animal feed applications. In: Gupta VK, Sharma GD, Touhy MG, Gaur R (eds) The handbook of microbial bioresources. CABI, Oxfordshire, UK, pp 296–312

    Chapter  Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18(71):1–13

    Google Scholar 

  • Elsayed EA, Danial EN (2018) Isolation, identification and medium optimization for tyrosinase production by a newly isolated Bacillus subtilis NA2 strain. J Appl Pharm Sci 8(9):39–101

    Google Scholar 

  • Elsayed EA, El Enshasy HA (2018) Effects of different aeration rates and feeding strategies on cell growth and invertase production kinetics by Saccharomyces boulardii. J Sci Ind Res 77:575–582

    CAS  Google Scholar 

  • Elsayed EA, Omar HG, Galil SA, El-Enshasy HA (2016) Optimization of fed-batch cultivation strategy for extracellular α-amylase production by Bacillus amyloliquefaciens in submerged culture. J Sci Ind Res 75:480–486

    CAS  Google Scholar 

  • Escobin-Mopera L, Ohtani M, Sekiguchi S, Sone T, Abe A, Tanaka M, Meevootisom V, Asano K (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J Biosci Bioeng 113(5):562–567

    Article  CAS  PubMed  Google Scholar 

  • Fredrikson M, Biot P, Alminger ML, Carlsson N-G, Sandberg AS (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem 49(3):1208–1212

    Article  CAS  PubMed  Google Scholar 

  • Gaind S, Singh S (2015) Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int Biodeter Biodegr 99:15–22

    Article  CAS  Google Scholar 

  • Gangoliya SS, Gupta RK, Singh NK (2015) Phytase production through response surface methodology and molecular characterization of Aspergillus fumigatus NF191. Indian J Exp Biol 53(6):350–355

    PubMed  Google Scholar 

  • García-Mantrana I, Yebra MJ, Haros M, Monedero V (2016) Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. Int J Food Microbiol 216:18–24

    Article  CAS  PubMed  Google Scholar 

  • Ghareib M (1990) Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus. Acta Microbiol Hung 37(2):159–164

    CAS  PubMed  Google Scholar 

  • Gontia I, Tantwai K, Rajput LP, Tiwari S (2012) Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol Biotechnol 50(1):3

    CAS  Google Scholar 

  • Greiner R, Carlsson NG (2006) Myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate. Can J Microbiol 52(8):759–768

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  • Greiner R, Konietzny U (2010) In: Bedford MR, Partridge GG (eds) Phytases: biochemistry, enzymology and characteristics relevant to animal feed use. CAB International, Wallingford, pp 96–128

    Google Scholar 

  • Greiner R, Silva LC, Couri S (2009) Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9. Braz J Microbiol 40(4):795–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Treviño JG, Gallegos-López JA, Viader-Salvadó JM (2010) Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol 76(16):5601–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68(5):588–597

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wilson DB, Lei X (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65(5):1915–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41(5):770–776

    Article  CAS  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential bread making additive. Eur Food Res Technol 213(4–5):317–322

    Article  CAS  Google Scholar 

  • Huang J, Zhou W, Watson AM, Jan YN, Hong Y (2008) Efficient ends-out gene targeting in drosophila. Genetics 180(1):703–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75(6):1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humer E, Zebeli Q (2015) Phytate in feed ingredients and potentials for improving the utilization of phosphorus in ruminant nutrition. Anim Feed Sci Technol 209:1–15

    Article  CAS  Google Scholar 

  • Hung L, Thanh N, Pham M, Browdy C (2015) A comparison of the effect of dietary fungal phytase and dicalcium phosphate supplementation on growth performances, feed and phosphorus utilization of catfish juveniles (Pangasianodon hypophthalmus Sauvage, 1878). Aquac Nutr 21(1):10–17

    Article  CAS  Google Scholar 

  • Irfan M, Asghar U, Nadeem M, Nelofer R, Syed Q (2016) Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Radiat Res Appl Sci 9(2):139–147

    Article  CAS  Google Scholar 

  • Irwan II, Agustina L, Natsir A, Ahmad A (2017) Isolation and characterization of phytase-producing thermophilic bacteria from Sulili Hot Springs in South Sulawesi. Sci Res J 5:2201–2796

    Google Scholar 

  • Iwai T, Takahashi M, Oda K, Terada Y, Yoshida KT (2012) Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiol 160(4):2007–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, Nakamori S (1997) Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83(4):393–394

    Article  CAS  Google Scholar 

  • Jin UH, Chun JA, Han MO, Lee JW, Yi YB, Lee SW, Chung CH (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochem 40(12):3754–3762

    Article  CAS  Google Scholar 

  • Jorquera MA, Gabler S, Inostroza NG, Acuña JJ, Campos MA, Menezes-Blackburn D, Greiner R (2018) Screening and characterization of phytases from bacteria isolated from Chilean hydrothermal environments. Microb Ecol 75(2):387–399

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nus Biosci 9:68–76

    Article  Google Scholar 

  • Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc Lond Ser B Biol Sci 365(1554):2793–2807

    Article  Google Scholar 

  • Kebreab E, Hansen A, Leytem A (2013) Feed management practices to reduce manure phosphorus excretion in dairy cattle. Adv Anim Biosci 4(s1):37–41

    Article  Google Scholar 

  • Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 79(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Weaver JD, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79(5):751–758

    Article  CAS  PubMed  Google Scholar 

  • Klosowski G, Mikulski D, Jankowiak O (2018) Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules 23(4):848

    Article  CAS  PubMed Central  Google Scholar 

  • Konietzny U, Greiner R, Jany KD (1995) Purification and characterization of a phytase from spelt. J Food Biochem 18:165–183

    Article  CAS  Google Scholar 

  • Korsmeyer S, Wei M, Saito M, Weiler S, Oh K, Schlesinger P (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sinha AK, Makkar HP, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120(4):945–959

    Article  CAS  Google Scholar 

  • Kumar D, Rajesh S, Balashanmugam P, Rebecca LJ, Kalaichelvan PT (2013a) Screening, optimization and application of extracellular phytase from Bacillus megaterium isolated from poultry waste. J Mod Biotechnol 2:46–52

    Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013b) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Article  CAS  PubMed  Google Scholar 

  • Lan JC-W, Chang C-K, Wu H-S (2014) Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale. J Biosci Bioeng 118(3):305–310

    Article  CAS  Google Scholar 

  • Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H (2007) Phytase: source, structure and application. In: Polaina J, AP MC (eds) Industrial enzymes: structures, function and applications. Springer, Dordrecht, pp 505–529

    Chapter  Google Scholar 

  • Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ (2013) Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci 1(1):283–309

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lin Y, Zheng X, Pang N, Liao X, Liu X, Huang Y, Liang S (2005) Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Microbiol 15:88

    CAS  Google Scholar 

  • Li R, Lu W, Gu J, Li X, Guo C, Xiao K (2011) Molecular characterization and functional analysis of OsPHY2, a phytase gene classified in histidine acid phosphatase type in rice (Oryza sativa L.). Afr J Biotechnol 10(54):11110–11123

    CAS  Google Scholar 

  • Liu BL, Rafiq A, Tzeng YM, Rob A (1998) The induction and characterization of phytase and beyond. Enzym Microb Technol 22(5):415–424

    Article  CAS  Google Scholar 

  • Ma Z-Y, Pu S-C, Jiang J-J, Huang B, Fan M-Z, Li Z-Z (2011) A novel thermostable phytase from the fungus Aspergillus aculeatus RCEF 4894: gene cloning and expression in Pichia pastoris. World J Microbiol Biotechnol 27:679–686

    Article  CAS  Google Scholar 

  • Maas RM, Verdegem MCJ, Dersjant-Li Y, Schrama JW (2018) The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture 487:7–14

    Google Scholar 

  • Maller A, Mota AMDO, Silva DP, Vicente A, Teixeira JA, Polizeli MDLTDM (2014) Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion by Aspergillus japonicus differently but not the particle size. Biocatal Biotransformation 32(1):39–44

    Article  CAS  Google Scholar 

  • Market Research Report (2016) Enzymes market size, share and trends, Global Industry Report, 2024

    Google Scholar 

  • Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv 29(3):365–373

    Article  CAS  PubMed  Google Scholar 

  • McKevith B (2004) Nutritional aspects of cereals. Nutr Bull 29(2):111–142

    Article  Google Scholar 

  • McKinney K, Combs J, Becker P, Humphries A, Filer K, Vriesekoop F (2015) Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Fermentation 1(1):13–23

    Article  Google Scholar 

  • Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, Mora ML (2011) Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresour Technol 102(20):9360–9367

    Article  CAS  PubMed  Google Scholar 

  • Mileson BE, Chambers JE, Chen W, Dettbarn W, Ehrich M, Eldefrawi AT, Gaylor DW, Hamernik K, Hodgson E, Karczmar AG (1998) Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol Sci 41(1):8–20

    CAS  PubMed  Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143(1):245–252

    Article  CAS  PubMed  Google Scholar 

  • Moreira KA, Herculano PN, Maciel MHC, Porto TS, Spier MR, SouzaMotta CM, Porto LF, Soccoi CR (2014) Optimization of phytase production by Aspergillus japonicas Saito URM 5633 using cassava bast as substrate in solid-state fermentation. Afr J Microbiol Res 8:929–938

    Article  CAS  Google Scholar 

  • Murlidhar RV, Panda T (2000) Fungal protoplast fusion-a revisit. Bioprocess Biosyst Eng 22(5):429–431

    Article  Google Scholar 

  • Muslim SN, Mohammed Ali AN, AL-Kadmy IM, Khazaal SS, Ibrahim SA, Al-Saryi NA, Al-Saadi LG, Muslim SN, Salman BK, Aziz SN (2018) Screening, nutritional optimization and purification for phytase produced by Enterobacter aerogenes and its role in enhancement of hydrocarbons degradation and biofilm inhibition. Microb Pathog 115:159–167

    Article  CAS  PubMed  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106(36):15103–15110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neira-Vielma AA, Aguilar CN, Ilyina A, Contreras-Esquivel JC, Carneiro-da-Cunha MI, Michelena-Alvarez G, Martínez-Hernandez JL (2018) Optimized production of phytase by solid-state fermentation using triticale as substrate and source of inducer. Afr J Biotechnol 17(4):81–90

    Article  Google Scholar 

  • Neves MLC, Porto TS, Souza-Motta CM, Spier MR, Soccol CR, Moreira KA, Porto ALF (2012) Partition and recovery of phytase from Absidia blakesleeana URM5604 using PEG–citrate aqueous two-phase systems. Fluid Phase Equilib 318:34–39

    Article  CAS  Google Scholar 

  • Nuobariene L, Cizeikiene D, Gradzeviciute E, Hansen ÅS, Rasmussen SK, Juodeikiene G, Vogensen FK (2015) Phytase-active lactic acid bacteria from sourdoughs: isolation and identification. LWT-Food Sci Technol 63(1):766–772

    Article  CAS  Google Scholar 

  • Ocampo B, Cervantes MP, Montoya LFM, Yepes MS, Gutiérrez Sánchez PA (2012) Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Rev Fac Nac Agron Medellin 65(1):6291–6303

    Google Scholar 

  • Olajuyigbe FM (2016) Optimization of extracellular phytase production from Bacillus amyloliquefaciens PFB-02 grown on selected agricultural wastes. Appl Trop Agric 20:92–97

    Google Scholar 

  • Othman NZ, Elsayed EA, Malek RA, Ramli S, Masri HJ, Sarmidi MR, Aziz R, Wadaan MA, Hatti-Kaul R, El Enshasy HA (2014) Aeration rate effect on the growth kinetics, phytase production and plasmid stability of recombinant Escherichia coli BL21 (DE3). J Pure Appl Microbiol 8(4):2721–2728

    CAS  Google Scholar 

  • Pable A, Gujar P, Khire JM (2014) Selection of phytase producing yeast strains for improved mineral mobilization and dephytinization of chickpea flour. J Food Biochem 38(1):18–27

    Article  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, Loon APGM (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pen J, Verwoerd TC, Van Paridon PA, Beudeker RF, Van den Elzen PJ, Geerse K, Van der Klis JD, Versteegh HAJ, Van Ooyen AJJ, Hoekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat Biotechnol 11(7):811

    Article  CAS  Google Scholar 

  • Phillipy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger phytase (phyA) in Escherichia coli. J Agric Food Chem 45:3337–3342

    Article  Google Scholar 

  • Qasim SS, Shakir KA, Al-Shaibani AB, Walsh MK (2017) Optimization of culture conditions to produce phytase from Aspergillus tubingensis SKA. Food Nutr Sci 8:33–745

    Google Scholar 

  • Qiu X, Davis D (2017) Effects of dietary phytase supplementation on growth performance and apparent digestibility coefficients of Pacific white shrimp Litopenaeus vannamei. Aquac Nutr 23(5):942–951

    Article  CAS  Google Scholar 

  • Ramachandran S, Roopesh K, Nampoothiri KM, Szakacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochem 40(5):1749–1754

    Article  CAS  Google Scholar 

  • Rani R, Ghosh S (2011) Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization. Bioresour Technol 102(22):10641–10649

    Article  CAS  PubMed  Google Scholar 

  • Ranjan K, Sahay S (2013) Identification of phytase producing yeast and optimization and characterization of extracellular phytase from Candida parapsilosis. Int J Sci Nat 4:583–590

    CAS  Google Scholar 

  • Riyadi FA, Alam MZ, Salleh MN, Salleh HM (2017) Thermostable and organic solvent tolerant lipase producing fungi in solid state bioconversion of palm kernel cake. Asia Pac J Mol Biol Biotechnol 25:98–105

    Google Scholar 

  • Rocky-Salimi K, Hashemi M, Safari M, Mousivand M (2016) A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis BS 46. J Adv Res 7(3):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano N, Kumar V (2018) Phytase in animal feed. In: Enzymes in human and animal nutrition. Elsevier, Saint Louis, pp 73–88

    Chapter  Google Scholar 

  • Saithi S, Tongta A (2016) Phytase production of Aspergillus niger on soybean meal by solid-state fermentation using a rotating drum bioreactor. Agric Agric Sci Procedia 11:25–30

    Google Scholar 

  • Salmon DN, Piva LC, Binati RL, Vandenberghe LPDS, Soccol VT, Soccol CR, Spier MR (2011) Formulated products containing a new phytase from Schyzophyllum sp. phytase for application in feed and food processing. Braz Arch Biol Technol 54(6):1069–1074

    Article  CAS  Google Scholar 

  • Sapna SB (2014) Phytase production by Aspergillus oryzae in solid state fermentation and its applicability in dephytinization of wheat bran. Appl Biochem Biotechnol 173(7):1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Scholey D, Morgan N, Riemensperger A, Hardy R, Burton E (2018) Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult Sci 97(7):2435–2440

    Article  CAS  PubMed  Google Scholar 

  • Shah PC, Kumar VR, Dastager SG, Khire JM (2017) Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express 7(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam S (2015) Granulation techniques and technologies: recent progresses. Bioimpacts 5(1):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam G (2018) Characteristics of phytase enzyme and its role in animal nutrition. Int J Curr Microbiol App Sci 7(3):1006–1013

    Article  Google Scholar 

  • Shivange AV, Serwe A, Dennig A, Schwaneberg U (2011) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95(2):405–418

    Article  CAS  PubMed  Google Scholar 

  • Shivanna GB, Venkateswaran G (2014) Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci World J 2014:392615

    Article  CAS  Google Scholar 

  • Singh B (2014) Phytase production by Aspergillus oryzae in solid-state fermentation and its application in dephytinization of wheat bran. Appl Biochem Biotechnol 173:1293–1303

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011) Phytases from thermophilic molds: their production, characteristics and multifarious applications. Process Biochem 45:1391–1398

    Article  CAS  Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria and their plant growth promoting activities. Int J Microbiol 2014:7

    Google Scholar 

  • Singh NN, Kauhar S, Priya K, Jaryal R, Yadav R (2018a) Phytases: the feed enzyme, an overview. In: Gahlawat SK (ed) Advances in animal biotechnology and its applicatios. Springer Nature Science Ltd, Singapore, pp 327–269, Chapter 17

    Google Scholar 

  • Singh B, Sharma KK, Kumari A, Kumar A, Gakhar SK (2018b) Molecular modeling and docking of recombinant HAP-phytase of a thermophilic mold Sporotrichum thermophile reveals insights into molecular catalysis and biochemical properties. Int J Biol Macromol 115:501–508

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases: review. Enzym Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Soni SK, Sarkar S, Selvakannan P, Sarkar D, Bhargava SK (2015) Intrinsic therapeutic and biocatalytic roles of ionic liquid mediated self-assembled platinum phytase nanospheres. RSC Adv 5(77):62871–62881

    Article  CAS  Google Scholar 

  • Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plan Theory 4(4):728–755

    CAS  Google Scholar 

  • Sreedevi S, Reddy BN (2012) Isolation, screening and optimization of phytase production from newly isolated Bacillus sp. c43. Int J Pharm Biol Sci 2:218–231

    Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3(3):480–486

    CAS  Google Scholar 

  • Sugiura S, Gabaudan J, Dong F, Hardy R (2001) Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal based diets. Aquac Res 32(7):583–592

    Article  CAS  Google Scholar 

  • Sumengen M, Dincer S, Kaya A (2013) Production and characterization of phytase from Lactobacillus plantarum. Food Biotechnol 27(2):105–118

    Article  CAS  Google Scholar 

  • Suresh S, Radha KV (2015) Effect of a mixed substrate on phytase production by Rhizopus oligosporus MTCC 556 using solid state fermentation and determination of dephytinization activities in food grains. Food Sci Biotechnol 24(2):551–559

    Article  CAS  Google Scholar 

  • Suresh S, Radha KV (2016) Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation. J Environ Biol 37(2):253

    CAS  PubMed  Google Scholar 

  • Tamayo-Ramos JA, Sanz-Penella JM, Yebra MJ, Monedero V, Haros M (2012) Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697. Appl Environ Microbiol 78(14):5013–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WQ, Yee PC, Chin SC, Chin YB, Vui LCM, Abdullah N, Radu S, Wan HY (2015) Cloning of a novel phytase from an anaerobic rumen bacterium, Mitsuokella jalaludinii, and its expression in Escherichia coli. J Integr Agric 14(9):1816–1826

    Article  CAS  Google Scholar 

  • Tang HC, Sieo CC, Abdullah N, Chong CW, Ho YW (2017) Preservation of phytase enzyme produced by anaerobic rumen bacteria, Mitsuokella jalaludinii. J Biochem Microbiol Biotechnol 5(1):13–17

    Google Scholar 

  • Tang Z, Jin W, Sun R, Liao Y, Zhen T, Chen H, Wu Q, Gou L, Li C (2018) Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Enzyme Microb Techol 108:74–81

    Article  CAS  Google Scholar 

  • Tiwari B, Singh N (2012) Pulse chemistry and technology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Toroğlu S, Akturk S, Dincer S (2015) Optimization of medium components for phytase production from “Aspergillus niger” FM-32. J Biotechnol 208:S79–S80

    Article  Google Scholar 

  • Türk M, Sandberg AS (1992) Phytate degradation during breadmaking: effect of phytase addition. J Cereal Sci 15(3):281–294

    Article  Google Scholar 

  • Ushasree MV, Vidya J, Pandey A (2014) Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. Process Biochem 49(9):1440–1447

    Article  CAS  Google Scholar 

  • Van Tinh N, Diep NTN, Giang DTH (2017) Studying culture conditions for high phytase production from Aspergillus fumigatus ET3. Asia Pac J Sci Technol 19:89–97

    Google Scholar 

  • Vasudevan UM, Krishna S, Jalaja V, Pandey A (2017) Microbial phytase: impact of advances in genetic engineering in revolutionizing its properties and applications. Bioresour Technol 245:1790–1799

    Article  CAS  Google Scholar 

  • Vendan SE (2016) Current scenario of biopesticides and eco-friendly insect pest management in India. South Indian J Biol Sci 2(2):268–271

    Article  Google Scholar 

  • Wan ZL, Guo J, Yang XQ (2015) Plant protein-based delivery systems for bioactive ingredients in foods. Food Funct 6(9):2876–2889

    Article  CAS  PubMed  Google Scholar 

  • Wang T (2008) Minor constituents and phytochemicals of soybeans. In: Johnson LA, White PJ, Galloway R (eds) Soybeans: chemistry, production, processing and utilization. AOCS Press, Urbana, pp 297–329

    Chapter  Google Scholar 

  • Wang ZH, Dong XF, Zhang GQ, Tong JM, Zhang Q, Xu SZ (2011) Waste vinegar residue as substrate for phytase production. Waste Manag Res 29(12):1262–1270

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ye X, Ding G, Xu F (2013) Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One 8(4):e60801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZP, Deng LH, Weng LS, Deng XY, Fu XQ, Xin YY, Xiao GY (2017) Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. J Integr Agric 16(4):774–788

    Article  CAS  Google Scholar 

  • Winter L, Meyer U, Soosten von D, Gorniak M, Lebzien P, Dänicke S (2015) Effect of phytase supplementation on rumen fermentation characteristics and phosphorus balance in lactating dairy cows. Ital J Anim Sci 14:53–60

    Article  CAS  Google Scholar 

  • Wu F, Tokach M, DeRouchey J, Dritz S, Woodworth J, Goodband R (2017) Effects of dietary Ca and digestible P concentrations and addition of phytase on growth performance of nursery pigs. Anim Prod Sci 57(12):2419–2419

    Article  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yanke LJ, Selinger LB, Cheng KJ (1999) Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol 29(1):20–25

    Article  CAS  Google Scholar 

  • Yao B, Thang C, Wang J, Fan Y (1998) Recombinant Pichia pastoris over expressing bioactive phytase. Sci Chin 41:330–336

    Article  CAS  Google Scholar 

  • Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Yitbarek A, López S, Tenuta M, Asgedom H, France J, Nyachoti CM, Kebreab E (2017) Effect of dietary phytase supplementation on greenhouse gas emissions from soil after swine manure application. J Clean Prod 166:1122–1130

    Article  CAS  Google Scholar 

  • Zeng Z, Wang D, Piao X, Li P, Zhang H, Shi C, Yu S (2014) Effects of adding super dose phytase to the phosphorus-deficient diets of young pigs on growth performance, bone quality, minerals and amino acids digestibilities. Asian-Australas J Anim Sci 27(2):237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Xiong A, Fu X, Gao F, Tian Y, Peng R (2010) High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl Biochem Biotechnol 162(8):2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  PubMed  Google Scholar 

  • Żyta K (1992) Mould phytases and their application in the food industry. World J Microbiol Biotechnol 8(5):467–472

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MOHE and Universiti Teknologi Malayisa (UTM) for HICOE grant no. RJ13000.7846.4J262 that financially supported this research. This work was also supported by SBG Feed Sdn. Bhd. (Pasir Gudang, Johor, Malaysia) through industrial research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dailin, D.J. et al. (2019). Fungal Phytases: Biotechnological Applications in Food and Feed Industries. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_2

Download citation

Publish with us

Policies and ethics