Skip to main content

Advertisement

Log in

Amelioration in Growth and Phosphorus Assimilation of Poultry Birds Using Cell-Bound Phytase of Pichia Anomala

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Cell-bound phytase of Pichia anomala was produced in glucose–beef extract medium in shake flasks and in a laboratory fermenter at 25 °C for 24 h at 250 rev/min. In the fermenter the biomass production increased and the fermentation time was reduced from 24 to 16 h. Two-week-old broiler chicks were fed with the biomass-supplemented feed [at 100 g/7.5 kg; 50-phytase units/bird/day]. The overall weight gain in the biomass-fed chicks was higher (90.2%) than that of the control group (77.7%). The biomass incorporation in the feed of broiler chicks also resulted in a better phosphorus retention (29% in the control, and 73.68% in the biomass-fed) in the body, consequently an improved growth. There was a decrease in the excretion of phosphorus in the faeces of the chicks fed with phytase-supplemented diet (188.9 mg/g dry matter) as compared to the chicks fed on unsupplemented broiler finisher ration (509.4 mg/g dry matter). This eliminated the need to supplement phosphorus in their diet and also reduced phosphorus pollution. The feed conversion ratio was also lowered for chicks, which were biomass-fed as compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson P.H., 1999 A potential phosphate crisis Science 283:2015

    Article  CAS  Google Scholar 

  • Archana A., Satyanarayana T., 1997 Xylanase production by thermophilic Bacillus licheniformis A99 by solid state fermentation Enzyme and Microbial Technology 21:12–17

    Article  CAS  Google Scholar 

  • Babu, K.R. 1994 Production & characterization of α-amylase produced by thermophilic Bacillus coagulans B49. PhD thesis, University of Delhi

  • Bali A., Satyanarayana T., 1999 Microbial phytases in food biotechnology In: Tewari J.P., Lakhanpal T.N., Singh J., Gupta R., Chamola B.P., (eds). Advances in Microbial Technology APH Publishing Corporation New Delhi, India pp. 94–106 ISBN 81-7648-078-9

    Google Scholar 

  • Bali A., Satyanarayana T., 2001 Microbial phytases in nutrition & combating phosphorus pollution Every Man’s Science 4:207–209

    Google Scholar 

  • Barnett, J.A., Payne, W.R. & Yarrow, D., 2000 Description of the species arranged alphabetically. In Yeasts: Characteristics & Identification. pp. 494–495. Cambridge University Press. ISBN 0␣521 57396 3

  • Berridge M.J., Irvine R.F., 1989 Inositol phosphates & cell signalling Nature 341:197-205

    Article  CAS  Google Scholar 

  • Bogar B., Szakacs G., Linden J.C., Pandey A., Tengerdy R.P., 2003 Optimization of phytase production by solid substrate fermentation Journal of Industrial Microbiology and Biotechnology 30:183–189

    CAS  Google Scholar 

  • Chantasartrasamee K., Ayuthaya D.I.N., Intarareugsorn S., Dharmsthiti S., 2005 Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium Process Biochemistry 40:2285–2289

    Article  CAS  Google Scholar 

  • Ciofalo V., Barton N., Kertz K., Biaird J., Cook M., Shahnahan D., 2003 Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed Regulatory Toxicology and Pharmacology 37:286–292

    Article  CAS  Google Scholar 

  • Ebune A., Al-Asheh S., Duvnjak Z., 1995 Effect of phosphate, surfactants & glucose on phytase production & hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid state fermentation Bioresource Technology 54:241-247

    Article  CAS  Google Scholar 

  • Fiske C.H., Subbarow Y., 1925 The colorimetric determination of phosphorus Journal of Biological Chemistry 66:376–400

    Google Scholar 

  • Harland B.F., Morris E.R., 1995 Phytate: A good or a bad food component Nutrition Research 15:733–754

    Article  CAS  Google Scholar 

  • Lambrechts C., Boze H., Moulin G., Galzy P., 1992 Utilization of phytate by some yeasts Biotechnology Letters 14:63–66

    Article  Google Scholar 

  • Maga J.A., 1982 Phytate: Its chemistry, occurrence, food interactions, nutritional significance, & methods of analysis Journal of Agricultural and Food Chemistry 30:1-9

    Article  CAS  Google Scholar 

  • Mullaney E.J., Daly C.B., Ullah A.H.J. 2000 Advances in phytase research Advances in Applied Microbiology 47:157–199

    Article  CAS  Google Scholar 

  • Nair V.C., Duvnjak Z., 1990 Reduction of phytic acid content in canola meal by Aspergillus ficuum in solid state fermentation process Applied Microbiology and Biotechnology 34:183–188

    Article  CAS  Google Scholar 

  • Nakamura Y., Fukuhara H., Sano K., 2000 Secreted phytase activities of yeasts Bioscience, Biotechnology and Biochemistry 64:841–844

    Article  CAS  Google Scholar 

  • Nelson T.S., 1967 The utilization of phytate phosphorus by poultry Poultry Science 46:862–871

    CAS  Google Scholar 

  • Nelson T.S., Shieh T.R., Wodzinski R.J., Ware J.H., 1968 The availability of phytate phosphorus in soybean meal before & after treatment with a mold phytase Poultry Science 47:1842–1848

    CAS  Google Scholar 

  • Sano K., Fukuhara H., Nakamura Y., 1999 Phytase of the yeast Arxula adeninivorans Biotechnology Letters 21:33–38

    Article  CAS  Google Scholar 

  • Satyanarayana, T. & Vohra, A. 2003 A synergistic feed composition to enhance phosphorous availability, assimilation and retention␣in non-ruminants. Indian Patent Application No. 976/DEL/2003

  • Satyanarayana T., Vohra A., Kaur P., 2004 Phytases in animal productivity and environmental management Productivity 44:542–548

    Google Scholar 

  • Sebastian S., Touchburn S.P., Chavez E.R., Lague P.C., 1996 The effect of supplemental phytase on the performance & utilization of dietary calcium, phosphorus, copper & zinc in broiler chickens fed corn soybean diets Poultry Science 76:729–736

    Google Scholar 

  • Segueilha L., Lambrechts C., Boze H., Moulin G., Galzy P., 1992 Purification & properties of the phytase from Schwanniomyces castellii Journal of Fermentation and Bioengineering 74:7-11

    Article  CAS  Google Scholar 

  • Segueilha L., Moulin G., Galzy P., 1993 Reduction of phytate content in wheat bran & glandless cotton flour by Schwanniomyces castellii Journal of Agricultural and Food Chemistry 41:2451–2454

    Article  CAS  Google Scholar 

  • Simons P.C.M., Versteegh H.A.J., Jongbloed A.W., Kemme P.A., Slump P., Bos K.D., Wolters M.G.E., Beudeker R.F., Verschoor G.J., 1990 Improvement of phosphorus availability by microbial phytase in broilers & pigs British Journal of Nutrition 64:525–540

    Article  CAS  Google Scholar 

  • Suzuki U., Yoshimura K., Takaishi M., 1907 Ueber ein Enzym “Phytase” das “Anhydro-oxy-methylen diphosphorsaure” Spaltet Tokyo Imperial University College Agricultural Bulletin 7:503-512

    Google Scholar 

  • Vohra A., Satyanarayana T., 2001 Phytase production by the yeast Pichia anomala Biotechnology Letters 23:551–554

    Article  CAS  Google Scholar 

  • Vohra A., Satyanarayana T., 2002a Statistical optimization of the media components by response surface methodology to enhance phytase production by Pichia anomala Process Biochemistry 37:999–1004

    Article  CAS  Google Scholar 

  • Vohra A., Satyanarayana T., 2002b Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala World Journal of Microbiology and Biotechnology 18:687–691

    Article  CAS  Google Scholar 

  • Vohra A., Satyanarayana T., 2003 Phytases: Microbial sources, production, purification and potential biotechnological applications Critical Reviews in Biotechnology 23:29–60

    Article  CAS  Google Scholar 

  • Vohra A., Satyanarayana T., 2004 A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala Journal of Applied Microbiology 97:471–476

    Article  CAS  Google Scholar 

  • Yoo G.Y., Wang X., Choi S., Han K., Kang J.C., Bai S.C., 2005 Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal Aquaculture 243:315–322

    Article  CAS  Google Scholar 

  • Zyta K., 2001 Phytase applications in poultry feeding: Selected issues Journal of Animal and Feed Sciences 10:247–258

    Google Scholar 

Download references

Acknowledgements

One of us (Ashima Vohra) gratefully acknowledges the financial assistance from the Council of Scientific and Industrial Research (CSIR), Government of India during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohra, A., Rastogi, S. & Satyanarayana, T. Amelioration in Growth and Phosphorus Assimilation of Poultry Birds Using Cell-Bound Phytase of Pichia Anomala . World J Microbiol Biotechnol 22, 553–558 (2006). https://doi.org/10.1007/s11274-005-9070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9070-8

Keywords

Navigation