Skip to main content

Characteristics and Multifarious Potential Applications of HAP Phytase of the Unconventional Yeast Pichia anomala

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Most of cereal and legume seeds and their products contain 1–2% phytic acid that represents around 60% of the total phosphorus content. A large portion of phytic acid in seeds is in the form of salts known as phytates. The phytic acid-bound phosphorus (myoinositol 1,2,3,4,5, 6-hexakis dihydrogen phosphate) is poorly available to monogastrics. Therefore, inorganic phosphorus (Pi), a non-renewable mineral, is supplemented in diets for swine, poultry and fish to meet their Pi requirement. Furthermore, the unutilized phytate P from plant-based feeds is excreted, which becomes an environmental pollutant in the areas of intensive animal rearing. The excess P in soils flows into lakes and the sea that causes eutrophication, leading to water blooms and death of aquatic animals. The high negative charge on phytic acid results in the chelation of positively charged divalent metal ions (e.g. Fe2+, Ca2+, Zn2+, Cu2+, Mg2+, Mn2+) of nutritional significance, rendering a poor absorption and thus unavailable. This is partly attributed to the widespread human nutritional deficiencies of calcium, iron and zinc in developing countries where plant-based diets are predominantly consumed. The challenges in three areas of animal nutrition, environmental protection and human health justify research on phytases from different microbial sources for minimizing anti-nutritional effects of phytates and to enhance growth by improving phosphorus assimilation. This chapter reviews the developments on the production, characteristics and multifarious potential applications of phytase of the unconventional yeast Pichia anomala.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    CAS  PubMed  Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294

    CAS  PubMed  Google Scholar 

  • Fredlund E, Broberg A, Boysen ME, Kenne L, Schnurer J (2004) Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation. Appl Microbio lBiotechnol. 64:403–409

    CAS  Google Scholar 

  • Garcia-Estepa RM, Guerra-Hernandez E, Garcia-Villanova B (1999) Phytic acid content in milled cereal products and breads. Food Res Int 32:217–221

    CAS  Google Scholar 

  • Gibson D (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310

    CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    CAS  PubMed  Google Scholar 

  • Hara A, Ebina S, Kondo A, Funagua T (1985) A new type of phytase from Typha latifolia L. Agric Biol Chem 49:3539–3544

    CAS  Google Scholar 

  • Harland BF, Morris ER (1995) Phytate: a good or a bad food component. Nutr Res 15(5):733–754

    CAS  Google Scholar 

  • Hassan S, Altaff K, Satyanarayana T (2009) Use of soybean meal supplemented with cell bound phytase for replacement. Pak J Nutr. 8(4):341–344

    CAS  Google Scholar 

  • Hayakawa T, Toma Y, andIgaue I (1989) Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agric Biol Chem 53:1475–1483

    CAS  Google Scholar 

  • Howson SJ, Davis RP (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzyme Microb Technol 5:377–389

    CAS  Google Scholar 

  • Huang WC, Tang IC (2007) Bacterial and yeast cultures-process characteristics, products, and applications. In: Yang ST (ed) Bioprocessing for value-added products from renewable resources: new technologies and applications. Elsevier, The Netherlands, pp 185–224

    Google Scholar 

  • Huebel F, Beck E (1996) Maize root phytase. Plant Physiol 112:1429–1436

    CAS  Google Scholar 

  • Ingvar S, Petter M (2011) Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie Van Leeuwenhoek 99:113–119

    Google Scholar 

  • Joshi S, Satyanarayana T (2014) Optimization of heterologous expression of the phytase (PPHY) of Pichia anomala in P. pastoris and its applicability in fractionating allergenic glycinin from soy protein. J Ind Microbiol Biotechnol 41:977–987

    CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2015a) Bioprocess for efficient production of recombinant Pichia anomala hytase and its applicability in dephytinization of chick feed and whole wheat flat Indian breads. J Ind Microbiol Biotechnol 42:1389–1400

    CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2015b) Characteristics and applicability of phytase of the yeast Pichia anomala in synthesizing haloperoxidase. Appl Biochem Biotechnol 176:1351–1369

    CAS  PubMed  Google Scholar 

  • Kaur P, Satyanarayana T (2005) Production of cell-bound phytase by Pichia anomalain an economical cane molasses medium: optimization using statistical tools. Process Biochem 40:3095–3102

    CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2009) Improvement in cell-bound phytase activity of Pichia anomala by permeabilization and applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108:2041–2049

    PubMed  Google Scholar 

  • Kaur P, Satyanarayana T (2010) Improvement in cell-bound phytase activity of P. anomala by permeabilization and applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108:2041–2049

    CAS  PubMed  Google Scholar 

  • Kaur P, Singh B, Böer E, Straube N, Piontek M, Satyanarayana T, Kunze G (2010) Pphy—a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY and characterization of the recombinant enzyme. J Biotechnol 149:8–15

    CAS  PubMed  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234

    CAS  PubMed  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:91–812

    Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    CAS  PubMed  Google Scholar 

  • Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    CAS  PubMed  Google Scholar 

  • Latiffi AA, Salleh AB, Rahman RN, Oslan SN, Basri M (2013) Secretary expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris. Genes Genet Syst 88:85–91

    CAS  PubMed  Google Scholar 

  • McCollum EV, Hart EB (1908) On the occurrence of a phytin splitting enzyme in animal tissue. J Biol Chem 4:497–500

    Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    CAS  PubMed  Google Scholar 

  • Nagai Y, Funahashi S (1962) Phytase (myo-inositol hexaphosphate phosphohydrolase) from wheat bran. Agric Biol Chem 26:794–803

    CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    CAS  PubMed  Google Scholar 

  • Nakano T, Joh T, Tokumoto E, Hayakawa T (1999) Purification and characterization of phytase from bran of Triticum aestivum L.Cv. Nourin#61. Food Sci Technol Res 5:18–23

    CAS  Google Scholar 

  • Nelson TS, Sheih TR, Wodzinski RJ, Ware JH (1971) Effect of supplement phytase on the utilization of phytate phosphorus by chicks. J Nutr 101:1289–1294

    CAS  PubMed  Google Scholar 

  • Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    CAS  PubMed  Google Scholar 

  • Pallauf J, Rimbach G (1997) Nutritional significance of phytic acid and phytase. Arch Anim Nutr 50:301–331

    Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, Van Loon APGM (1997) Gene cloning, purification, and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quan CS, Tian WJ, Fan SD, Kikuchi YI (2004) Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266

    CAS  PubMed  Google Scholar 

  • Raboy, V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development, vol 4. Kluwer Academic Publishers, Dordrecht, pp 441–447

    Google Scholar 

  • Rao DECS, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physiochemical properties, Known and potential application of phytases: A review. Crit Rev Biotechnol 29(2):182–198

    CAS  PubMed  Google Scholar 

  • Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. J Biol Chem 139:621–632

    CAS  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Mueller EC, Borriss R (2004) Molecular and physiological characterisation of a 3- phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    CAS  PubMed  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxulaadeninivorans. Biotechnol Lett 21:33–38

    CAS  Google Scholar 

  • Satio T, Kohno M, Tsumura K, Kugimiya W, Kito M (2001) Novel method using phytase for separating soyabean β-conglycinin and glycinin. Biosci Biotechnol Biochem 65:884–887

    Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomyces castellii. J Ferment Bioeng 74:7–11

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008) Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresourse Technol. 99:2824–2830

    CAS  Google Scholar 

  • Spencer JFT, Spencer DM (1997) Ecology: where yeasts live? Yeasts in Natural and Artificial Habitats. Springer, Berlin, pp 33–58

    Google Scholar 

  • Swick RA (2002) Soybean meal quality: assessing the characteristics of a major aquatic feed ingredient. Glob Aquacult Advocate. 5:46–49

    Google Scholar 

  • Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27

    CAS  Google Scholar 

  • Van Eck JH, Prior BA, Brandt EV (1993) The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J Gen Microbiol 139:1047–1054

    Google Scholar 

  • Verma D, Satyanarayana T (2012) Phytase production by the unconventional yeast Pichia anomala in fed batch and cyclic fed batch fermentations. Afr J Biotechnol 11:13705–13709

    CAS  Google Scholar 

  • Vohra A (2002) Production, purification, characterization and application of phytase from Pichia anomala (Hansen) Kurtzman. Ph. D. thesis

    Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast P. anomala. Biotechnol Lett 23:551–554

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002a) Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem 37:999–1004

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002b) Purification and characterization of a thermostable and acid-stable phytase from P. anomala. World J Microbiol Biotechnol 18:687–691

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    CAS  PubMed  Google Scholar 

  • Vohra A, Satyanarayana T (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476

    CAS  PubMed  Google Scholar 

  • Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth and phosphate assimilation of poultry birds using cell-bound phytase of P. anomala. World J Microbiol Biotechnol 22:553–558

    CAS  Google Scholar 

  • Wang Y, Wang Z, Du G, Hu Z, Liu L, Li J, Chen J (2009) Enhancement of alkaline polygalacturonate lyase production in recombinant Pichia pastoris according to the ratio of methanol to cell concentration. Biores Techol. 100:1343–1349

    CAS  Google Scholar 

  • Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg J (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    CAS  PubMed  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon APGM (1999) Biochemical characterization of fungal phytases (myo-inositol hexakis phosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, Muller F, Van loon APGM (1998) Comparison of thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase and A. niger pH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulasi Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Satyanarayana, T. (2017). Characteristics and Multifarious Potential Applications of HAP Phytase of the Unconventional Yeast Pichia anomala. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_14

Download citation

Publish with us

Policies and ethics