Skip to main content

Biofilm-Associated Metal Bioremediation

  • Chapter
  • First Online:
Biotechnology for Sustainable Environment

Abstract

One of the biggest challenges to the developing societies is metal pollution, especially in the regions of mining and plating that is affecting people worldwide. The use of conventional strategies in removing the waste is expensive and generates a large amount of toxic wastes, thereby affecting the environment adversely. This has resulted in the drift from the normal strategies to the use of eco-friendly strategies for the removal of metallic wastes being present within the soil. This technique of remediation uses the microbial organisms or microbial biomass that helps in detoxifying the soil from the toxic effects of inorganic metallic salts and heavy metals. Microbial biomass mainly comprises of extracellular polymeric substances (EPS) which increases the efficiency of metal sequestering for the purpose of field bioremediation. The EPS is released by the microbial cells for the purpose of self-defense which mainly occurs during various environmental stresses such as starvation, temperature, pH, and other physiological or rheological stress conditions. It contains a large amount of anionic charge hence it causes large sequestering of metallic ions. Thus this chapter will focus on the biofilm-associated bioremediation of heavy metals, and the mechanism which is helping the process to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Abioye OP, Oyewole OA, Oyeleke SB, Adeyemi MO, Orukotan AA (2018) Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Braz J Biol Sci 5(9):25–32

    Article  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Alluri HK, Ronda SR, Settalluri VS, Bondili JS, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6

    Google Scholar 

  • Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99(8):2766–2777

    Article  CAS  PubMed  Google Scholar 

  • Arbanah M, Najwa MR, Halim KH (2012) Biosorption of Cr(III), Fe(II), cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind 1(3):152–162

    CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162(1):178–185

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6(6):2138–2154

    Article  CAS  Google Scholar 

  • Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS, Ullah S, Sajid S, Ali I (2018) Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 199:218–222

    Article  CAS  PubMed  Google Scholar 

  • Bayramoğlu G, Yakup Arıca M (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100(1):186–193. https://doi.org/10.1016/j.biortech.2008.05.050

    Article  CAS  PubMed  Google Scholar 

  • Bhagat N, Vermani M, Bajwa HS (2016) Characterization of heavy metal (cadmium and nickle) tolerant gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr J Microbiol Res 10:127–137

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp., isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  PubMed  Google Scholar 

  • Boels IC, Kranenburg RV, Hugenholtz J, Kleerebezem M, Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11:723–732

    Article  CAS  Google Scholar 

  • Brinza L, Dring M, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J 6(3):237–251

    Article  CAS  Google Scholar 

  • Cardenas-Gonzalez JF, Acosta-Rodriguez I, Teran-Figueroa Y, Rodriguez-Perez AS (2017) Bioremoval of arsenic (V) from aqueous solutions by chemically modified fungal biomass. 3 Biotech 7(3):article 226

    Article  PubMed  Google Scholar 

  • Chabukdhara M, Gupta SK, Gogoi M (2017) Phycoremediation of heavy metals coupled with generation of bioenergy. In: Algal biofuels. Springer, Berlin, pp 163–188

    Chapter  Google Scholar 

  • Chatterjee S, Chatterjee NC, Dutta S (2012) Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC 9315). Afr J Biotechnol 11(83):14920–14929

    CAS  Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot Sci 2(1):76

    Article  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces 46(2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29

    Article  CAS  PubMed  Google Scholar 

  • Colagiorgi A, Bruini I, Di Ciccio PA, Zanardi E, Ghidini S, Ianieri A (2017) Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 6:41

    Article  PubMed Central  CAS  Google Scholar 

  • Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274

    Article  CAS  PubMed  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards cd: cu and Pb for different pH values. J Hazard Mater 151:185–193

    Article  CAS  PubMed  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146(1–2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Cozzi D, Desideri PG, Lepri L (1969) The mechanism of ion exchange with algenic acid. J Chromatogr A 40:130–137

    Article  CAS  Google Scholar 

  • Cruz-Vega D, Cervantes-González E, Ammons D, Rojas-Avelizapa LI, García-Mena J, Pless RC, Rojasavelizapa NG (2008) Tolerance and removal of metals by microorganisms isolated from a pitch lake. In: Proceedings of the 1st international conference on hazardous waste management, pp 117–118

    Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol 73(1):155–177

    Article  CAS  Google Scholar 

  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud 16(6):799–806

    CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • de Carvalho CCJ (2018) Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci 5:126

    Article  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnol 10(4):471–477

    Article  CAS  Google Scholar 

  • Dogan NM, Doganli GA, Dogan G, Bozkaya O (2015) Characterization of extracellular polysaccharides (EPS) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharide production. Int J Environ Res 9(3):1107–1116

    CAS  Google Scholar 

  • Douterelo I, Fish K, Boxall JJ (2018) Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res 141:74–85

    Article  CAS  PubMed  Google Scholar 

  • Elshafie A, Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Al-Bemani AS, Al-Hashmi A, Al-Mandhari MS (2017) Isolation and characterization of biopolymer producing Omani Aureobasidium pullulans strains and its potential applications in microbial enhanced oil recovery. In: SPE Oil and Gas India Conference and Exhibition. Society of Petroleum Engineers, SPE-185326-MS

    Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kues U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227

    Article  CAS  PubMed  Google Scholar 

  • Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40(6):2215–2224. https://doi.org/10.1016/j.procbio.2004.09.003

    Article  CAS  Google Scholar 

  • Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L, Hilliou L, Oliveira R, Reis MA (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour Technol 100:859–865

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  PubMed  Google Scholar 

  • Frutos I, Garcia-Delgado C, Garate A, Eymar E (2016) Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Technol 13(11):2713–2720

    Article  CAS  Google Scholar 

  • Gauthier PT, Norwood WP, Prepas EE, Pyle GG (2014) Metal–PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat Toxicol 154:253–269

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp: TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Hassan SHA, Awad YM, Kabir MH, Oh SE, Joo JH (2010) Bacterial biosorption of heavy metals. Chapter 4. In: Malik CP, Verma A (eds) Biotechnology: cracking new pastures. MD Publications, New Delhi., ISBN-13: 978–8175332331, pp 79–110

    Google Scholar 

  • Hassiba M, Naima A, Yahia K, Zahra S (2014) Study of lead adsorption from aqueous solutions on agar beads with EPS produced from Paenibacillus polymyxa. Chem Eng Trans 38:31–36

    Google Scholar 

  • Horvathova H, Kadukova J, Stofko M (2009) Biosorption of Cu2+ and Zn2+ by immobilized algae biomass of Chlorella kessleri. Acta Metall Slovaca 15(4):255–263

    Google Scholar 

  • Hussain A, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, district Mardan, Pakistan. Food Chem 136(3–4):1515–1523

    PubMed  Google Scholar 

  • Ibrahim WM (2011) Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater 192(3):1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Irawaiti W, Yuwono T, Ompusunggu NP (2018) Growth characteristics and copper accumulation of bacterial consortium Acinetobacter sp. and Cupriavidus sp. isolated from a wastewater treatment plant. Biodivers J 19(5):1884–1890

    Article  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity: mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11

    Article  PubMed  Google Scholar 

  • Javaid A, Bajwa R (2008) Biosorption of electroplating heavy metals by some basidiomycetes. Mycopathologia 6(1&2):1–6

    Google Scholar 

  • Joshi SJ, Al-Wahaibi YM, Al-Bahry S, Elshafie A, Al-Bemani AS, Al-Hashmi A, Samuel P, Sassi M, Al-Farsi H, Al-Mandhari MS (2016) Production and application of schizophyllan in microbial enhanced heavy oil recovery. In: SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers, SPE-179775-MS

    Google Scholar 

  • Kadimpati KK, Mondithoka KP, Bheemaraju S, Challa VR (2013) Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr(III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci 3(1):85–92

    Article  CAS  Google Scholar 

  • Kafilzadeh FS, Abolahrar M, Kargar M, Ghodsi M, Sch J (2013) Isolation and identification of cadmium-resistant bacteria in Soltan Abad river sediments and determination of tolerance of bacteria through MIC and MBC. Eur J Exp Biol 3(5):268–273

    Google Scholar 

  • Kariminiaae-Hamedaani HR, Kanda K, Kato F (2003) Wastewater treatment with bacteria immobilized onto a ceramic carrier in an aerated system. J Biosci Bioeng 95:128–132

    Article  CAS  PubMed  Google Scholar 

  • Kiliç NK, Kürkçü G, Kumruoğlu D, Dönmez G (2015) EPS production and bioremoval of heavy metals by mixed and pure bacterial cultures isolated from Ankara stream. Water Sci Technol 72:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Kim JH, Kim CJ, Oh DK (1996) Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnol Lett 18:1161–1164

    Article  CAS  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542–1546

    Article  CAS  PubMed  Google Scholar 

  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35(21):4283–4288

    Article  CAS  PubMed  Google Scholar 

  • Kralj S, van Geel-Schutten IGH, Rahaoui H, Leer RJ, Faber EJ, van der Maarel MJEC, Dijkhuizen L (2002) Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(1 4) and α-(1 6) glucosidic bonds. Appl Environ Microbiol 68:4283–4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JI, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33(1):27–31

    CAS  PubMed  Google Scholar 

  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyano bacterial strain (Nostoc sp.) from Uppanar estuarine water, southeast coast of India. Res J Appl Sci 7(11):1609–1615

    Google Scholar 

  • Kwarciak-Kozlowska A, Slawik-Dembiczak L, Banka B (2014) Phycoremediation of wastewater: heavy metal and nutrient removal processes. Environ Prot Nat Resour 25(4):51–54

    Google Scholar 

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4:41–48

    Google Scholar 

  • Lau T, Wu X, Chua H, Qian P, Wong P (2005) Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci Technol 52:63–68

    Article  CAS  Google Scholar 

  • Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80(7):806–811

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Lazaro N, Priego J, Marques A (2000) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24(2):146–151

    Article  CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ 102:558–566

    Article  CAS  Google Scholar 

  • Ma L, Wang S, Wang D, Parsek MR, Wozniak DJ (2012) The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 65:377–380

    Article  CAS  PubMed  Google Scholar 

  • Majumdar I, D'souza F, Bhosle NB (2013) Microbial exopolysaccharides: effect on corrosion and partial chemical characterization. J Indian Inst Sci 79(6):539

    Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R (2010) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169:323–331

    Article  CAS  PubMed  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1, 3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173

    Article  CAS  PubMed  Google Scholar 

  • Moreno-García J, García-Martinez T, Moreno J, Mauricio JC, Ogawa M, Luong P (2018) Impact of yeast flocculation and biofilm formation on yeast-fungus coadhesion in a novel immobilization system. Am J Enol Vitic 69:278–288

    Article  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids front. Plant Sci 7:303

    Google Scholar 

  • Mosharaf MK, Tanvir MZH, Haque MM, Haque MA, Khan MAA, Molla AH, Mohammad ZA, Islam MS, Talukder MR (2018) Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous Curli fimbriae and cellulose nanofibers. Front Microbiol 9:1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediation 20(7):682–691

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PQ, Botyanszki Z, Tay PKR, Joshi NS (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun 5(1)

    Google Scholar 

  • Nishimura J (2014) Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus. Adv Microbiol 4:1017

    Article  Google Scholar 

  • Ogbo EM, Okhuoya JA (2011) Bio-absorption of some heavy metals by Pleurotus tuber-regium Fr. Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. Int J Soil 6(1):34–48

    Article  CAS  Google Scholar 

  • Oyedepo TA (2011) Biosorption of lead (II) and copper (II) metal ions on Calotropis procera (Ait.). J Pure Appl Chem:1–7

    Google Scholar 

  • Özcan E, Sargın S, Göksungur Y (2014) Comparison of pullulan production performances of air-lift and bubble column bioreactors and optimization of process parameters in air-lift bioreactor. Biochem Eng J 92:9–15

    Article  CAS  Google Scholar 

  • Ozdemir G, Ceyhan N, Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresour Technol 96(15):1677–1682. https://doi.org/10.1016/j.biortech.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir G, Ceyhan N, Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresour Technol 96:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Özer A, Özer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100(1–3):219–229

    Article  PubMed  CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Jain GRK (2002) Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Mendoza D, Coulthurst SJ, Sanjuán J, Salmond GP (2011) N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 157:3340–3348

    Article  PubMed  CAS  Google Scholar 

  • Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. Microbiology 139(8):1939–1945

    CAS  Google Scholar 

  • Prasad MNV, Prasad R (2012) Nature’s cure for cleanup of contaminated environment_a review of bioremediation strategies. Rev Environ Health 27(4):181–189

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS, Varatharaju G, Anushri C, Dhivyasree S (2013) Biosorption of lead by Pleurotus florida and Trichoderma viride. Br Biotechnol J 3(1):66–78

    Article  Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Sole A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol 126:233–237

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Christopher GF (2019) Role of flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides on the formation of pellicles by Pseudomonas aeruginosa. Langmuir 35:5294–5304

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation, Indian J. Exp Biol 41:935–944

    CAS  Google Scholar 

  • Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, William C, Munro CA, Jones BJ, Ramage G (2016) Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013. Clin Microbiol Infect 22:87–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171(3):1060–1068

    Article  CAS  Google Scholar 

  • Randrianjatovo-Gbalou I, Rouquette P, Lefebvre D, Girbal-Neuhauser E, Marcato-Romain CE (2017) In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix. J Appl Microbiol 122:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Ray MK (2009) Al Ameen J Med Sci 2:57–63

    CAS  Google Scholar 

  • Romero CM, Martorell P, López AG, Peñalver CN, Chaves S, Mechetti M (2018) Architecture and physicochemical characterization of Bacillus biofilm as a potential enzyme immobilization factory. Colloids Surf B Biointerfaces 162:246–255

    Article  CAS  PubMed  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37(17):4231–4235

    Article  CAS  PubMed  Google Scholar 

  • Sarada B, Prasad MK, Kumar KK, Murthy CV (2014) Cadmium removal by macro algae Caulerpa fastigiata: characterization, kinetic, isotherm and thermodynamic studies. J Environ Chem Eng 2(3):1533–1542

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157(2–3):448–454

    Article  CAS  PubMed  Google Scholar 

  • Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A, Niehaus K, Vorhölter FJ (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. Campestris strain B100. J Biotechnol 167(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar R, Vijayaraghavan K, Jegan J, Velan M (2010) Batch and column removal of total chromium from aqueous solution using Sargassum polycystum. Environ Prog Sustain Energy 29(3):334–341

    Article  CAS  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355

    Article  CAS  PubMed  Google Scholar 

  • Sharon N (1966) Polysaccharides. Annu Rev Biochem 35(1):485–520

    Article  CAS  PubMed  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275(1):131–141. https://doi.org/10.1016/j.jcis.2004.01.036

    Article  CAS  PubMed  Google Scholar 

  • Sheppard DC, Howell PLJ (2016) Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J Biol Chem 291:12529–12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Tao S, Yu Y, Wang Y, Ma W (2011) High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater. J Mater Chem 21:15567–15574

    Article  CAS  Google Scholar 

  • Shoaib A, Aslam N, Aslam N (2013) Trichoderma harzianum: adsorption, desorption, isotherm and FTIR studies. J Anim Plant Sci 23:1460–1465

    CAS  Google Scholar 

  • Sima F, Mutlu EC, Eroglu MS, Sima LE, Serban N, Ristoscu C, Petrescu SM, Oner ET, Mihailescu IU (2011) Levan nanostructured thin films by MAPLE assembling. Biomacromolecules 12(6):2251–2256

    Article  CAS  PubMed  Google Scholar 

  • Simpson CL, Cheetham NWH, Giffard PM, Jacques NA (1995) Four glucosyltransferases, GTFJ, GTFK, GTFL and GTFM, from Streptococcus salivarius ATCC 25975. Microbiology 141:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Sultan S, Mubashar K, Faisal M (2012) Uptake of toxic Cr (VI) by biomass of exo- polysaccharides producing bacterial strains. Afr J Microbiol Res 6:3329–3336

    CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2(2):287–292

    Article  CAS  PubMed  Google Scholar 

  • Taştan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101:870–876

    Article  PubMed  CAS  Google Scholar 

  • Tavares TM, Carvalho FM (1992) Avaliação de exposição de populaces humanas a metais pesados no ambiente: Exemplos do Recôncavo Baiano. Revista Química Nova 15(2):147–154

    CAS  Google Scholar 

  • Trapani DD, Mannina G, Torregrossa M, Viviani G (2010) Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci Technol 61:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan R (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1:00014

    Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yang J, Chen Z, Liu X, Ma F (2013) Biosorption of Pb (II) and Zn (II) by extracellular polymeric substance (eps) of Rhizobium Radiobacter: equilibrium, kinetics and reuse studies. Arch Environ Prot 39:129–140

    Article  CAS  Google Scholar 

  • Webb JS (2009) Differentiation and dispersal in biofilms. http://citeseerx.Ist.Psu.Edu/viewdoc/download

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Microbial extracellular polymeric substances. Springer, Berlin, Heidelberg, pp 1–19

    Chapter  Google Scholar 

  • Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20:3423

    Article  CAS  PubMed Central  Google Scholar 

  • Yu MH (2001) Impacts of environmental toxicants on living systems. In: Environmental Toxicology. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39(8):909–916

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

A mutual declaration by all the authors states that there is no conflict of interest.

Moreover, this chapter does not contain any study conducted upon human or animals, by any authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Rani Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jasu, A., Lahiri, D., Nag, M., Ray, R.R. (2021). Biofilm-Associated Metal Bioremediation. In: Joshi, S.J., Deshmukh, A., Sarma, H. (eds) Biotechnology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-1955-7_8

Download citation

Publish with us

Policies and ethics