Skip to main content
Log in

Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A cluster of genes for diutan polysaccharide synthesis was isolated from a library of Sphingomonas sp. ATCC 53159 genomic DNA by complementation of glucosyl-isoprenylphosphate transferase-deficient mutants of Sphingomonas elodea ATCC 31461 (producing gellan) and Xanthomonas campestris (producing xanthan). The synthesis of polysaccharide in these strains shares a common first step, transfer of glucose-1-phosphate from UDP-glucose to the isoprenylphosphate lipid. The cluster of 24 genes was compared to genes for biosynthesis of gellan, and S-88 sphingan from Sphingomonas sp. ATCC 31554. Diutan, gellan and S-88 sphingan have a common four-sugar backbone but different side chains, one rhamnose for S-88 sphingan, a two-rhamnose side chain for diutan and no side chain for gellan. The genes for biosynthesis of diutan, gellan and S-88 sphingan were similar in general organization but differed in location of some genes, in particular, dpsG (putative polymerase), dpsR (putative lyase) and dpsS (putative repeat unit transporter). An unidentified reading frame urf31, present in the gene clusters for diutan and S-88 sphingan but not gellan, had similarity to glycosyl transferase group 2 proteins, and was detrimental when cloned in Sphingomonas elodea producing gellan that lacks a side chain, but not in Sphingomonas ATCC 31554 producing S-88 sphingan with a rhamnose side chain. Gene urf31 could possibly encode a side-chain rhamnosyl transferase. Another gene urf31.4 was unique to the diutan gene cluster. A plasmid containing 20 of the 24 genes resulted in a slight increase in the amount of diutan produced, but a significant increase in the rheological properties of diutan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baird JK, Talashek TA, Chang H (1992) Gellan gum: effect of composition on gel properties. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilizers for the food industry, vol 6. Oxford University Press, New York, pp 479–487

    Google Scholar 

  2. Campana S, Ganter J, Milas M, Rinaudo M (1992) On the solution properties of bacterial polysaccharides of the gellan family. Carbohydr Res 231:31–38

    Article  CAS  Google Scholar 

  3. Chowdhury TA, Lindberg B, Lindquist U, Baird J (1987) Structural studies of an extracellular polysaccharide, S-657, elaborated by Xanthomonas ATCC 53159. Carbohydr Res 164:117–122

    Article  CAS  Google Scholar 

  4. Clarke AJ, Sarabia V, Keenleyside W, MacLachlan PR, Whitfield C (1991) The compositional analysis of bacterial extracellular polysaccharides by high-performance anion-exchange chromatography. Anal Biochem 199:68–74

    Article  CAS  Google Scholar 

  5. Diltz S, Zeller SG (2001) Location of O-acetyl groups in S-657 using the reductive-cleavage method. Carbohydr Res 331:265–270

    Article  CAS  Google Scholar 

  6. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  CAS  Google Scholar 

  7. Garinot-Schneider C, Lellouch AC, Geremia RA (2000) Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM. J Biol Chem 275:31407–31413

    Article  CAS  Google Scholar 

  8. Glucksmann AM, Reuber TL, Walker GC (1993) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 175:7033–7044

    CAS  Google Scholar 

  9. Glucksmann AM, Reuber TL, Walker GC (1993) Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium melilot: a model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055

    CAS  Google Scholar 

  10. Harding NE, Cleary JM, Cabanas DK, Rosen IG, Kang KS (1987) Genetic and physical analysis of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol 169:2854–2861

    CAS  Google Scholar 

  11. Harding NE, Raffo S, Raimondi A, Cleary JM, Ielpi L (1993) Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol 139:447–457

    CAS  Google Scholar 

  12. Harding NE, Patel YN, McQuown J (2003) Mutant strain of Sphingomonas elodea which produces non-acetylated gellan gum. US Patent Application Number 20030100078

  13. Harding NE, Patel YN, Coleman RJ (2004) Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J Ind Microbiol Biotechnol 31:70–82

    Article  CAS  Google Scholar 

  14. Harding NE, Patel YN, Coleman RJ (2006) Targeted gene deletions for polysaccharide slime formers. US Patent Application Number 20060199201

  15. Hassler RA, Doherty DH (1990) Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prog 6:182–187

    Article  CAS  Google Scholar 

  16. Ielpi L, Couso RO, Dankert MA (1993) Sequential assembly and polymerization of the polyprenyl-linked pentasaccharide unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500

    CAS  Google Scholar 

  17. Kang KS, Pettitt DJ (1993) Xanthan, gellan, welan, and rhamsan. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic, New York, pp 341–398

    Google Scholar 

  18. Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091

    CAS  Google Scholar 

  19. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Puhler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617

    CAS  Google Scholar 

  20. Katzen F, Becker A, Ielmini MV, Oddo CG, Ielpi L (1999) New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3’ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol 65:278–282

    CAS  Google Scholar 

  21. Kovach ME, Phillips RW, Elzer PH, Roop RM II, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802

    CAS  Google Scholar 

  22. Kuo MS, Mort AJ, Dell A (1986) Identification and location of l-glycerate, an unusual substituent in gellan gum. Carbohydr Res 56:173–187

    Article  Google Scholar 

  23. Lee EJ, Chandrasekaran R (1991) X-ray and computer modeling studies on gellan-related polymers: molecular structures of welan, S-657, and rhamsan. Carbohydr Res 214:11–24

    Article  CAS  Google Scholar 

  24. Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B (1994) The alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385–4393

    CAS  Google Scholar 

  25. Maniatas T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

  26. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  27. Moorehouse R (1987) Structure/property relationships of a family of microbial polysaccharides. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering. Structure/property relations and applications. Elsevier Science Publishers BV, Amsterdam, pp 187–206

    Google Scholar 

  28. Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sa-Correia I (2004) The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases. J Mol Microbiol Biotechnol 8:43–57

    Article  CAS  Google Scholar 

  29. Patel YN, Schneider JC, Ielpi L, Ielmini MV (2004) High viscosity xanthan polymer preparations. US Patent Application Number 20040259839

  30. Peik JA, Steenbergen SM, Veeder GT (1992) Heteropolysaccharide S-657. US Patent Number 5,175,278

  31. Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945

    CAS  Google Scholar 

  32. Pollock TJ, Thorne L, Yamazaki M, Mikolajczak M, Armentrout RW (1994) Mechanism of bacitracin resistance in Gram-negative bacteria that synthesize exopolysaccharides. J Bacteriol 176:6229–6237

    CAS  Google Scholar 

  33. Pollock TJ, van Workum WAT, Thorne L, Mikolajczak MJ, Yamazaki M, Kijne JW, Armentrout RW (1998) Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 180:586–593

    CAS  Google Scholar 

  34. Sa-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    Article  CAS  Google Scholar 

  35. Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Psuedomonas syrinae pv. Glycinea. J Bacteriol 169:5789–5794

    CAS  Google Scholar 

  36. Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227

    Article  CAS  Google Scholar 

  37. Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (2000) Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J Ind Microbiol Biotechnol 25:49–57

    Article  CAS  Google Scholar 

  38. Videira P, Fialho A, Geremia RA, Breton C, Sa-Correia I (2001) Biochemical characterization of the β-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Biochem J 258:457–464

    Article  Google Scholar 

  39. Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    Article  CAS  Google Scholar 

  40. Wiggins CA, Munro S (1998) Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95:7945–7950

    Article  CAS  Google Scholar 

  41. Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Luis Ielpi for his careful reading of this manuscript and for supplying some of the plasmids used in this study. We thank Anca Segall, Judith Zyskind and Luis Ielpi for helpful discussions. We appreciate the technical assistance of German Berrellez and Peter Mirrasoul for fermentation analysis, Steve Matzke and Dan Burgum for rheological analysis, and M.R. Abouzari for composition analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy E. Harding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, R.J., Patel, Y.N. & Harding, N.E. Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35, 263–274 (2008). https://doi.org/10.1007/s10295-008-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0303-3

Keywords

Navigation