Skip to main content
Log in

Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The accumulation of Cd(II), Cu(II), Pb(II) and Zn(II) at mg L−1 concentration levels by inactive freeze-dried biomass of Pseudomonas Putida has been investigated. These metals could be efficiently removed from diluted aqueous solutions. A contact time of 10 min was sufficient to reach equilibrium. The pH has a strong effect on metal biosorption and the optimal pH values were 6.0, 5.0–6.0, 6.0–6.5 and 7.0–7.5 for Cd(II), Cu(II), Pb(II) and Zn(II) respectively. Under these conditions there was 80% removal for all metals studied. The process of biosorption can be described by a Langmuir-type adsorption model. This model accounts for 98% of the data variance. The K A and q max parameters for each metal are strongly correlated (at confidence levels greater than 98%) with the metal acidity, quantified by the constant of the corresponding M(OH)+ complex, thus confirming previous assertions by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a–d.
Fig. 4a,b.
Fig. 5a,b.

Similar content being viewed by others

References

  1. Fergusson JE (1990) (ed) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Exeter

  2. Huang CP, Rhoads EJ (1989) J Colloid Interf Sci 131:289–306

    CAS  Google Scholar 

  3. Cocero MJ, Soria JL, Fernández-Polanco F, Salvador F, Sánchez C, Merchán MD (1997) In: Baeyens J, Dolesj P, Taylor N, Waller G (eds) Current R&D efforts in physicochemical water treatment. Academic Press, Leuven, pp 95–115

  4. Brady D, Letebele B, Duncan JR, Rose PD (1994) Water SA 20(3):213–218

    CAS  Google Scholar 

  5. Leusch A, Holan ZR, Volesky B (1995) J Chem Technol Biot 62:279–288

    CAS  Google Scholar 

  6. Pairat K (2002) Chemosphere 47:1081–1085

    Article  PubMed  Google Scholar 

  7. Nuhoglu Y, Malkoc E, Gürses A, Canpolat N (2002) Bioresource Technol 85:331–333

    Article  CAS  Google Scholar 

  8. Wilhelmi BS, Duncan JR (1995) Biotechnol Lett 17(9):1007–1012

    CAS  Google Scholar 

  9. Wang J, Martínez T, Darnall D (1989) J Electroanal Chem 259:295

    Article  CAS  Google Scholar 

  10. Volesky B, Holan ZR (1995) Biotechnol Prog 11:235–250

    CAS  PubMed  Google Scholar 

  11. Wong PK, Lam KC, So CM (1993) Appl Microbiol Biotechnol 39:127–131

    CAS  Google Scholar 

  12. Chang JS, Law R, Chang CC (1997) Water Res 31(7):1651–1658

    Article  CAS  Google Scholar 

  13. Humble AV, Gadd GM, Codd GA (1997) Water Res 31(7):679–1686

    Article  Google Scholar 

  14. Wang L, Chua H, Zhou Q, Wong PK, Sin SN, Lo WL, Yu PH (2003) Water Res 37:561–568

    Article  CAS  Google Scholar 

  15. Solari P, Zouboulis AI, Matis KA, Stalidis GA (1996) Sep Sci Technol 31(8):1075–1092

    CAS  Google Scholar 

  16. Gadd GM (1988) In: Rehm HJ, Reed G (eds) Biotechnology 6b: special microbial processes, VCH Verlagsgesellschaft, Weinheim, pp 401–433

  17. Agraz R, van der Wal A, van Leeuwen HP (1994) Bioelectroch Bioener 34:53–59

    Article  CAS  Google Scholar 

  18. Goddard PA, Bull AT (1989) Appl Microbiol Biot 31:314–319

    CAS  Google Scholar 

  19. Beveridge TJ (1981) Int Rev Cytol 72:229–317

    CAS  PubMed  Google Scholar 

  20. Daughney J, Fein JB, Yee N (1998) Chem Geol 144:161–176

    CAS  Google Scholar 

  21. Fowle DA, Fein JB (1999) Geochim Cosmochim Acta 63:3059–3067

    Article  CAS  Google Scholar 

  22. Huang CP, Huang CP, Morehart A (1990) Water Res 24(4):433–439

    CAS  Google Scholar 

  23. Huang JP, Huang CP, Morehart AL (1991) In: Vernel JP (ed) Heavy metals in the environment. Elsevier, Amsterdam, pp 329–349

  24. Vega M, Pardo R, Barrado E, de la Fuente MA, del Valle JL (1994) Fresenius J Anal Chem 350:139–144

    CAS  Google Scholar 

  25. Taguchi G (1991) (ed) System of experimental designs, vol I and II, quality resources. Kraus and American Supplier Institute, USA

  26. Jackson PJ, Anderson WL, DeWitt JG, Huei-Yang DK, Kuske CR, Moncrief RM, Rayson GD (1993) Vitro Cell Dev Biol 29:220–226

    Google Scholar 

  27. Tsezos M, Volesky B (1982) Biotechnol Bioeng 24:385–401

    CAS  Google Scholar 

  28. Tsezos M, Volesky B (1982) Biotechnol Bioeng 24:955–969

    CAS  Google Scholar 

  29. Pradhan AA, Levine AD (1995) Sci Total Environ 170(3):209–220

    Article  CAS  PubMed  Google Scholar 

  30. Schiewer S, Volesky B (1995) Environ Sci Technol 29:3049- 3058

  31. Fein JB, Daughney CJ, Yee N, Davis TA (1997) Geochim Cosmochim Acta 61:3319–3328

    CAS  Google Scholar 

  32. Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW (1990) Environ Sci Technol 24:1372–1378

    CAS  Google Scholar 

  33. Sadowski Z (2001) Mineral Eng 14:547–552

    Article  CAS  Google Scholar 

  34. Pagnanelli F, Trifoni M, Beolchini F, Esposito A, Toro L, Vegliò F (2001) Process Biochem 37:115–124

    Article  CAS  Google Scholar 

  35. Özer A, Özer D, Ekiz HI (1999) Process Biochem 34:919–927

  36. Fourest E, Roux JC (1992) Appl Microbiol Biot 37:399–403

    CAS  Google Scholar 

  37. Niu H, Xu XS, Wang JH, Volesky B (1993) Biotechnol Bioeng 42:785–787

    CAS  Google Scholar 

  38. Nelson PO, Chung AK, Hudson MC (1981) J WPCF 53(8):1323–1333

    CAS  Google Scholar 

  39. Ringbom A (1963) (ed) Complexation in analytical chemistry. Wiley, New York

  40. Ferris FG, Beveridge TJ (1986) Can J Microbiol 32:594–601

    CAS  PubMed  Google Scholar 

  41. Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Water Res 37:627–633

    Article  CAS  Google Scholar 

  42. Smith RM, Martell E (1976) (eds) Critical stability constants, vol 4, inorganic complexes. Plenum, New York

  43. Tien CT, Huang CP (1987) J Environ Eng-ASCE 113:285–299

  44. Huang CP, Hsieh YS, Park SW, Corapcioglu OM, Bowers AR, Elliot HA (1986) In: Patterson JW, Passino R (eds) Metal speciation, separation and recovery. Ann Arbor Sci Publ, Ann Arbor, pp 437–465

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Pardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, R., Herguedas, M., Barrado, E. et al. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida . Anal Bioanal Chem 376, 26–32 (2003). https://doi.org/10.1007/s00216-003-1843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1843-z

Keywords

Navigation