Skip to main content

Advertisement

Log in

Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The use of agricultural wastes as biosorbents is gaining importance in bioremediation of heavy metal-polluted water and soils, due to their effectiveness and low cost. This work assesses the Cd, Pb and Cu adsorption capacity of the raw materials used in the production of substrates for mushroom production (Agaricus bisporus and Pleurotus ostreatus) and the spent mushroom composted (SMC), based on the functional groups of their organic carbon. The raw materials studied included agricultural wastes (wheat straw, wheat and rice poultry litter, grape pomace) and inorganic substances (gypsum and calcareous sand). Organic carbon from wastes and their composting products were characterized by CP-MAS 13C NMR. Langmuir adsorption isotherms of metals were plotted for each raw material, composting step, spent A. bisporus and P. ostreatus substrates and the final SMC. The maximum adsorption capacities of SMC were 40.43, 15.16 and 36.2 mg g−1 for Cd, Pb and Cu, respectively. The composting process modified the adsorption properties of raw materials because of the enhanced adsorption of Cd and Cu and decreased adsorption capacity of Pb. CP-MAS 13C NMR and potentiometric titration were used to identify the functional groups of the organic carbon responsible for the metal adsorption. The content of cellulose was correlated with Pb adsorption (p < 0.001), alkyl and carboxyl carbon with Cd adsorption (p < 0.001), and N-alkyl (p < 0.001) and carboxyl (p < 0.010) groups with Cu adsorption. These results are valuable to develop new biosorbents based on agricultural wastes and demonstrate the high potential of SMC to adsorb heavy metals from polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdolali A, Guo WS, Ngo HH et al (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66. doi:10.1016/j.biortech.2013.12.037

    Article  CAS  Google Scholar 

  • Alves-Gurgel LV, Karnitz-Junior O, de Freitas-Gil RP, Gil LF (2008) Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083. doi:10.1016/j.biortech.2007.05.072

    Article  Google Scholar 

  • Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F (2014) Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study. Environ Sci Pollut Res 22:223–230. doi:10.1007/s11356-014-3299-4

    Article  Google Scholar 

  • Baker H, Khalili F (2004) Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: temperature and pH dependence. Anal Chim Acta 516:179–186. doi:10.1016/j.aca.2004.03.068

    Article  CAS  Google Scholar 

  • Baker H, Khalili F (2005) A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method. Anal Chim Acta 542:240–248. doi:10.1016/j.aca.2005.04.008

    Article  CAS  Google Scholar 

  • Benguella B, Benaissa H (2002) Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res 36:2463–2474. doi:10.1016/S0043-1354(01)00459-6

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296. doi:10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  • Chanakya HN, Malayil S, Vijayalakshmi C (2015) Cultivation of Pleurotus spp. on a combination of anaerobically digested plant material and various agro-residues. Energy Sustain Dev 27:84–92. doi:10.1016/j.esd.2015.04.007

    Article  CAS  Google Scholar 

  • Chen GQ, Zeng GM, Tu X et al (2005) A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. J Environ Sci 17:756–760

    CAS  Google Scholar 

  • Chuah TG, Jumasiah A, Azni I et al (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175:305–316. doi:10.1016/j.desal.2004.10.014

    Article  CAS  Google Scholar 

  • Clemente R, Pardo T, Madejón P et al (2015) Food byproducts as amendments in trace elements contaminated soils. Food Res Int 73:176–189. doi:10.1016/j.foodres.2015.03.040

    Article  CAS  Google Scholar 

  • Codling EE, Chaney RL, Mulchi CL (2008) Effects of broiler litter management practices on phosphorus, copper, zinc, manganese, and arsenic concentrations in maryland coastal plain soils. Commun Soil Sci Plant Anal 39:1193–1205. doi:10.1080/00103620801925901

    Article  CAS  Google Scholar 

  • de Quadros Melo D, de Oliveira Sousa Neto V, de Freitas Barros FC et al (2016) Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions. J Appl Polym Sci 133:43286. doi:10.1002/app.43286

    Article  Google Scholar 

  • Durrant AJ, Wood DA, Cain RB (1991) Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J Gen Microbiol 137:751–755

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Lodi A et al (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60:129–141. doi:10.1016/S0304-386X(00)00195-X

    Article  CAS  Google Scholar 

  • Fernandes Â, Barros L, Martins A et al (2014) Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chem 169:396–400. doi:10.1016/j.foodchem.2014.08.027

    Article  Google Scholar 

  • García-Delgado C, Yunta F, Eymar E (2015) Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: polycyclic aromatic hydrocarbons degradation and Pb availability. J Hazard Mater 300:281–288. doi:10.1016/j.jhazmat.2015.07.008

    Article  Google Scholar 

  • Garrido F, Illera V, García-González MT (2005) Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl Geochem 20:397–408. doi:10.1016/j.apgeochem.2004.08.001

    Article  CAS  Google Scholar 

  • Gąsecka M, Mleczek M, Siwulski M et al (2015) The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT Food Sci Technol 63:726–731. doi:10.1016/j.lwt.2015.03.046

    Article  Google Scholar 

  • Hanč A, Tlustoš P, Száková J et al (2008) Direct and subsequent effect of compost and poultry manure on the bioavailability of cadmium and copper and their uptake by oat biomass. Plant Soil Environ 54:271–278

    Google Scholar 

  • Herrero-Hernández E, Andrades MS, Marín-Benito JM et al (2011) Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotoxicol Environ Saf 74:1480–1488. doi:10.1016/j.ecoenv.2011.04.023

    Article  Google Scholar 

  • Herrero-Hernández E, Andrades MS, Rodríguez-Cruz MS et al (2012) Long-term variability of metals from fungicides applied in amended young vineyard fields of La Rioja (Spain). Environ Monit Assess 184:3359–3371. doi:10.1007/s10661-011-2194-4

    Article  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. doi:10.1016/j.watres.2016.01.008

    Article  CAS  Google Scholar 

  • Illera V, Garrido F, Serrano S, García-González MT (2004) Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products. Eur J Soil Sci 55:135–145. doi:10.1046/j.1365-2389.2003.00583.x

    Article  CAS  Google Scholar 

  • Jain M, Garg V, Kadirvelu K, Sillanpää M (2016) Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons. Int J Environ Sci Technol 13:493–500. doi:10.1007/s13762-015-0855-5

    Article  CAS  Google Scholar 

  • Janyasuthiwong S, Phiri SM, Kijjanapanich P et al (2015) Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes. Environ Technol 36:3071–3083. doi:10.1080/09593330.2015.1053537

    Article  CAS  Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2013) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy. doi:10.1007/s10098-013-0634-2

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122. doi:10.1016/j.jenvman.2004.02.003

    Article  Google Scholar 

  • Khandanlou R, Ahmad MB, Fard Masoumi HR et al (2015) Rapid adsorption of copper(II) and lead(II) by rice straw/Fe3O4 nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study. PLoS ONE 10:1–19. doi:10.1371/journal.pone.0120264

    Article  Google Scholar 

  • Lee SS, Lim JE, Abd El-Azeem SAM et al (2013) Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environ Sci Pollut Res 20:1719–1726. doi:10.1007/s11356-012-1104-9

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Liu C, Pujol D, Olivella MÀ, De Torre F (2015) The role of exhausted coffee compounds on metal ions sorption. Water Air Soil Pollut 226:1–10. doi:10.1007/s11270-015-2568-2

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/S0958-1669(03)00060-0

    Article  CAS  Google Scholar 

  • Medina J, Monreal C, Barea JM et al (2015) Crop residue stabilization and application to agricultural and degraded soils: a review. Waste Manag 42:41–54. doi:10.1016/j.wasman.2015.04.002

    Article  CAS  Google Scholar 

  • Nachtigall GR, Nogueirol RC, Alleoni LRF, Cambri MA (2007) Copper concentration of vineyard soils as a function of pH variation and addition of poultry litter. Braz Arch Biol Technol 50:941–948. doi:10.1590/S1516-89132007000700005

    Article  CAS  Google Scholar 

  • Negro C, Tommasi L, Miceli A (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87:41–44. doi:10.1016/S0960-8524(02)00202-X

    Article  CAS  Google Scholar 

  • Pardo-Giménez A, Pardo-González JE (2008) Evaluation of casing materials made from spent mushroom substrate and coconut fibre pith for use in production of Agaricus bisporus (Lange) Imbach. Span J Agric Res 6:683–690

    Article  Google Scholar 

  • Paredes C, Medina E, Moral R et al (2009) Characterization of the different organic matter fractions of spent mushroom substrate. Commun Soil Sci Plant Anal 40:150–161. doi:10.1080/00103620802625575

    Article  CAS  Google Scholar 

  • Pérez-Esteban J, Escolástico C, Masaguer A et al (2014) Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere 103:164–171. doi:10.1016/j.chemosphere.2013.11.055

    Article  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308. doi:10.1016/j.jhazmat.2007.06.097

    Article  CAS  Google Scholar 

  • Shin EW, Karthikeyan KG, Tshabalala MA (2007) Adsorption mechanism of cadmium on juniper bark and wood. Bioresour Technol 98:588–594. doi:10.1016/j.biortech.2006.02.024

    Article  CAS  Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22:15386–15415. doi:10.1007/s11356-015-5278-9

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry. Wiley, New York

    Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027. doi:10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  • Tapia Y, Cala V, Eymar E et al (2010) Chemical characterization and evaluation of composts as organic amendments for immobilizing cadmium. Bioresour Technol 101:5437–5443. doi:10.1016/j.biortech.2010.02.034

    Article  CAS  Google Scholar 

  • Town RM, Powell HKJ (1993) Ion-selective electrode potentiometric studies on the complexation of copper(II) by soil-derived humic and fulvic acids. Anal Chim Acta 279:221–233

    Article  CAS  Google Scholar 

  • Whitney KD, Arnott HJ (1987) Calcium oxalate crystal morphology and development in Agaricus bisporus. Mycologia 79:180. doi:10.2307/3807650

    Article  CAS  Google Scholar 

  • Wong KK, Lee CK, Low KS, Haron MJ (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50:23–28

    Article  CAS  Google Scholar 

  • Yun Y, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358. doi:10.1021/es010866k

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762. doi:10.1016/j.watres.2005.06.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been economically supported by Ministry of Economy and Competitiveness of Spain (CTM2013-47874-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Eymar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frutos, I., García-Delgado, C., Gárate, A. et al. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int. J. Environ. Sci. Technol. 13, 2713–2720 (2016). https://doi.org/10.1007/s13762-016-1100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1100-6

Keywords

Navigation