Skip to main content
Log in

Microbial extracellular polymeric substances: central elements in heavy metal bioremediation

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wingender J, Neu TR and Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Microbial Extracellular Polymeric Substances. (Wingender J, Neu TR, Flemming HC eds). Springer, Berlin, pp 1–20

    Google Scholar 

  2. Sutherland IW (2001a) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  3. Tay JH, Liu QS and Liu Y (2001) The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 33:222–226

    Article  PubMed  CAS  Google Scholar 

  4. Comte S, Guibaud G and Baudu M (2006a) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods. Enz Microbial Technol 38:237–245

    Article  CAS  Google Scholar 

  5. Gutnick DL and Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals: new products and novel formulations. Appl Microbiol Biotechnol 54:451–460

    Article  PubMed  CAS  Google Scholar 

  6. Gehrke T, Telegdi J, Thierry D and Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferroxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    PubMed  CAS  Google Scholar 

  7. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  PubMed  CAS  Google Scholar 

  8. Kotrba P and Ruml T (2000) Bioremediation of heavy metal pollution exploiting constituents, metabolites and metabolic pathways of livings. A review Collect. Czech Chem Commun 65:1205–1247

    Article  CAS  Google Scholar 

  9. Liu QS, Tay JH and Liu Y (2003) Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ Technol 24:1235–1242

    PubMed  CAS  Google Scholar 

  10. van Hullebusch ED, Zandvoort MH and Lens PNL (2003) Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  Google Scholar 

  11. Beyenal H, Sani RK, Peyton BM, Dohnalkova AC, Amonette JE and Lewandowski Z (2004) Uranium immobilization by sulfate-reducing biofilms. Environ Sci Technol 38:2067–2074

    Article  PubMed  CAS  Google Scholar 

  12. Xu H, Tay JH, Foo SK, Yang SF and Liu Y (2004) Removal of dissolved copper (II) and zinc (II) by aerobic granular sludge Water. Sci Technol 50:155–160

    CAS  Google Scholar 

  13. Ozdemir G, Ceyhan N and Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Biores Technol 96:1677–1682

    Article  CAS  Google Scholar 

  14. Gulnaz O, Saygideger S and Kusvuran E (2005) Study of Cu(II) biosorption by activated sludge: effect of physico-chemical properties and kinetic studies. J Haz Mat 120:193–200

    Article  CAS  Google Scholar 

  15. Choi SB and Yun YN (2006) Biosorption of cadmium by various types of dried sludge: anequilibrium study and investigations of mechanism. J Haz Mat 138:378–383

    Article  CAS  Google Scholar 

  16. Morris JM and Meyer JS (2006) Extracellular and intracellular uptake of zinc by photosynthetic biofilm matrix. Bull Environ Contam Toxicol 77:30–35

    Article  PubMed  CAS  Google Scholar 

  17. Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. ASM News 48:9–14

    Google Scholar 

  18. Characklis WG and Wilderer PA (1989) Glossary. In: Structure and function of biofilms (Characklis WG and Wilderer PA eds). Wiley, Chichester, pp 369–371

    Google Scholar 

  19. Nielsen PH and Jahn A (1999) Extraction of EPS. In: Microbial extracellular polymeric substances (Wingender J, Neu TR and Flemming HC eds). Springer, Berlin, pp 49–72

    Google Scholar 

  20. Laspidou CS and Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Article  PubMed  CAS  Google Scholar 

  21. Sheng GP, Yu HQ and Yue Z (2006) Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int Biodeter Biodeg 58:289–293

    Google Scholar 

  22. Neal AL, Dublin SN, Taylor J, Bates DJ, Burns JL, Apkarian R and DiChristina TJ (2007) Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. Biomacromolecules 8:166–174

    Article  PubMed  CAS  Google Scholar 

  23. Sheng GP, Yu HQ and Yue ZB (2005a) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in presence of toxic substances. Appl Microbiol Biotechnol 69:216–222

    Article  PubMed  CAS  Google Scholar 

  24. Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE and Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  PubMed  CAS  Google Scholar 

  25. Nichols CAM, Garon S, Bowman JP, Raguenes G and Guezennec J (2004) Production of exopolysaccharides by Antartic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    Article  CAS  Google Scholar 

  26. Qin L, Liu QS, Yang SF, Tay JH and Liu Y (2004) Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process. Civil Eng Res 17:49–51

    Google Scholar 

  27. Liu YQ, Liu Y and Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65:143–148

    Article  PubMed  CAS  Google Scholar 

  28. Jahn A and Nielsen PH (1995) Extraction of extracellular polymeric substances (EPS) from biofilms using cation exchange resin. Wat Sci Technol 32:157–164

    Article  CAS  Google Scholar 

  29. Denkhaus E, Meisen S, Telgheder U and Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27

    Article  CAS  Google Scholar 

  30. Zhang X, Bishop PL and Kinkle BK (1999) Comparison of extraction methods for quantifying extracellular polymers in biofilms. Wat Sci Technol 39:211–218

    Article  CAS  Google Scholar 

  31. Wuertz S, Spaeth R, Hindenberger A, Grieba T, Flemming HC and Wilderer PA (2001) A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Sci Technol 43:25–31

    PubMed  CAS  Google Scholar 

  32. Li XG, Cao HB, Wu JC, Zhong FL and Yu KT (2002) Enhanced extraction of extracellular polymeric substances from biofilms by alternating current. Biotechnol Lett 24:619–621

    Article  CAS  Google Scholar 

  33. Azeredo J, Henriques M, Sillankorva S and Oliveira R (2003) Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Sci Technol 47:175–179

    PubMed  CAS  Google Scholar 

  34. Liu H and Fang HP (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80:806–811

    Article  PubMed  CAS  Google Scholar 

  35. Wilén BN, Jin B and Lant P (2003) The influence of key chemical constituents of activated sludge on surface and flocculating properties. Water Res 37:2127–2139

    Article  PubMed  CAS  Google Scholar 

  36. Sheng GP, Yu HQ and Yu Z (2005b) Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 67:125–130

    Article  PubMed  CAS  Google Scholar 

  37. Flemming HC and Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs) Part 1 Structural and ecological aspects. Water Sci Technol 43:1–8

    PubMed  CAS  Google Scholar 

  38. Sutherland IW (2001b) The biofilm matrix — an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  PubMed  CAS  Google Scholar 

  39. Guezennec J (2002) Deep-sea hydrothermal vents: A new source of innovative bacterial exopolysaccharides of biotechnological interest. J Ind Microbiol Biotechnol 29:204–208

    Article  PubMed  CAS  Google Scholar 

  40. De Philippis R, Sili C, Paperi R and Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  41. Allison DG (2003) The biofilm matrix Biofouling 19:139–150.

    CAS  Google Scholar 

  42. Sutherland IW (1990) Biotechnology of exopolysaccharides Cambridge, Cambridge University Press

  43. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H and Laufs R (1996) The intracellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucsaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  44. Beech I, Hanjagsit L, Kalaji M, Neal AL and Zinkevich V (1999) Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology 145:1491–1497

    PubMed  CAS  Google Scholar 

  45. Jahn A, Griebe T and Nielson PH (2000) Composition of Pseudomonas putida biofilms: accumulation of protein in the biofilm matrix. Biofouling 14:49–57

    Google Scholar 

  46. Guibaud G, Comte S, Bordas F, Dupuy S and Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638

    Article  PubMed  CAS  Google Scholar 

  47. Xie B, Gu JD and Li XY (2006) Protein profiles of extracellular polymeric substances and activated sludge in a membrane biological reactor by 2-dimensional gel electrophoresis. Water Sci Technol 6:27–33

    CAS  Google Scholar 

  48. Frolund B, Palmgren R, Keiding K and Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  49. Sutherland IW (1999) Polysaccharases in biofilms-source-action-consequences! In: Microbial Extracellular Polymeric Substances (Wingender J, Neu TR and Flemming HC eds). Springer, Berlin, pp 201–230

    Google Scholar 

  50. Wingender J, Jaeger KE and Flemming HC (1999) Interaction between extracellular polysaccharides and enzymes. In: Microbial Extracellular Polymeric Substances (Wingender J, Neu TR and Flemming HC eds). Springer, Berlin, pp 231–251

    Google Scholar 

  51. Watanabe M, Suzuki Y, Sasaki K, Nakashimada Y and Nishio N (1999) Flocculating property of extracellular polymeric substance derived from a marine photosynthetic bacterium, Rhodovulum sp. J Biosci Bioengg 87:625–629

    Article  CAS  Google Scholar 

  52. Noparatnaraporn N, Watanabe M, Choorit W and Sasaki K (2000) Production of RNA by a marine photosynthetic bacterium, Rhodovulum sp. Biotechnol Lett 22:1867–1870

    Article  CAS  Google Scholar 

  53. Whitchurch CB, Tolker-Nielsen T, Ragas PC and Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  PubMed  CAS  Google Scholar 

  54. Steinberger RE and Holden PA (2004) Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source. Biofilms 1:37–47

    Article  Google Scholar 

  55. Steinberger RE and Holden PA (2005) Extracellular DNA in single-and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    Article  PubMed  CAS  Google Scholar 

  56. Salehizadeh H and Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  PubMed  CAS  Google Scholar 

  57. Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW and Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 3:774–784

    Article  PubMed  CAS  Google Scholar 

  58. Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  59. Santamaria M, Diaz-Marreto AR, Hernandez J, Uutierrez-Navarro AM and Corzo J (2003) Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 5:916–924

    Article  PubMed  CAS  Google Scholar 

  60. Geesey GG and Jang L (1989) Interactions between metal ions and capsular polymers. In: Bacterial interactions with metallic ions (Beveridge T and Doyle RJ eds). John Wiley and Sons, New York, NY, pp 325–357

    Google Scholar 

  61. Mejare M and Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trend Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  62. Beech IB and Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  PubMed  CAS  Google Scholar 

  63. Chen JH, Lion, LW, Ghiorse WC and Schuler ML (1995) Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Water Res 29:421–430

    Article  CAS  Google Scholar 

  64. Foster LJR, Moy YP and Rogers PL (2000) Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnol Lett 22:1757–1760

    Article  CAS  Google Scholar 

  65. Pulsawat W, Leksawasdi N, Rogers PL and Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270

    Article  PubMed  CAS  Google Scholar 

  66. Prado Acosta M, Valdman E, Leite SGF, Battaglini F and Ruzal SM (2005) Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide World J Microbiol Biotechnol 21:1157–1163

    CAS  Google Scholar 

  67. Yilmaz IE (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  PubMed  CAS  Google Scholar 

  68. Morillo JA, Aguilera M., Ramoz-Cormenzana A and Monteoliva Sanchez M. (2006) Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol 53:189–193

    Article  PubMed  CAS  Google Scholar 

  69. Beech IB and Cheung CWS (1995) Interactions of exopolymers produced by sulphate reducing bacteria with metal ions Int Biodeter Biodegrad 35:59–72

    Article  CAS  Google Scholar 

  70. Chen B, Utgikar VP, Harmon SM, Tabak HH, Bishop DF and Govind R (2000) Studies on biosorption of zinc(II) and copper (II) Desulfovibrio desulfurican. Int Biodeter Biodegrad 46:11–18

    Article  CAS  Google Scholar 

  71. Bridge TAM, White C and Gadd GC (1999) Extracellular metal binding activity of the bacterium Desulfococcus multivorans. Microbiology 145:2987–2992

    PubMed  CAS  Google Scholar 

  72. Omoike A, Chorover J, Kwon KD and Kubici JD (2004) Adhesion of bacterial exopolymers to a-FeOOH: Innersphere complexation of phosphodiester groups. Langmuir 20:11108–11114

    Article  PubMed  CAS  Google Scholar 

  73. Flemming HC (2002) Biofouling in water systems — cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  PubMed  CAS  Google Scholar 

  74. Wimpenny J, Manz W and Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  PubMed  CAS  Google Scholar 

  75. Flemming HC (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33

    Article  CAS  Google Scholar 

  76. Horn H and Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci 61:1347–1356

    Article  CAS  Google Scholar 

  77. Jang A, Kim SM, Kim SY, Lee SG and Kim IS (2001) Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol 43:41–48

    PubMed  CAS  Google Scholar 

  78. Teitzel GM and Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  PubMed  CAS  Google Scholar 

  79. Langley S and Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol 45:616–622

    Article  PubMed  CAS  Google Scholar 

  80. Hill WR, Bednarek AT and Larsen IL (2000) Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci 57:530–537

    Article  CAS  Google Scholar 

  81. Templeton AS, Trainor TP, Traina SJ, Spormann AM and Brown GE (2001) Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci 98:11897–11902

    Article  PubMed  CAS  Google Scholar 

  82. Webb JS, McGinness S and Lappin-Scott HM (1998) Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J Appl Microbiol 84:240–248

    Article  PubMed  CAS  Google Scholar 

  83. White C and Gadd GM (2000) Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett 83:313–318

    Article  Google Scholar 

  84. Spaeth R and Wuertz S (2000) Extraction and quantification of extracellular polymeric substances from wastewater. In: Biofilms Investigative Methods and Applications (Flemming C, Szewzyk U and Griebe T eds). Technomic Publishing, Lancaster, USA, pp 195–209

    Google Scholar 

  85. Liu Y, Lam MC and Fan P (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Tecnol 33:59–66

    Google Scholar 

  86. Singh S, Pradhan S and Rai LC (2000) Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry. Process Biochem 36:175–182

    Article  CAS  Google Scholar 

  87. Guibaud G, Tixier N, Bouju A and Baudu M (2003) Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52:1701–1710

    Article  PubMed  CAS  Google Scholar 

  88. Liu Y and Fang HHP (2003) Influence of extracellular polymeric substances (EPS) on flocculation, settling and dewatering of activated sludge. Crit Rev Environ Sci Technol 33:237–273

    Article  CAS  Google Scholar 

  89. Yuncu B, Sanin FD and Yetis U (2006) An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J Haz Mat 137:990–997

    Article  CAS  Google Scholar 

  90. Comte S, Guibaud G and Baudu M (2006b) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS Part II. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation. Enz Microbial Technol 38:246–252

    Article  CAS  Google Scholar 

  91. Comte S, Guibaud G and Baudu M (2006c) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41:815–823

    Article  CAS  Google Scholar 

  92. Liu Y and Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–536

    Article  PubMed  CAS  Google Scholar 

  93. Liu Y and Tay JH. (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    Article  PubMed  CAS  Google Scholar 

  94. Jang A, Yoon YH, Kim IS, Kim KS and Bishop PL (2003) Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotechnol 105: 71–82

    Article  PubMed  CAS  Google Scholar 

  95. Meyer RL, Saunders AM, Zeng RJ, Keller J and Blackall LL (2003) Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. FEMS Microbiol Ecol 45:253–261

    Article  CAS  PubMed  Google Scholar 

  96. Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N and Hirata A (2003) Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res 37:4965–4973

    Article  PubMed  CAS  Google Scholar 

  97. Lin YM, Liu Y and Tay JH (2003) Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Appl Microbiol Biotechnol 62:430–435

    Article  PubMed  CAS  Google Scholar 

  98. Liu Y, Yang SF and Tay JH (2003) Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol 61:556–561

    PubMed  CAS  Google Scholar 

  99. Yang SF, Liu Y and Tay JH (2003) A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol 106:77–86

    Article  PubMed  CAS  Google Scholar 

  100. McSwain BS, Irvine RL, Hausner M and Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    Article  PubMed  CAS  Google Scholar 

  101. Wang ZW, Liu Y and Tay JH (2005) Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol 69:469–473

    Article  PubMed  CAS  Google Scholar 

  102. Chen MY, Lee DJ and Tay JH (2007) Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73:1463–1469

    Article  PubMed  CAS  Google Scholar 

  103. Liu Y, Yang SF, Tan SF, Lin YM and Tay JH (2002) Aerobic granules: a novel zinc biosorbent. Lett Appl Microbiol 35:548–551

    Article  PubMed  CAS  Google Scholar 

  104. Liu Y, Xu HL, Yang SF and Tay J H (2003) A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol 102:233–239

    Article  PubMed  CAS  Google Scholar 

  105. Dohnalkova A, Marshall MJ, Kennedy DW, Gorby YA, Shi L, Beliaev A, Apkarian R and Fredrickson JK (2005) The role of bacterial exopolymers in metal sorption and reduction. Microsc Microanal 11:16–117

    Article  Google Scholar 

  106. Smith WL and Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  PubMed  CAS  Google Scholar 

  107. Canstein H, Li Y, Leonhäuser J, Haase E, Felske A, Deckwer WD and Wagner-Döbler I (2002) Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol 68:1938–1946

    Article  CAS  Google Scholar 

  108. Quintero EJ and Weiner RM (1995) Evidence for the adhesive function of the exopolysaccharide of Hyphomonas MHS-3 in its attachment to surfaces. Appl Environ Microbiol 61:1897–1903

    PubMed  CAS  Google Scholar 

  109. Kim SY, Kim JH, Kim CJ and Oh DK (1996) Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnol Lett 18:1161–1164

    Article  CAS  Google Scholar 

  110. Loaëc M, Olier, R and Guezennec J. (1997) Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179

    Article  Google Scholar 

  111. Pirog TP, Kovalenko, MA, Kuzminskaya YuV and Votselko SK (2004) Physicochemical properties of the microbial exopolysaccharide ethapolan synthesized on a mixture of growth substrates. Microbiology 73:14–18

    Article  CAS  Google Scholar 

  112. Klock JH, Weiland A, Seifert R and Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterial mats: characterization and isolation method optimization Marine Biol DOI 10.1007/s00227-007-0754-5

  113. Kazy SK, Sar P, Singh SP, Sen AK and D’souza SF (2002) Extracellular polysaccharides of a copper-sensitive and copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding World. J Microbiol Biotechnol 18:583–588

    CAS  Google Scholar 

  114. Iyer A, Mody, K and Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  PubMed  CAS  Google Scholar 

  115. Finlay JA, Allan VJ, Conner A, Callow ME, Basnakova G and Macaskie LE (1999) Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng 63:87–97

    Article  PubMed  CAS  Google Scholar 

  116. Qureshi FM, Badar U and Ahmed N (2001) Biosorption of copper by a bacterial biofilm on a flexible polyvinyl chloride conduit. Appl Environ Microbiol 67:4349–4352

    Article  PubMed  CAS  Google Scholar 

  117. Templeton AS, Trainor TP, Spormann AM, Newville M, Sutton SR, Dohnalkova A, Gorby Y and Brown GE (2003) Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ Sci Technol 37:300–3007

    Article  PubMed  CAS  Google Scholar 

  118. Beyenal H and Lewandowski Z (2004) Dynamics of lead immobilization in sulfate reducing biofilms. Water Res 38:2726–2736

    Article  PubMed  CAS  Google Scholar 

  119. Hu Z, Hidalgo G, Houston PL, Hay AG, Shuler ML, Abruña HD, Ghiorse WC and Lion LW (2005) Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl Environ Microbiol 71:4014–4021

    Article  PubMed  CAS  Google Scholar 

  120. Zhang X, Brussee K, Coutinho CT and Rooney-Varga JN (2006) Chemical stress induced by copper: examination of a biofilm system. Water Sci Technol 54:191–919

    PubMed  CAS  Google Scholar 

  121. Kang SY, Bremer PJ, Kim KW and McQuillan AJ (2006) Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy. Langmuir 22:286–291

    Article  PubMed  CAS  Google Scholar 

  122. Lameiras S, Quintelas S and Tavares T (2007) Biosorption of Cr(VI) using bacterial biofilm supported on granular activated carbon and on zeolite Biores Technol DOI: 10.1016/j.biortech.2007.01.040

  123. Hu Z, Jin J, Abruña HD, Houston PL, Hay AG, Ghiorse WC, Shuler ML, Hidalgo G and Lion LW (2007) Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ Sci Technol 41:936–941

    Article  PubMed  CAS  Google Scholar 

  124. Aksu Z, Acikel U, Kabasakal E and Tezer S (2002) Equilibrium modeling of individual and simultaneous biosorption of chromium (VI) and nickel (II) onto dried activated sludge. Water Res 36:3063–3073

    Article  PubMed  CAS  Google Scholar 

  125. Sag Y, Tarar B and Kutsal T (2003) Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuousflow stirred reactors. Biores Technol 87:27–33

    Article  CAS  Google Scholar 

  126. Wu HS, Zhang AQ and Wang LS (2004) Immobilization study of biosorptions of metal ions onto activated sludge. J Environ Sci 16:640–645

    CAS  Google Scholar 

  127. Wang XJ, Xia SQ, Chen L, Zhao JF, Chovelon JM and Nicole JR (2006) Biosorption of cadmium (II) and lead (II) ions from aqueous solutions onto dried activated sludge. J Environ Sci 18:840–844

    Article  CAS  Google Scholar 

  128. Pamukoglu MY and Kargi F (2006) Batch kinetics and isotherms for biosorption of copper (II) ions onto pre-treated powdered waste sludge (PWS). J Haz Mat 138:479–484

    Article  CAS  Google Scholar 

  129. Zhang D, Wang J and Pan X (2006) Cadmium sorption by EPS produced by anaerobic sludge under sulphate-reducing conditions. J Haz Mat 138:589–593

    Article  CAS  Google Scholar 

  130. Comte S, Guibaud G and Baudu M (2007) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values J Haz Mat DOI: 10.1016/j.jhazmat.2007.05.070

  131. Chang WC, Hsu CH, Chiang SM and Su MC (2007) Equilibrium and kinetics of metal biosorption by sludge from a biological nutrient removal system. Environ Technol 28:453–462

    Article  PubMed  CAS  Google Scholar 

  132. Zhang LL, Feng XX, Xu F, Xu S and Cai WM (2005) Biosorption of rare earth metal ion on aerobic granules. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:857–867

    PubMed  Google Scholar 

  133. Xu H, Liu Y and Tay JH (2006) Effect of pH on nickel biosorption by aerobic granular sludge. Biores Technol 97:359–363

    Article  CAS  Google Scholar 

  134. Hawari AH and Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Biores Technol 97:692–700

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A., Paul, A.K. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48, 49–64 (2008). https://doi.org/10.1007/s12088-008-0006-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0006-5

Keywords

Navigation