Skip to main content
Log in

Bioremoval of arsenic (V) from aqueous solutions by chemically modified fungal biomass

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The biosorption of arsenic (V) on nine chemically modified biomasses (with iron oxide coated) of mycelia fungi: Aspergillus flavus III, IV and V, Aspergillus fumigatus I–II, Paecilomyces sp., Cladosporium sp., Mucor sp-1 and 2 was studied in this work. This study provides evidence that the biomasses of the fungi A. flavus, IV, III and V, Paecilomyces sp., and A. fumigatus I were very efficient at removing 1 mg/L of the metal in solution, using atomic absorption spectroscopy (AAS), achieving the following percentage of removals: 97.1, 92.3, 90.3, 89.0, and 83.4%, respectively. The results of adsorption were obtained at pH 6.0, 30 °C after 24 h of incubation, with 1 g/100 mL of fungal biomass. These results suggest the excellent potential of almost all isolated strains for bioremediation and removal of metals from contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baig JA, Kasi TG, Shah AQ, Kandhro GA, Afridi HI, Khan S, Kolachi NF (2010) Biosorption studies on powder of stem of Acacia nilotica: removal of arsenic from surface water. J Hazard Mater 178:941–948

    Article  CAS  Google Scholar 

  • Bartnicki-García S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22(1):87–108

    Article  Google Scholar 

  • Bayramoglu G, Bektas S, Arica M (2003) Biosorption of heavy metal ions immobilized while-rot fungus Trametes versicolor. J Hazard Mater 101:285–292

    Article  CAS  Google Scholar 

  • Behloul M, Lounici H, Abdi N, Drouiche N, Mameri N (2016) Adsorption study of metribuzin pesticide on fungus Pleurotus mutilus. Int Biodeterior Biodegradation. doi:10.1016/j.ibiod.2016.07.005

    Google Scholar 

  • Biswas BK, Inoue JIF, Ghimire KN, Harada H, Ohto K, Kawakita H (2008) Adsorptive removal of As(V) and As(III) from water by a Zr (IV) loaded orange waste gel. J Hazard Mater 154:1066–1074

    Article  CAS  Google Scholar 

  • Borah D, Satokawa S, Kato S, Kojima T (2009) Sorption of As(V) from aqueous solution using acid modified carbon black. J Hazard Mater 162(2–3):1269–1277

    Article  CAS  Google Scholar 

  • Brewster M (1992) Removing arsenic from contaminated waste water. Water Environ Technol 4:54–57

    Google Scholar 

  • Chen W, Parette R, Zou J, Cannon FS, Dempsey BA (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  Google Scholar 

  • Das AS, Basu JK, De S (2007) Adsorption of arsenite using natural laterite as adsorbent. Sep Purif Technol 55:350–359

    Article  Google Scholar 

  • Desesso JM, Jacobson CF, Scialli AR, Farr CH, Holson JF (1998) An assessment of the developmental toxicity of inorganic arsenic. Reprod Toxicol 12:385–433

    Article  CAS  Google Scholar 

  • Dwivedi AK, Srivastava S, Dwivedi S, Tripathi V (2015) Natural bio-remediation of arsenic contamination: a short review. Hydrol Current Res 6(1):1–4

    Google Scholar 

  • Ghimire KN, Inoue K, Makino K, Miyajima K (2002) Adsorptive removal of arsenic using orange juice. Separ Sci Technol 37(12):2785–2799

    Article  CAS  Google Scholar 

  • Haron MJ, Yunus WM, Yong NL, Tokunaga S (1999) Sorption of arsenate and arsenite anions by iron(III)-poly (hydroxamic acid) complex. Chemosphere 39:2459–2466

    Article  CAS  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry. A review. Water Air Soil Poll 225:1848–1873

    Article  Google Scholar 

  • Luokidou MX, Matis KA, Zouboulis AI, Liakopoulou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    Article  Google Scholar 

  • Martínez VM, Cárdenas JF, Torre ME, Acosta I (2012) Biosorption of mercury (II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl. doi:10.1155/2012/156190

    Google Scholar 

  • NOM 014-SSA1 (1993) Norma Oficial Mexicana sobre parámetros a determinar y la forma correcta de llevar el muestreo, conservación y manejo de las muestras hasta su ingreso al laboratorio, México, D.F

  • NOM-127-SSA1-1994-2000 (1994) Norma Oficial Mexicana sobre Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamiento que debe someterse al agua para su potabilización, México, D.F

  • Ozsoy HD (2010) Biosorptive removal of Hg(II) ions by Rhizopus oligosporus produced from corn-processing wastewater. Afr J Biotechnol 9(51):8783–8790

    CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40:549–552

    Article  CAS  Google Scholar 

  • Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34(19):2701–2708

    Article  CAS  Google Scholar 

  • Prieto F, Pérez F, Marmolejo Y (2012) Study of arsenic removal with ionic exchange resins in drinking water from Zimapan, Hidalgo State, Mexico. Int J Appl Sci Technol 2(6):14–16

    Google Scholar 

  • Raje N, Swain KK (2002) Purification of arsenic contaminated ground water using hydrated manganese dioxide. J Radioanal Nucl Chem 253:77–80

    Article  CAS  Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separ Sci Technol 38(9):2039–2053

    Article  CAS  Google Scholar 

  • Singh N, Srivastava PK, Tripathi RD, Srivastava S, Vaish A (2014) Microbial in situ mitigation of arsenic contamination in plants and soils. Book: in situ remediation of arsenic-contaminated sites. Chapter 6:115–143

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–569

    Article  CAS  Google Scholar 

  • Srivastava S, Dwivedi AK (2016) Biological wastes the tool for biosorption of arsenic. J Bioremediat Biodegrad 7:323. doi:10.4172/2155-6199.1000323

    Article  Google Scholar 

  • Srivastava PK, Vais A, Sanjay D, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  Google Scholar 

  • Thirunavukkarasu OS, Viraraghavan T, Subramannian KS (2003) Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Poll 42:95–111

    Article  Google Scholar 

  • Torres A, Martínez NV (2010) Determinación de arsénico en sedimentos en el acuífero somero de Matehuala–Cerrito Blanco, Memorias del 12 Verano de la ciencia. 1–9. Universidad Autónoma de Aguascalientes

  • Urik M, Cernansky S, Seve J, Siminovicová A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Poll 186:337–342

    Article  CAS  Google Scholar 

  • Wang W, Yang L, Hou S, Tan J, Li H (2001) Prevention of endemic arsenism with selenium. Curr Sci 18:1215–1218

    Google Scholar 

  • WHO (1993) Arsenic in drinking water. World Health Organization factsheet 210. World Health Organization, Geneva

    Google Scholar 

  • Yamani JS, Miller M, Spaulding ML, Zimmerman JB (2012) Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Res 46:4427–4434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Cárdenas-González.

Ethics declarations

Conflict of interest

All authors of this work transfer any and all rights in and to the paper including without limitation all copyrights to the 3 BIOTECH. All authors represent and warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. In the same way, all authors declare that there is no conflict of interest about this work, which is original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas-González, J.F., Acosta-Rodríguez, I., Téran-Figueroa, Y. et al. Bioremoval of arsenic (V) from aqueous solutions by chemically modified fungal biomass. 3 Biotech 7, 226 (2017). https://doi.org/10.1007/s13205-017-0868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0868-5

Keywords

Navigation