Skip to main content

Microalgal Pigments: A Source of Natural Food Colors

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Naturally sourced colorants and dyes are currently gaining demand over synthetic alternatives due to an increase in consumer awareness brought forward by health and environmental issues. Microalgae are unicellular organisms which are microscopic in size and represent major photosynthesizers with the ability to efficiently convert available solar energy to chemical energy. Due to their distinct advantages over terrestrial plants such as faster growth rates, ability to grow on non-arable land, and diversity in the production of various natural bioactive compounds (e.g., lipids, proteins, carbohydrate, and pigments), microalgae are currently gaining promise as a sustainable source for the production of natural food-grade colorants. The versatility of microalgae to produce various pigments (e.g., chlorophylls, carotenoids, xanthophylls, and phycobiliproteins) that can be commercially exploited as a source of natural colorant is there to be explored. Various growth factors such as temperature, pH, salinity, and light in terms of both quality and quantity have been shown to significantly impact pigment production. In this chapter, we comprehensively review the characteristics of microalgal pigments and factors that affect pigment production in microalgae while evaluating the overall feasibility of exploiting them as a natural source of food colorants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affenzeller, M. J., Darehshouri, A., Andosch, A., Lütz, C., & Lütz-Meindl, U. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60(3), 939–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., et al. (2018). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 1–22.

    Google Scholar 

  • Bagchi, D. (2006). Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology, 221(1), 1.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, W., & Apt, K. (2013). Strategies for bioprospecting microalgae for potential commercial applications. Handbook of microalgal culture: Applied phycology and biotechnology (2nd ed., pp. 69–79). Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Bassi, A., Saxena, P., & Aguirre, A.-M. (2014). Mixotrophic algae cultivation for energy production and other applications. In R. Bajpal, A. Prokop, & M. Zappi (Eds.), Algal biorefineries (pp. 177–202). New York, NY: Springer.

    Chapter  Google Scholar 

  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161–171.

    Article  Google Scholar 

  • Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13), 2209–2222.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz, A., & Avron, M. (1992). Dunaliella: Physiology, biochemistry, and biotechnology. Boca Raton, FL: CRC press.

    Google Scholar 

  • Benavente-Valdés, J. R., Aguilar, C., Contreras-Esquivel, J. C., Méndez-Zavala, A., & Montañez, J. (2016). Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnology Reports, 10, 117–125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berges, J. A., Charlebois, D. O., Mauzerall, D. C., & Falkowski, P. G. (1996). Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiology, 110(2), 689–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo, R., Acién, F. G., Ibáñez, M. J., Fernández, J. M., Molina, E., & Alvarez-Pez, J. M. (2003). Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. Journal of Chromatography B, 790(1–2), 317–325.

    Article  CAS  Google Scholar 

  • Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73(6), 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Bona, F., Capuzzo, A., Franchino, M., & Maffei, M. E. (2014). Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. Algal Research, 5, 1–6.

    Article  Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70(1), 313–321.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25(3), 743–756.

    Article  CAS  Google Scholar 

  • Borowitzka, L., Moulton, T., & Borowitzka, M. (1984). The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant. In C. J. Bird & M. A. Ragan (Eds.), Eleventh international seaweed symposium (pp. 115–121). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bouarab, L., Dauta, A., & Loudiki, M. (2004). Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: Effect of light and acetate gradient concentration. Water Research, 38(11), 2706–2712.

    Article  CAS  PubMed  Google Scholar 

  • Cai, M., Li, Z., & Qi, A. (2009). Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis. Chinese Journal of Oceanology and Limnology, 27(2), 370.

    Article  CAS  Google Scholar 

  • Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399.

    Article  PubMed  Google Scholar 

  • Carocho, M., Morales, P., & Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284–295.

    Article  CAS  Google Scholar 

  • Chauhan, U., & Pathak, N. (2010). Effect of different conditions on the production of chlorophyll by Spirulina platensis. Journal of Algal Biomass Utilization, 1(4), 89–99.

    Google Scholar 

  • Chen, G.-Q., & Chen, F. (2006). Growing phototrophic cells without light. Biotechnology Letters, 28(9), 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Li, H.-B., Wong, R. N.-S., Ji, B., & Jiang, Y. (2005). Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. Journal of Chromatography A, 1064(2), 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Jiang, J. G., & Wu, G. H. (2009). Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of Agricultural and Food Chemistry, 57(14), 6178–6182.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., He, Y., Zhou, Y., Shao, Y., Feng, Y., Li, M., & Chen, F. (2015). Edible filamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Comprehensive Reviews in Food Science and Food Safety, 14(5), 555–567.

    Article  CAS  Google Scholar 

  • Chentir, I., Hamdi, M., Li, S., Doumandji, A., Markou, G., & Nasri, M. (2018). Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Research, 35, 395–406.

    Article  Google Scholar 

  • Christaki, E., Bonos, E., & Florou-Paneri, P. (2015). Innovative microalgae pigments as functional ingredients in nutrition. In S. K. Kim (Ed.), Handbook of marine microalgae (pp. 233–243). London: Elsevier.

    Chapter  Google Scholar 

  • da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20.

    Article  PubMed  CAS  Google Scholar 

  • Danesi, E. D. G., Rangel-Yagui, C. O., Carvalho, J. C. M., & Sato, S. (2004). Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy, 26(4), 329–335.

    Article  CAS  Google Scholar 

  • Del Campo, J. A., Moreno, J., Rodríguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76(1), 51–59.

    Article  PubMed  Google Scholar 

  • Del Campo, J., Rodriguez, H., Moreno, J., Vargas, M., Rivas, J., & Guerrero, M. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64(6), 848–854.

    Article  PubMed  CAS  Google Scholar 

  • Del Campo, J., Garcia-Gonzalez, M., & Guerrero, M. (2007a). Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology, 74, 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007b). Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology, 74(6), 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • Dias, M. I., Ferreira, I. C., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035–1052.

    Article  CAS  Google Scholar 

  • Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 2014, 694305.

    PubMed  PubMed Central  Google Scholar 

  • Dubinsky, Z., & Stambler, N. (2009). Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications. Aquatic Microbial Ecology, 56(2–3), 163–176.

    Article  Google Scholar 

  • Dufoss, L., Galaup, P., Yarnon, A., Arad, S. M., Blanc, P., Kotamballi, N. C., et al. (2005). Microorganisms and microalgae as source of pigments for use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389–406.

    Article  CAS  Google Scholar 

  • Estévez, J. M., Cantero, A., Reindl, A., Reichler, S., & León, P. (2001). 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. Journal of Biological Chemistry, 276(25), 22901–22909.

    Article  PubMed  Google Scholar 

  • Fábregas, J., Domínguez, A., Álvarez, D. G., Lamela, T., & Otero, A. (1998). Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnology Letters, 20(6), 623–626.

    Article  Google Scholar 

  • Fábregas, J., Otero, A., Maseda, A., & Domínguez, A. (2001). Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 89(1), 65–71.

    Article  PubMed  Google Scholar 

  • Farré, G., Sanahuja, G., Naqvi, S., Bai, C., Capell, T., Zhu, C., & Christou, P. (2010). Travel advice on the road to carotenoids in plants. Plant Science, 179(1–2), 28–48.

    Article  CAS  Google Scholar 

  • Fernandes, T. M., Gomes, B. B., & Lanfer-Marquez, U. M. (2007). Apparent absorption of chlorophyll from spinach in an assay with dogs. Innovative Food Science & Emerging Technologies, 8(3), 426–432.

    Article  CAS  Google Scholar 

  • Finney, K., Pomeranz, Y., & Bruinsma, B. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal Chemistry, 61, 402–406.

    CAS  Google Scholar 

  • Fon Sing, S., Isdepsky, A., Borowitzka, M., & Moheimani, N. (2011). Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 1–26. https://doi.org/10.1007/s11027-011-9294-x.

    Article  Google Scholar 

  • Gantt, E., & Cunningham Jr, F. X. (2001). Algal pigments. In: Encyclopedia of life sciences. John Wiley Publisher. https://doi.org/10.1038/npg.els.0000323.

  • García-González, M., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1), 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Gerchman, Y., Vasker, B., Tavasi, M., Mishael, Y., Kinel-Tahan, Y., & Yehoshua, Y. (2017). Effective harvesting of microalgae: Comparison of different polymeric flocculants. Bioresource Technology, 228, 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, A. R., Bhaya, D., Apt, K. E., & Kehoe, D. M. (1995). Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution. Annual Review of Genetics, 29(1), 231–288.

    Article  CAS  PubMed  Google Scholar 

  • Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H., & Tanaka, H. (2001). Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 13(5), 395–402.

    Article  CAS  Google Scholar 

  • Heer, K., & Sharma, S. (2017). Microbial pigments as a natural color: A review. International Journal of Pharmaceutical Sciences and Research, 8(5), 1913–1922.

    CAS  Google Scholar 

  • Hejazi, M., Holwerda, E., & Wijffels, R. (2004). Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnology and Bioengineering, 85(5), 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Henriques, M., Silva, A., & Rocha, J. (2007). Extraction and quantification of pigments from a marine microalga: A simple and reproducible method. Communicating Current Research and Educational Topics and Trends in Applied Microbiology Formatex, 2, 586–593.

    Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, 2010, 11.

    Article  CAS  Google Scholar 

  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., & Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54–67.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey, A. (1980). Chlorophyll. Food Chemistry, 5(1), 57–67.

    Article  CAS  Google Scholar 

  • Ilavarasi, A., Pandiaraj, D., Mubarakali, D., Ilyas, M., & Thajuddin, N. (2012). Evaluation of efficient extraction methods for recovery of photosynthetic pigments from microalgae. Pakistan Journal of Biological Sciences, 15, 883–888.

    Article  CAS  PubMed  Google Scholar 

  • Ip, P.-F., & Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40(2), 733–738.

    Article  CAS  Google Scholar 

  • Ishika, T., Moheimani, N. R., Bahri, P. A., Laird, D. W., Blair, S., & Parlevliet, D. (2017). Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Research, 28, 66–73. https://doi.org/10.1016/j.algal.2017.10.002.

    Article  Google Scholar 

  • Jacobson, M., & Kobylewski, S. (2010). Color us worried: Why synthetic food dyes should be banned. SAFE-FOOD REPORT. Nutrition Action Healthletter, 37(10).

    Google Scholar 

  • Jeffrey, S. W., Wright, S. W., & Zapata, M. (2011). Microalgal classes and their signature pigments. In C. A. Llewellyn, E. S. Egeland, G. Johnsen, & S. Roy (Eds.), Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge environmental chemistry series (pp. 3–77). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511732263.004.

    Chapter  Google Scholar 

  • John, E. H., & Flynn, K. J. (2000). Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecological Modelling, 125(2–3), 145–157.

    Article  CAS  Google Scholar 

  • Kacser, H. (1995). Recent developments beyond metabolic control analysis. London: Portland Press Limited.

    Book  Google Scholar 

  • Kagawa, T., & Suetsugu, N. (2007). Photometrical analysis with photosensory domains of photoreceptors in green algae. FEBS Letters, 581(3), 368–374.

    Article  CAS  PubMed  Google Scholar 

  • Kang, C. D., & Sim, S. J. (2007). Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnology Progress, 23(4), 866–871.

    Article  CAS  PubMed  Google Scholar 

  • Kang, C., Lee, J., Park, T., & Sim, S. (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Applied Microbiology and Biotechnology, 68(2), 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Kepekçi, R. A., & Saygideger, S. D. (2012). Enhancement of phenolic compound production in Spirulina platensis by two-step batch mode cultivation. Journal of Applied Phycology, 24(4), 897–905.

    Article  CAS  Google Scholar 

  • Kim, Z.-H., Kim, S.-H., Lee, H.-S., & Lee, C.-G. (2006). Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme and Microbial Technology, 39(3), 414–419.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Kurimura, Y., & Tsuji, Y. (1997). Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnology Letters, 19(6), 507–509.

    Article  CAS  Google Scholar 

  • Kozłowska-Szerenos, B., & Zieliński, P. (2000). Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiology and Biochemistry, 38(9), 727–734.

    Article  Google Scholar 

  • Kozłowska-Szerenos, B., Bialuk, I., & Maleszewski, S. (2004). Enhancement of photosynthetic O2 evolution in Chlorella vulgaris under high light and increased CO2 concentration as a sign of acclimation to phosphate deficiency. Plant Physiology and Biochemistry, 42(5), 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P., Ramakritinan, C., & Kumaraguru, A. (2010). Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, southeast coast of India. International Journal of Oceans and Oceanography, 4(1), 29–34.

    Google Scholar 

  • Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C. H., Bino, R. J., & Wijffels, R. H. (2010). Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering, 106(4), 638–648.

    Article  CAS  PubMed  Google Scholar 

  • Laokuldilok, N., Thakeow, P., Kopermsub, P., & Utama-Ang, N. (2016). Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chemistry, 194, 695–704.

    Article  CAS  PubMed  Google Scholar 

  • Li, H.-B., & Chen, F. (2001). Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography. Journal of Chromatography A, 925(1–2), 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Li, H.-B., Jiang, Y., & Chen, F. (2002). Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry, 50(5), 1070–1072.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. B., Fan, K. W., & Chen, F. (2006). Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. Journal of Separation Science, 29(5), 699–703.

    Article  CAS  Google Scholar 

  • Li, H.-B., Cheng, K.-W., Wong, C.-C., Fan, K.-W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102(3), 771–776.

    Article  CAS  Google Scholar 

  • Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Huang, J., Sandmann, G., & Chen, F. (2009). High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). Journal of Phycology, 45(3), 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167. https://doi.org/10.1016/S0167-7799(00)01433-5.

    Article  CAS  PubMed  Google Scholar 

  • Ma, R. Y.-N., & Chen, F. (2001). Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochemistry, 36(12), 1175–1179.

    Article  CAS  Google Scholar 

  • Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., & Hirose, T. (2006). Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Industrial & Engineering Chemistry Research, 45(10), 3652–3657.

    Article  CAS  Google Scholar 

  • Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G., Folli, C., Visai, L., Daglia, M., & Ferrari, D. (2014). Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 49(1), 154–159.

    Article  CAS  Google Scholar 

  • Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15.

    Article  CAS  Google Scholar 

  • Mishra, S. K., Shrivastav, A., & Mishra, S. (2008). Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochemistry, 43(4), 339–345.

    Article  CAS  Google Scholar 

  • Mogedas, B., Casal, C., Forján, E., & Vílchez, C. (2009). β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. Journal of Bioscience and Bioengineering, 108(1), 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Mohsenpour, S. F., & Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology, 142, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Mojaat, M., Pruvost, J., Foucault, A., & Legrand, J. (2008). Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochemical Engineering Journal, 39(1), 177–184.

    Article  CAS  Google Scholar 

  • Moreno, J., Rodríguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (1995). Nitrogen-fixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains. Journal of Applied Phycology, 7(1), 17–23.

    Article  CAS  Google Scholar 

  • Mulders, K. J. M. (2014). Phototrophic pigment production with microalgae. Wageningen: Wageningen University.

    Google Scholar 

  • Mulders, K. J. M., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology, 50(2), 229–242. https://doi.org/10.1111/jpy.12173.

    Article  CAS  PubMed  Google Scholar 

  • Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019a). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433.

    Article  Google Scholar 

  • Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019b). Sustainable phycocyanin production from Arthrospira platensis using solar-control thin film coated photobioreactor. Biochemical Engineering Journal, 141, 232–238.

    Article  CAS  Google Scholar 

  • Ogbonna, C. N. (2016a). Effects of carbon sources on pigment production by Talaromyces purpurogenus LC128689 in liquid surface cultures. Bio-Research, 13, 942–947.

    Google Scholar 

  • Ogbonna, C. N. (2016b). Production of food colourants by filamentous fungi. African Journal of Microbiology Research, 10(26), 960–971.

    Article  CAS  Google Scholar 

  • Ogbonna, C. N., & Edeh, I. C. (2018). Harvesting Chlorella variabilis. Biomass using Moringa oleifera seed-induced sedimentation. Journal of Advances in Biology and Biotechnology, 18(4), 1–11.

    Article  Google Scholar 

  • Ogbonna, J. C., & McHenry, M. P. (2015). Culture systems incorporating heterotrophic metabolism for biodiesel oil production by microalgae. In N. R. Moheimani, M. P. McHenry, K. de Boer, & P. P. Bahri (Eds.), Biomass and Biofuels from Microalgae (pp. 63–74). Chem: Springer.

    Chapter  Google Scholar 

  • Ogbonna, J. C., & Tanaka, H. (1998). Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles. Bioresource Technology, 65(1–2), 65–72.

    Article  CAS  Google Scholar 

  • Ogbonna, J. C., Masui, H., & Tanaka, H. (1997). Sequential heterotrophic/autotrophic cultivation–An efficient method of producing Chlorella biomass for health food and animal feed. Journal of Applied Phycology, 9(4), 359–366.

    Article  Google Scholar 

  • Ogbonna, J. C., Soejima, T., Ugwu, C. U., & Tanaka, H. (2001). An integrated system of solar light, artificial light and organic carbon supply for cyclic photoautotrophic-heterotrophic cultivation of photosynthetic cells under day–night cycles. Biotechnology Letters, 23(17), 1401–1406.

    Article  CAS  Google Scholar 

  • Ogbonna, C. N., Aoyagi, H., & Ogbonna, J. C. (2017). Isolation and identification of Talaromyces purpurogenus and preliminary studies on its pigment production potentials in solid state cultures. African Journal of Biotechnology, 16(13), 672–682.

    Article  CAS  Google Scholar 

  • Ördög, V., Stirk, W. A., Bálint, P., van Staden, J., & Lovász, C. (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 24(4), 907–914.

    Article  CAS  Google Scholar 

  • Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., Kaas, R., Serive, B., Patrice, T., & Cadoret, J.-P. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67.

    Article  CAS  Google Scholar 

  • Piccaglia, R., Marotti, M., & Grandi, S. (1998). Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Industrial Crops and Products, 8(1), 45–51.

    Article  CAS  Google Scholar 

  • Poojary, M., Barba, F., Aliakbarian, B., Donsì, F., Pataro, G., Dias, D., & Juliano, P. (2016). Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Marine Drugs, 14(11), 214.

    Article  PubMed Central  CAS  Google Scholar 

  • Pumas, C., Peerapornpisal, Y., Vacharapiyasophon, P., Leelapornpisid, P., Boonchum, W., Ishii, M., & Khanongnuch, C. (2012). Purification and characterization of a thermostable phycoerythrin from hot spring cyanobacterium Leptolyngbya sp. KC45. International Journal of Agriculture and Biology, 14(1).

    Google Scholar 

  • Qu, C.-B., Wu, Z.-Y., & Shi, X.-M. (2008). Phosphate assimilation by Chlorella and adjustment of phosphate concentration in basal medium for its cultivation. Biotechnology Letters, 30(10), 1735.

    Google Scholar 

  • Rao, A. R., Dayananda, C., Sarada, R., Shamala, T., & Ravishankar, G. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Rezić, T., Filipović, J., & Šantek, B. (2013). Photo-mixotrophic cultivation of algae Euglena gracilis for lipid production. Agriculturae Conspectus Scientificus, 78(1), 65–69.

    Google Scholar 

  • Richmond, A. (1986). Cell response to environmental factors. In A. Richmond (Ed.), Handbook of microalgal mass culture (Vol. 528, pp. 69–99). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Richmond, A. (2000). Microalgal biotechnology at the turn of the millennium: A personal view. Journal of Applied Phycology, 12, 441–451.

    Article  Google Scholar 

  • Rodríguez, H., Rivas, J., Guerrero, M. G., & Losada, M. (1991). Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria. Journal of Biotechnology, 20(3), 263–270.

    Article  Google Scholar 

  • Rodriguez-Amaya, D. B. (2019). Natural food pigments and colorants. Bioactive Molecules in Food, 867–901.

    Google Scholar 

  • Román, R. B., Alvarez-Pez, J., Fernández, F. A., & Grima, E. M. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1), 73–85.

    Article  Google Scholar 

  • Rosenberg, J. N., Oyler, G. A., Wilkinson, L., & Betenbaugh, M. J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19(5), 430–436. https://doi.org/10.1016/j.copbio.2008.07.008.

    Article  CAS  PubMed  Google Scholar 

  • Saini, R. K., & Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103.

    Article  CAS  PubMed  Google Scholar 

  • Sarada, R., Vidhyavathi, R., Usha, D., & Ravishankar, G. (2006). An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 54(20), 7585–7588.

    Article  CAS  PubMed  Google Scholar 

  • Schab, D. W., & Trinh, N.-H. T. (2004). Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. Journal of Developmental & Behavioral Pediatrics, 25(6), 423–434.

    Article  Google Scholar 

  • Schwartz, S. J., & Lorenzo, T. V. (1990). Chlorophylls in foods. Critical Reviews in Food Science & Nutrition, 29(1), 1–17.

    Article  CAS  Google Scholar 

  • Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23(4), 721–726. https://doi.org/10.1007/s10811-010-9569-8.

    Article  CAS  Google Scholar 

  • Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331.

    Article  CAS  Google Scholar 

  • Shi, X., Wu, Z., & Chen, F. (2006). Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition & Food Research, 50(8), 763–768.

    Article  CAS  Google Scholar 

  • Shim, S.-M., Seo, S. H., Lee, Y., Moon, G.-I., Kim, M.-S., & Park, J.-H. (2011). Consumers’ knowledge and safety perceptions of food additives: Evaluation on the effectiveness of transmitting information on preservatives. Food Control, 22(7), 1054–1060.

    Article  Google Scholar 

  • Sivathanu, B., & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedicine & Preventive Nutrition, 2(4), 276–282.

    Article  Google Scholar 

  • Six, C., Thomas, J.-C., Garczarek, L., Ostrowski, M., Dufresne, A., Blot, N., Scanlan, D. J., & Partensky, F. (2007). Diversity and evolution of phycobilisomes in marine Synechococcus sp.: A comparative genomics study. Genome Biology, 8(12), R259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soares, A. T., Marques Júnior, J. G., Lopes, R. G., Derner, R. B., & Antoniosi Filho, N. R. (2016). Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. Journal of the Brazilian Chemical Society, 27(6), 1083–1093.

    CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Z., Ju, B., Li, W., Wen, S., Pu, Y., & Qin, S. (2016). One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum. Protein Expression and Purification, 123, 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Thrane, J.-E., Kyle, M., Striebel, M., Haande, S., Grung, M., Rohrlack, T., & Andersen, T. (2015). Spectrophotometric analysis of pigments: A critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral deconvolution. PLoS One, 10(9), e0137645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timberlake, C., & Henry, B. (1986). Plant pigments as natural food colours. Endeavour, 10(1), 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Tokarek, W., Listwan, S., Pagacz, J., Leśniak, P., & Latowski, D. (2016). Column chromatography as a useful step in purification of diatom pigments. Acta Biochimica Polonica, 63(3).

    Google Scholar 

  • Töpfl, S. (2006). Pulsed Electric Fields (PEF) for permeabilization of cell membranes in food-and bioprocessing–Applications, process and equipment design and cost analysis.

    Google Scholar 

  • Uquiche, E., Antilaf, I., & Millao, S. (2016). Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Brazilian Journal of Microbiology, 47(2), 497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USFDA. (2019). Overview of food ingredients, additives and colors. Retrieved March 25, 2019, from http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm094211.htm

  • Vadiveloo, A., Moheimani, N. R., Cosgrove, J. J., Bahri, P. A., & Parlevliet, D. (2015). Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp.(Eustigmatophyceae). Algal Research, 8, 121–127.

    Article  Google Scholar 

  • Vadiveloo, A., Moheimani, N. R., Kosterink, N. R., Cosgrove, J. J., Parlevliet, D., Gonzalez-Garcia, C., & Lubián, L. M. (2016). Photosynthetic performance of two Nannochloropsis sp. under different filtered light spectra. Algal Research, 19, 168–177.

    Article  Google Scholar 

  • Vadiveloo, A., Moheimani, N. R., Cosgrove, J. J., Parlevliet, D., & Bahri, P. A. (2017). Effects of different light spectra on the growth, productivity and photosynthesis of two acclimated strains of Nannochloropsis sp. Journal of Applied Phycology, 1–10.

    Google Scholar 

  • Veuger, B., & van Oevelen, D. (2011). Long-term pigment dynamics and diatom survival in dark sediment. Limnology and Oceanography, 56(3), 1065–1074.

    Article  CAS  Google Scholar 

  • Wang, Y., & Chen, T. (2008). The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World Journal of Microbiology and Biotechnology, 24(12), 2927–2932. https://doi.org/10.1007/s11274-008-9834-z.

    Article  CAS  Google Scholar 

  • Wang, C., Chen, D., Chen, M., Wang, Y., Li, Z., & Li, F. (2015). Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus. Biotechnology Letters, 37(5), 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  • Wegmann, K. (1986). Osmoregulation in eukaryotic algae. FEMS Microbiology Reviews, 2(1–2), 37–43.

    Article  Google Scholar 

  • Whitehead, A. J., Mares, J. A., & Danis, R. P. (2006). Macular pigment: A review of current knowledge. Archives of Ophthalmology, 124(7), 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  • Yen, H.-W., & Chang, J.-T. (2013). A two-stage cultivation process for the growth enhancement of Chlorella vulgaris. Bioprocess and Biosystems Engineering, 36(11), 1797–1801. https://doi.org/10.1007/s00449-013-0922-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashiwin Vadiveloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nwoba, E.G., Ogbonna, C.N., Ishika, T., Vadiveloo, A. (2020). Microalgal Pigments: A Source of Natural Food Colors. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_3

Download citation

Publish with us

Policies and ethics