Skip to main content

Culture Systems Incorporating Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

Abstract

The feasibility of using various culture systems incorporating heterotrophic metabolism for biodiesel oil production was compared. Heterotrophic culture can be used to achieve high cell concentration, and depending on the strain and organic carbon source employed, the introduction of light (mixotrophic culture) can enhance cell growth and oil accumulation. However, mixotrophic cultures also face the problem of light limitation, and depending on the relative concentrations of the organic carbon source and light intensity, the interaction between the heterotrophic and photoautotrophic metabolic activities can have negative effects on cell growth and oil accumulation. Systems that separate the two metabolic activities in time or space, such as cyclic photoautotrophic–heterotrophic cultures, sequential heterotrophic–photoautotrophic cultures, and sequential photoautotrophic–mixotrophic cultures, can all be used to improve oil productivity. However, the effectiveness of each system depends on the strain of microalgae and other culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. Appl Environ Microbiol 35:32–37

    Google Scholar 

  • Agwa OK, Ibe SN, Abu GO (2013) Heterotrophic cultivation of Chlorella sp. using different waste extracts. Int J Biochem Biotechnol 2(3):289–297

    Google Scholar 

  • Azma M, Mohamed MS, Mohamad R, Rahim RA, Ariff AB (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53(2):187–195

    Article  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88(10):3425–3431

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, New York

    Chapter  Google Scholar 

  • Ceron Garcia MC, Sanchez Miron A, Fernandez Sevilla JM, Molina Grima E, Garcia Camacho F (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum. Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305

    Article  Google Scholar 

  • Ceron Garcia MC, Garcia Camacho F, Sanchez Miron A, Fernandez Sevilla JM, Chisti Y, Molina Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16(5):689–694

    Google Scholar 

  • Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983. doi:10.1007/s10529-011-0672-y

    Article  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed batch system. Enzymol Microb Technol 20:221–224

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semi continuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of spirulina sp growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Micros Technol 34:461–465

    Article  Google Scholar 

  • Cohen Z (1999) Porphyridium cruentum. In: Cohen A (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

    Google Scholar 

  • Das P, Aziz SS, Obbard JP (2011) Two-phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy 36:2524–2528

    Article  Google Scholar 

  • Day JG, Tsavalos AJ (1996) An investigation of the heterotrophic culture of the green alga Tetraselmis. J Appl Phycol 8(1):73–77

    Article  Google Scholar 

  • Day JG, Edwards JG, Rogers GA (1991) Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol 38:245–249

    Article  Google Scholar 

  • Fernandez Sevilla JM, Ceron Garcia MC, Sanchez Miron A, Belarbi EH, Garcia Camacho F, Molina Grima E (2004) Pilot plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fedbatch mode. Biotechnol Prog 20:728–736

    Article  Google Scholar 

  • Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141

    Article  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  Google Scholar 

  • Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol 53:14–20

    Article  Google Scholar 

  • Hata N, Ogbonna JC, Taroda H, Tanaka H (2001) Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol 13:395–402

    Article  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35(5):2245–2253

    Article  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacyglycerol as feedstock for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  Google Scholar 

  • Jiménez Ruiz N, Cerón García MDC, Sanchez Mirón A, Belarbi Haftalaui EH, García Camacho F, Molina Grima E (2009) Lipids accumulation in Chlorella protothecoides through mixotrophic and heterotrophic cultures for biodiesel production. New Biotechnol 25:S266

    Article  Google Scholar 

  • Kamiya A, Kovallik W (1987) Photoinhibion of glucose uptake in Chlorella. Plant Cell Physiol 28(4):611–619

    Google Scholar 

  • Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal nutrition. In: Richmond A (ed) Handbook for Microalgal Mass Culture. CRC Press, Boca Raton, pp 147–198

    Google Scholar 

  • Kong W, Song H, Cao Y, Yang H, Hua S, Xia C (2011) The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr J Biotechnol 10(55):11620–11630

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lee YK, Zhang DH (1999) Production of astaxanthin by Haematococcus. In: Cohen A (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

    Google Scholar 

  • Li XF, Xu H, Wu QY (2007) Large scale biodiesel production from microalgae Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  Google Scholar 

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  Google Scholar 

  • Liu XJ, Duan S, Li A, Cai Z, Hu Z (2009) Effects of carbon sources on growth, photosynthesis and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246

    Article  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  Google Scholar 

  • Lodi A, Binaghi L, De Feveri D, Carvalho JCM, Converti A, Del Borghi M (2005) Fed-batch mixotrophic cultivation of Anthrospira (Spirulina) plantensis (Cyanophyceae) with carbon source pulse feeding. Ann Microbiol 55(3):181–186

    Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 5:408–410

    Article  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol 95:1150–1155

    Article  Google Scholar 

  • Miao XL, Wu Q (2004) High yield bio oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  Google Scholar 

  • Miao XL, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  Google Scholar 

  • Mitra D, van Leeuwen JH, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research 1(1):40–48

    Article  Google Scholar 

  • Moraisa KCC, Ribeiro RLL, Santos KR, Taher DM, Mariano AB, Vargas JVC (2009) Phaeodactylum tricornutum microalgae growth rate in heterotrophic and mixotrophic conditions Engenharia Térmica. Therm Eng 8(1):84–89

    Google Scholar 

  • Morales-Sánchez D, Tinoco-Valencia R, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6:100. doi:10.1186/1754-6834-6-100

    Article  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetics analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  Google Scholar 

  • Ogbonna JC (2003) Photobioreactors. In: Fingerman M, Nagabhushanam R (eds) Recent Advances in Marine Biotechnology. Biomaterials and Bioprocessing, vol 9. Science Publishers of Enfield, USA, pp 315–348

    Google Scholar 

  • Ogbonna JC, Tanaka H (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82:549–555

    Article  Google Scholar 

  • Ogbonna JC, Tanaka H (1998) Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells—a method of achieving continuous cell growth under light/dark cycles. Bioresour Technol 65:65–72

    Article  Google Scholar 

  • Ogbonna JC, Yada H, Tanaka H (1995) Light supply coefficient—a new engineering parameter for photobioreactor design. J Ferment Bioeng 80:369–376

    Article  Google Scholar 

  • Ogbonna JC, Yada H, Masui H, Tanaka H (1996) A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J Ferment Bioeng 62:61–67

    Article  Google Scholar 

  • Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic-autotrophic cultivation—an efficient method for producing Chlorella biomass for health food and animal feed. J Appl Phycol 9:359–366

    Article  Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1998) Hetetrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74

    Article  Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1999) Production of α- tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis. J Biotechnol 70:213–221

    Article  Google Scholar 

  • Ogbonna JC, Soejima T, Ugwu CU, Tanaka H (2001) An integrated system of solar light, artificial light, and organic carbon supply for cyclic photoautotrophic-heterotrophic cultivation of photosynthetic cells under day/night cycles. Biotechnol Lett 23:1401–1406

    Article  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002a) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic culture of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002b) Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to α-tocopherol production. Biotechnol Lett 24:953–958

    Article  Google Scholar 

  • Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  Google Scholar 

  • Ratha SK, Babu S, Renuka N, Prasanna R, Badari R, Prasad N, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450

    Article  Google Scholar 

  • Read H, Reads S, Park B (1989) The estimation of algal yield parameters associated with mixotrophic and photoheterotrophic growth under batch cultivation. Biomass 18:153–160

    Article  Google Scholar 

  • Sukenik A, Levy RS, Levy Y, Falkowski PG, Dubinsky Z (1991) Optimizing algal biomass production in an outdoor pond: a simulation model. J Appl Phycol 3:191–201

    Article  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  Google Scholar 

  • Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  Google Scholar 

  • Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8:59–64

    Article  Google Scholar 

  • Wang H, Fu R, Pei G (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6(5):1041–1047

    Google Scholar 

  • Wen ZY, Chen F (2000a) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microb Technol 29:341–347

    Article  Google Scholar 

  • Wen ZY, Chen F (2000b) Heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis: Effects of silicate and glucose. J Ind Microbiol Biotechnol 25:218–224

    Article  Google Scholar 

  • Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J Biotechnol 70:175–183

    Article  Google Scholar 

  • Wu X, Ruan R, Du Z, Liu Y (2012) Current status and prospects of biodiesel production from microalgae. Energies 5:2667–2682. doi:10.3390/en5082667

    Article  Google Scholar 

  • Xiong W, Li XF, Xiang JY, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  Google Scholar 

  • Yen HW, Chang JT (2013) A two stage cultivation process for the growth enhancement of Chlorella vulgaris. Bioprocess Biocatalyst Eng 36:1797–1801. doi:10.1007/s00449.013-0922-6

    Article  Google Scholar 

  • Zhao G, Yu J, Jiang F, Zhang X, Tan T (2012) The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol 114(281):466–471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chukwuma Ogbonna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ogbonna, J.C., McHenry, M.P. (2015). Culture Systems Incorporating Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics