Skip to main content

Advertisement

Log in

Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abad R (1996) Therapeutic and cosmetic compositions for treatment of skin. United States patent US 5538740A

  • Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Häder D (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326

    Article  Google Scholar 

  • Bachvaroff TR, Puerta MVS, Delwiche CF (2005) Chlorophyll c—containing plastid relationships based on analyses of a multigene data set with all four Chromalveolate Lineages. Mol Biol Evol 22:1772–1782

    Article  CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847

    Article  CAS  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  Google Scholar 

  • Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552

    Article  Google Scholar 

  • Chauhan UK, Pathak N (2010) Effect of different conditions on the production of chlorophyll by Spirulina platensis. J Algal Biomass Utln 1:89–99

    Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:26.1–26.24

    Article  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  Google Scholar 

  • Chen M, Li J, Dai X, Sun Y, Chen F (2011) Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 12:187–192

    Article  CAS  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  Google Scholar 

  • Chen S, Chen M, Wang Z, Qiu W, Wang J, Shen Y, Wang Y, Ge S (2016) Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environ Toxicol Pharmacol 45:179–186

    Article  CAS  Google Scholar 

  • Darley WM (1982) Chapter 3: phytoplankton: environmental factors affecting growth. In: Darley WM (ed) Algal biology: a physiological approach. Blackwell Scientific Publications, Belgium, pp 921–952

    Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  • Encarnação T, Burrows HD, Pais AC, Campos MG, Kremer A (2012) Effect of N and P on the uptake of magnesium and iron and on the production of carotenoids and chlorophyll by the microalgae Nannochloropsis sp. J Agric Sci Technol A 2:824–832

    Google Scholar 

  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K (2016) Zugmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88:126–134

    Article  CAS  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    Article  Google Scholar 

  • Ferreira VS, Pinto RF, Sant’Anna C (2016) Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J Appl Microbiol 120:661–670

    Article  CAS  Google Scholar 

  • Fujimoto Y, Sakamoto J (1955) The influence of magnesium deficiency on the growth of chlorella. Bull Agric Chem Soc Jpn 19:253–257

    Article  CAS  Google Scholar 

  • Gaur N, Bhardwaj V, Rathi M (2013) Heavy metals and their effects. PR:BioMedRx: An Int J 1:928–933

    Google Scholar 

  • George M, Reddick RS (2013) Chlorophyll cooling agent for synthetic turf components. United States patent US 20130034671A1

  • George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Bioresour Technol 171:367–374

    Article  CAS  Google Scholar 

  • Ghaeni M, Roomiani L, Moradi Y (2015) Evaluation of carotenoids and chlorophyll as catural resources for food in Spirulina microalgae. Appl Food Biotechnol 2:39–44

    CAS  Google Scholar 

  • Ghafari M, Rashidi B, Haznedaroglu BZ (2016) Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels. doi:10.1080/17597269.2016.1221644

  • Gim GH, Ryu J, Kim MJ, Kim PI, Kim SW (2016) Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. J Ind Microbiol Biotechnol 43:605–616

    Article  CAS  Google Scholar 

  • Halfhide T, Åkerstrøm A, Lekang OI, Gislerød HR, Ergas SJ (2014) Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Res 6:152–159

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • He Q, Yang H, Wua L, Hua C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  Google Scholar 

  • Hiramoto T, Takeuchi R (2014) Deodorant composition. United States patent US 8778320B2

  • Ho M, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353. doi:10.1126/science.aaf9178

  • Humphrey AM (1980) Chlorophyll. Food Chem 5:57–67

    Article  CAS  Google Scholar 

  • Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL (2016) Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar Biotechnol 18:24–36

    Article  CAS  Google Scholar 

  • Kagalou I, Beza P, Perdikaris C, Petridis D (2002) Effects of cooper and lead on microalgae (Isochrysis galbana) growth. Fresenius Environ Bull 11:233–236

    CAS  Google Scholar 

  • Kennedy SR (1940) The influence of magnesium deficiency, chlorophyll concentration, and heat treatments on the rate of photosynthesis of Chlorella. Am J Bot 27:68–73

    Article  CAS  Google Scholar 

  • Kong W, Song H, Cao Y, Yang H, Hua S, Xia C (2011) The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr J Biotechnol 10:11620–11630

    CAS  Google Scholar 

  • Lanfer-Marquez UM, Barros RMC, Sinnecker P (2005) Antioxidant activity of chlorophylls and their derivatives. Food Res Int 38:885–891

    Article  CAS  Google Scholar 

  • Li WK (1980) Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. Prim Product Sea (Springer) 19:259–279

    Article  CAS  Google Scholar 

  • Li Y, Chen M (2015) Novel chlorophylls and new directions in photosynthesis research. Funct Plant Biol 42:493–501

    Article  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    Article  CAS  Google Scholar 

  • Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  Google Scholar 

  • Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498

    Article  CAS  Google Scholar 

  • Lv J, Cheng L, Xu X, Zhang L, Chen H (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Article  CAS  Google Scholar 

  • Manning WM, Strait HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Martínez ME, Sánchez S, Jimánez JM, Yousfi FE, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol 125:75–81

    Article  CAS  Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    Article  CAS  Google Scholar 

  • Rieblinger K, Moosheimer U, Ziegleder G (2003) Transparent or partially transparent packaging materials that are coloured by means of colours. United States patent US 20030138653A1

  • Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    Article  CAS  Google Scholar 

  • Rose B (2000) Compositions containing chlorophyll derivatives for permanent waving of hair. United States patent US 006024949A

  • Schiraldi RJ (1964) Chlorophyll dentifrice compositions. United States patent US 3137632A

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Song BH, Lee DH, Kim BC, Ku SH, Park EJ, Kwon IH, Kim KH, Kim KJ (2014) Photodynamic therapy using chlorophyll—a in the treatment of acne vulgaris: a randomized, single-blind, split-face study. J Am Acad Dermatol 71:764–771

    Article  CAS  Google Scholar 

  • Subramoniam A, Asha VV, Nair SA, Sasidharan SP, Sureshkumar PK, Rajendran KN, Karunagaran D, Ramalingam K (2012) Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation 35:959–966

    Article  CAS  Google Scholar 

  • Theodorou ME, Elrifi IR, Turpin DH, Plaxton WC (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiol 95:1089–1095

    Article  CAS  Google Scholar 

  • Timberlake CF, Henry BS (1986) Plant pigments as natural food colours. Endeavour 10:31–36

    Article  CAS  Google Scholar 

  • Vesenick DC, Paula NA, Niwa AM, Mantovani MS (2012) Evaluation of the effects of chlorophyllin on apoptosis induction, inhibition of cellular proliferation and mRNA expression of CASP8, CASP9, APC and b-catenin. Curr Res J Biol Sci 4:315–322

    CAS  Google Scholar 

  • Zeligman I (1949) Topical chlorophyll therapy in the dermatoses. J Invest Dermatol 13:111–113

  • Zhang L, He M, Liu J (2014) The enhancement mechanism of hydrogen photoproduction in Chlorella protothecoides under nitrogen limitation and sulfur deprivation. Int J Hydrogen Energy 39:8969–8976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Sant’Anna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Ferreira, V., Sant’Anna, C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol 33, 20 (2017). https://doi.org/10.1007/s11274-016-2181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2181-6

Keywords

Navigation