Skip to main content
Log in

Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Many changes occur in the biochemical composition of microalgae in response to stress conditions. In the present study, two nitrogen-stressed Chlorella minutissima strains (MACC 360 and 452) were placed in media containing a range of nitrogen concentrations (7–700 mg L−1 N). Biomass, chlorophyll a and b, carotenoid, protein and lipid concentrations were monitored over 15 days. There was lower biomass accumulation in nitrogen-deficient treatments while lipid yields increased to 40–46% DW in response to nitrogen deficiency. Chlorophyll concentrations initially recovered in response to the nitrogen spike with maximum concentrations recorded on days 6–8 and decreased thereafter as nitrogen became limiting. In comparison, proteins recovered faster with maximum concentrations recorded on day 4. Carotenoid concentrations did not increase in response to the nitrogen spike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Borowitzka MA (1999) Commerical production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2011) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change. doi:10.1007/S11027-010-9271-9

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  PubMed  CAS  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J Phycol 37:271–279

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  PubMed  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorifc values when grown in low nitrogen medium. Enzyme and Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  • Kuznjecov ED, Vladimirova MG (1964) Zelezo kak faktor, limitirujusij rost Chlorella na crede Tamiya. Fiziologia Rastenii 11:615–619

    Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  PubMed  CAS  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  PubMed  CAS  Google Scholar 

  • Németh J (1998) A biológiai vízminősítés módszerei. Környezetgazdálkodási Intézet. TOI Környezetvédelmi Tájékoztató Szolgálat, Budapest

  • Ördög V (1982) Apparatus for laboratory algal bioassay. Int Rev Ges Hydrobiol 67:127–136

    Google Scholar 

  • Pruvost J, van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011b) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  PubMed  CAS  Google Scholar 

  • Tokuşoglu Ö, Ünal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris and Isochrisis galbana. J Food Sci 68:1144–1148

    Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation (South Africa)/Hungarian Collaborative Project, the University of KwaZulu-Natal (South Africa) and the European Union Project are thanked for financial support. Authors also thank the TÁMOP-4.2.2-08/1-2008-0020 project for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vince Ördög.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ördög, V., Stirk, W.A., Bálint, P. et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24, 907–914 (2012). https://doi.org/10.1007/s10811-011-9711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9711-2

Keywords

Navigation