Skip to main content

Mixotrophic Algae Cultivation for Energy Production and Other Applications

  • Chapter
  • First Online:
Algal Biorefineries

Abstract

Micro-algae offer potentially significant advantages over other approaches to overcome the current challenges of energy shortages and for pollution control. In addition major new directions in the genetic manipulation of algae and in new bioreactor design have been initiated in an effort to design new systems and approaches for this purpose. However, significant barriers for the commercialization of microalgae still exist including economic barriers, the level of technology readiness and lack of established co-products to make the overall process of energy from algae attractive. Mixotrophic algae cultivation offers the benefits of high biomass productivity and allows for integrated approaches which combine both photosynthetic and heterotrophic components during the diurnal cycle. This chapter focuses mainly on mixotrophic algae, the different methods of cultivation and different roles of algae in energy production. The large number of algal species and their versatile habitats and adaptability make mixotrophic microalgae serious candidates for applied research and development and for commercialization of new technologies. Approaches based on mixotrophic cultivation of algae will continue to play a role in efforts to mitigate the above mentioned challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

DOC:

Dissolved Organic Carbon

DW:

Dry weight

FPR:

Flat Panel or Plate Reactor

HTR:

Horizontal tube Reactor

TAG:

Triaclyglycerol

VTR:

Vertical tube Reactor

References

  • Albuquerque M, Machado Y, Torres A et al (2009) Properties of biodiesel oils formulated using different biomass sources and their blends. Renew Energ 34:857–859

    Article  CAS  Google Scholar 

  • Allison R, Skipper H, Reid M et al (1954) Studies on the photosynthetic reaction. II. Sodium formate and urea feeding experiments with nostoc-muscorum. Plant Physiol 29:164–168

    Article  PubMed  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energ Convers Manage 50:1834–40

    Article  CAS  Google Scholar 

  • Andres R, Gregg J, Losey L et al (2011) Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B B 63:309–27

    Article  CAS  Google Scholar 

  • Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 11:1388–413

    Article  Google Scholar 

  • Azov Y, Goldman J (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microb 43:735–739

    CAS  Google Scholar 

  • Barbosa M, Hoogakker J, Wijffels R (2003a) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20:115–123

    Article  CAS  Google Scholar 

  • Barbosa M, Janssen M, Ham N et al (2003b) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179

    Article  CAS  Google Scholar 

  • Barbosa M, Hadiyanto, Wijffels R (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85

    Article  PubMed  CAS  Google Scholar 

  • Benemann J (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Benemann J, Tillett D, Weissman J (1987) Microalgae biotechnology. Trends Biotechnol 5:47–53

    Article  CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M et al (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energ 88:3425–3431

    Article  CAS  Google Scholar 

  • Biller P, Riley R, Ross A (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresource Technol 102:4841–4848

    Article  CAS  Google Scholar 

  • Bold H, Wynne M (1978) Introduction to the algae: structure and reproduction (2nd edn.). Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Borowitzka M (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:271–289

    Article  Google Scholar 

  • Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev 12:542–552

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–77

    Article  CAS  Google Scholar 

  • Cardozo K, Guaratini T, Barros M et al (2007) Metabolites from algae with economical impact. Comp Biochem Phys 146:60–78

    Article  Google Scholar 

  • Caron D, Porter K, Sanders R (1990) Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas-malhamensis (Chrysophyceae) during bacteria ingestion. Limnol Oceanogr 35:433–443

    Article  CAS  Google Scholar 

  • Chae S, Hwang E, Shin H (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technol 97:322–329

    Article  CAS  Google Scholar 

  • Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799

    Article  PubMed  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  PubMed  CAS  Google Scholar 

  • Chynoweth D (2005) Renewable biomethane from land and ocean energy crops and organic wastes. Hortscience 40:283–286

    CAS  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energ Policy 35:4661–4670

    Article  Google Scholar 

  • DOE (2010) National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf. Accessed 05 Nov 2012

  • Doran P (1995) Reactor engineering. Bioprocess Engineering Principles. Academic Press, London

    Google Scholar 

  • Ehimen E, Sun Z, Carrington C et al (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energ 88:3454–3463

    Article  CAS  Google Scholar 

  • Encinar J, Sanchez N, Martinez G et al (2011) Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technol 102:10907–10914

    Article  CAS  Google Scholar 

  • Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205

    CAS  Google Scholar 

  • Fernandez SJ, Ceron GM, Sanchez MA et al (2004) Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol Progr 20:728–736

    Article  Google Scholar 

  • Flynn K, Butler I (1986) Nitrogen sources for the growth of marine microalgae—role of dissolved free amino-acids. Mar Ecol-Prog Ser 34:281–304

    Article  CAS  Google Scholar 

  • Gallardo RJ, Sanchez MA, Garcia CF et al (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: Growth, oxidative stress and toxin production. Process Biochem 45:660–666

    Article  Google Scholar 

  • Garcia M, Miron A, Sevilla J, Grima E et al (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum—Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305

    Article  Google Scholar 

  • Gladue RM (1991) Heterotrophic microalgae production: potential for application to aquaculture feeds. In: Fulks W, Main KL (eds), Rotifer and microalgae culture systems. Oceanic Institute, Honolulu, pp 275–286

    Google Scholar 

  • Graham L, Wilcox L (2000) Algae. Prentice-Hall, Upper Saddle River. New Jersey 16:42–43

    Google Scholar 

  • Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In: Palz W, Pirrwitz D (eds) Proceedings of the Workshop and E.C. Contractor’s Meeting in Capri. D. Reidel Publishing Co., Dordrecht, 184–193

    Google Scholar 

  • Guschina I, Harwood J (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  • Harun R, Davidson M, Doyle M et al (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg 35:741–747

    Article  CAS  Google Scholar 

  • Hellebust J (1971) Glucose uptake by Cyclotella crytica—dark induction and light inactivation of transport system. J Phycol 7:345–349

    Google Scholar 

  • Hemaiswarya S, Raja R, Kumar R et al (2011) Microalgae: a sustainable feed source for aquaculture. World J microb Biot 27:1737–1746

    Google Scholar 

  • Hoek C van den, Mann D, Jahns H (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Iqbal M, Grey D, Stepansarkissian F et al (1993) A flat-sided photobioreactor for culturing microalgae. Aquacult eng 12:183–190

    Google Scholar 

  • Janssen M, Tramper J, Mur L et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  PubMed  CAS  Google Scholar 

  • John R, Anisha G, Nampoothiri K et al (2011) Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technol 102:186–193

    Article  CAS  Google Scholar 

  • Kerner K, Hanssen J, Pedersen T (1991) Anaerobic digestion of waste sludges from alginate extration process. Bioresource Technol 37:17–24

    Article  CAS  Google Scholar 

  • Khoo H, Sharratt P, Das P et al (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresource Technol 102:5800–5807

    Article  CAS  Google Scholar 

  • Kirkwood A, Nalewajko C, Fulthorpe R (2003) Physiological characteristics of cyanobacteria in pulp and paper waste-treatment systems. J Appl Phycol 15:325–335

    Article  CAS  Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp under mixotrophic conditions. J Appl Phycol 9:559–563

    CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K et al (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Korbitz W (1999) Biodiesel production in Europe and North America, an encouraging prospect. Renew Energ 16:1078–1083

    Article  CAS  Google Scholar 

  • Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez M et al (1999) Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. Prog Ind M 35:357–362

    Article  CAS  Google Scholar 

  • Kuhad R, Gupta R, Khasa Y et al (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev 15:4950–4962

    Article  CAS  Google Scholar 

  • Laing I, Jones E (1988) A turbidostat vessel for the continuous culture of marine microalgae. Aquacult Eng 7:89–96

    Article  Google Scholar 

  • Lee Y (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microoorganisms—the future trend. Trends Biotechnol 4:186–189

    Article  CAS  Google Scholar 

  • Lee Y, Ding S, Hoe C et al (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163–169

    Article  Google Scholar 

  • Legrand CE, Rane EG, Li P. CARLSSON 1998. Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa tri-quetra. Aquat Microb Ecol 15:65–75

    Google Scholar 

  • Leung D, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energ 87:1083–1095

    Article  CAS  Google Scholar 

  • Lewitus A, Kana T (1994) Response of estuarine phytoplankton to exogenous glucose—stimulation versus inhibition of photosynthesis and respitation. Limnol Oceanogr 39:182–189

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biot 84:281–291

    Article  CAS  Google Scholar 

  • Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsumoto M, Yokouchi H, Suzuki N et al (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotech 105:247–254

    Article  Google Scholar 

  • McHugh D (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441

    Google Scholar 

  • Mulholland M, Lee C (2009) Peptide hydrolysis and the uptake of dipeptides by phytoplankton. Limnol Oceanorg 54:856–868

    Article  CAS  Google Scholar 

  • Ng J, Ng H, Gan S (2010) Recent trends in policies, socioeconomy and future directions of the biodiesel industry. Clean Technol Envir 12:213–238

    Article  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growh in Chlorella vulgaris ans Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  CAS  Google Scholar 

  • Ogbonna J, Tanaka H (1997) Industrial-size photobioreactors. Chemtech 27:43–49

    CAS  Google Scholar 

  • Ogbonna J, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotehcnol 70:289–297

    Article  CAS  Google Scholar 

  • Paerl H, Goldman C (1972) Heterotrophic assays in detection of water masses at lake Tahoe, California. Limnol Oceanogr 17:145–148

    Article  Google Scholar 

  • Pittman J, Dean A, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol 102:17–25

    Article  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Le Gouic B et al (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technol 102:150–158

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biot 65:635–648

    Article  CAS  Google Scholar 

  • Renaud S, Thinh L, Lambrinidis G et al (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Rosenberg J, Oyler G, Wilkinson L et al (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotech 19:430–436

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana K, Mariano A, Vargas J (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energ Res 35:291–311

    Article  Google Scholar 

  • Saxena P, Bassi A (2012) Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method. doi:10.1002/jctb.3912

    Google Scholar 

  • Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large-scale culture of algae in temperate zones. I-Basic design consideration and scheme of pilot plant. Algol Stud (Trebon) 1:111–164

    Google Scholar 

  • Shang H, Scott J, Shepherd S et al (2010) A dynamic thermal model for heating microalgae incubator ponds using off-gas. Chem Eng Sci 65:4591–4597

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev 14:200–216

    Article  CAS  Google Scholar 

  • Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. Biomedical Press, North-Holland

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Stoecker D (1998) Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol 34:281–290

    Article  Google Scholar 

  • Stoecker D, Tillmann U, Graneli E (2006) Phagotrophy in harmful algae. Ecological Studies 189:177–187

    Article  Google Scholar 

  • Sukhoverkhov S, Kadnikova I, Podkorytova A (2000) Production of agar and agarose from the red alga Ahnfeltia tobuchiensis. Appl Biochem Micro 36:201–203

    Article  Google Scholar 

  • Tani Y, Tsumura H (1989) Screenig for tocopherol-producing microorganims and alpha-tocopherol production by Euglena gracilis z. Agr Biol Chem Tokyo 53:305–312

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F et al (1986) Production of spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Article  Google Scholar 

  • Tredici M, Zittelli G (1998) Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  PubMed  CAS  Google Scholar 

  • Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass-culture of marine microalgae. Aquaculture 22:383–387

    Article  Google Scholar 

  • Tsavalos A, Day J (1994) Development of media for the mixotrophic heterotrophic culture of Brachiomonas submarina. J appl phycol 6:431–433

    Google Scholar 

  • Tuchman N, Schollett M, Rier S et al (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561:167–177

    Article  CAS  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresource Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Valiente E, Nieva M, Avendano M et al (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC-29413-effect on respiration and photosiynthesis. Plant Cell Physiol 33:307–313

    Google Scholar 

  • Varfolomeev S, Wasserman L (2011) Microalgae as Source of Biofuel, food, fodder, and Medicines. Appl Biochem Micro 47:789–807

    Article  CAS  Google Scholar 

  • Vonshak A, Cheung S, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    Article  CAS  Google Scholar 

  • Wang H, Xiong H, Hui Z et al (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technol 104:215–20

    Article  CAS  Google Scholar 

  • Williams P, Laurens L (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energ Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wood B, Grimson P, German J et al (1999) Photoheterotrophy in the production of phytoplankton organisms. J Biotechnol 70:175–183

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X et al (2011) Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technol 102:159–165

    Article  CAS  Google Scholar 

  • Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology 10:1550–1556

    Google Scholar 

  • Yeh K, Chang J, Chen W (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208

    Article  CAS  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl Microbiol Biot 55:428–433

    Article  CAS  Google Scholar 

  • Zotina T, Koster O, Juttner F (2003) Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshwater Biol 48:1859–1872

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Bassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bassi, A., Saxena, P., Aguirre, AM. (2014). Mixotrophic Algae Cultivation for Energy Production and Other Applications. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_7

Download citation

Publish with us

Policies and ethics