Advertisement

Beneficial Plant-Microbes Interactions: Biodiversity of Microbes from Diverse Extreme Environments and Its Impact for Crop Improvement

  • Priyanka Verma
  • Ajar Nath YadavEmail author
  • Vinod Kumar
  • Dhananjaya Pratap Singh
  • Anil Kumar Saxena
Chapter

Abstract

Microbes are capable of colonizing the rhizosphere and phyllosphere as well as living inside the plant tissues as endophytes. The microbiomes associated with the crops have the ability to produce phytohormones (indoleacetic acid and gibberellic acid); solubilize (phosphorus, potassium and zinc) and bind nutrients, besides eliciting plant defence reactions against pathogens; and also help in plant growth under harsh environments. The biodiversity of plant growth-promoting (PGP) microbes have been illustrated by different genera and species and their mechanisms of action for the following different phyla of domain Archaea, Bacteria and Eukarya:Actinobacteria,Ascomycota,Bacteroidetes,Basidiomycota,Crenarchaeota,Euryarchaeota,Firmicutes andProteobacteria (α/β/γ/δ). This book chapter intends to present research results obtained so far concerning the application of beneficial microbes as PGP microbes and their potential biotechnological application to increase the plant growth and yields and soil health. The diverse range of activities as well as the number of microbes sorted out in different culture collections around the world, may provide an important resource to rationalize the use of chemical fertilizers in agriculture. There are many microbial species that act as PGP microbes, described in the literature as successful for improving plant growth and health. However, there is a gap between the mode of action/mechanism of the PGP microbes for plant growth and the role of the PGP microbes as biofertilizers. Hence, this book chapter bridges the gap mentioned and summarizes the mechanism of PGP microbes as biofertilizers for agricultural sustainability.

Keywords

Biodiversity Biofertilizers Extreme environments Microbiome Plant growth promotion 

Notes

Acknowledgement

The authors duly acknowledge the Department of Biotechnology, Govt. of India, for the financial support provided (Grant No. BT/AGR/BIOFORTI/PHII/NIN/2011); Ministry of Food Processing Industries (MoFPI), Govt. of India, grant for the infrastructural facility development (F.No. 5-11/2010-HRD); and Vice Chancellor, Eternal University, for providing the motivation and research infrastructure.

References

  1. Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15:77–86CrossRefGoogle Scholar
  2. Araújo JM, Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43:447–451CrossRefGoogle Scholar
  3. Aroca R, Ruiz-Lozano J (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms – a review. In: Aroca R, Ruiz-Lozano JM (eds) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Dordrecht, pp 121–135CrossRefGoogle Scholar
  4. Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement byAzospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  5. Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149CrossRefGoogle Scholar
  6. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320CrossRefGoogle Scholar
  7. Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149CrossRefGoogle Scholar
  8. Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62:173–181PubMedCrossRefGoogle Scholar
  9. Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots ofZea mays L. Microb Ecol 4:252–263CrossRefGoogle Scholar
  10. Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ (2000) Root colonization by phenazine-1-carboxamide-producing bacteriumPseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345PubMedCrossRefGoogle Scholar
  11. Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced byPseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought inArabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075PubMedCrossRefGoogle Scholar
  12. Choudhury A, Kennedy I (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227CrossRefGoogle Scholar
  13. Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794PubMedPubMedCentralCrossRefGoogle Scholar
  14. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedPubMedCentralCrossRefGoogle Scholar
  15. Czaban J, Wróblewska B (2017) The Effect of bentonite on the survival ofAzotobacter chroococcum in sandy soil in a long-term plot experiment. Polish J Environ Stud 26:1–8CrossRefGoogle Scholar
  16. Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megías M (2008) Effect ofAzospirillum brasilense coinoculated withRhizobium onPhaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  17. de Bruijn F, Stoltzfus J, So R, Malarvithi P, Ladha J (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 25–36CrossRefGoogle Scholar
  18. de la Vega M, Sayago A, Ariza J, Barneto AG, León R (2016) Characterization of a bacterioruberin producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol Prog 32:592–600PubMedCrossRefGoogle Scholar
  19. de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deepa C, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol 26:1233–1240PubMedCrossRefGoogle Scholar
  21. Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced byStreptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172PubMedCrossRefGoogle Scholar
  22. Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophicMethylobacterium spp. Biomed Res Int 2015.https://doi.org/10.1155/2015/909016
  23. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by aHerbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ellis J (2017) Can plant microbiome studies lead to effective biocontrol of plant diseases? Mol Plant Microbe In.https://doi.org/10.1094/MPMI-12-16-0252-CR
  25. Errakhi R, Bouteau F, Barakate M, Lebrihi A (2016) Isolation and characterization of antibiotics produced byStreptomyces J-2 and their role in biocontrol of plant diseases, especially grey mould. In: Biocontrol of major grapevine diseases: leading research, CABI, p 76Google Scholar
  26. Feliatra F, Lukistyowati I, Yoswaty D, Rerian H, Melina D, Hasyim W, Nugroho TT, Fauzi AR, Yolanda R (2016) Phylogenetic analysis to compare populations of acid tolerant bacteria isolated from the gastrointestinal tract of two different prawn speciesMacrobrachium rosenbergii andPenaeus monodon. AACL Bioflux 9:360–368Google Scholar
  27. Florentino AP, Brienza C, Stams AJ, Sánchez-Andrea I (2016)Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int J Syst Evol Microbiol 66:1249–1253PubMedCrossRefGoogle Scholar
  28. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152PubMedCrossRefGoogle Scholar
  29. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence ofHalolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5, e01593-01516,https://doi.org/10.1128/genomeA.01593-16 CrossRefGoogle Scholar
  30. Garbeva P, Van Veen J, Van Elsas J (2003) PredominantBacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316PubMedCrossRefGoogle Scholar
  31. Gholami M, Khakvar R, Niknam G (2014) Introduction of some new endophytic bacteria fromBacillus andStreptomyces genera as successful biocontrol agents againstSclerotium rolfsii. Arch Phytopathol Plant Prot 47:122–130CrossRefGoogle Scholar
  32. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E (2016)Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332,https://doi.org/10.3389/fmicb.2016.00332 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, LondonCrossRefGoogle Scholar
  34. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  35. Glick B, Patten C, Holguin G, Penrose D (1999a) Overview of plant growth-promoting bacteria. In: Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 1–13CrossRefGoogle Scholar
  36. Glick BR, Patten C, Holguin G, Penrose D (1999b) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, LondonCrossRefGoogle Scholar
  37. Gupta G, Panwar J, Jha PN (2013) Natural occurrence ofPseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizingPennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261CrossRefGoogle Scholar
  38. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  39. Hajieghrari B, Mohammadi M (2016) Growth-promoting activity of indigenousTrichoderma isolates on wheat seed germination, seedling growth and yield. Aust J Crop Sci 10:13391347CrossRefGoogle Scholar
  40. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  41. Hamdia MAE-S, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects ofAzospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174CrossRefGoogle Scholar
  42. Hariprasad P, Niranjana S (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24CrossRefGoogle Scholar
  43. Hassen AI, Labuschagne N (2010) Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol 26:1837–1846CrossRefGoogle Scholar
  44. Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Biol 45:197–209CrossRefGoogle Scholar
  45. Holland MA, Davis R, Moffitt S, O’Laughlin K, Peach D, Sussan S, Wimbrow L, Tayman B (2000) Using “leaf prints” to investigate a common bacterium. Am Biol Teach 62:128–131CrossRefGoogle Scholar
  46. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101Google Scholar
  47. Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160PubMedCrossRefGoogle Scholar
  48. Inderiati S, Franco CM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res Trop Reg 1:1–6Google Scholar
  49. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided byKlebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085PubMedCrossRefGoogle Scholar
  50. Ivanova E, Doronina N, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397CrossRefGoogle Scholar
  51. Ivanova E, Pirttilä A, Fedorov D, Doronina N, Trotsenko Y (2008) Association of methylotrophic bacteria with plants: metabolic aspects. Prospects and applications for plant-associated microbes a laboratory manual, part A: bacteria Biobien Innovations, Turku, pp 225–231Google Scholar
  52. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminaseproducing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674PubMedCrossRefGoogle Scholar
  53. Jensen H (1965) Nonsymbiotic nitrogen fixation In: Soil nitrogen, pp 436–480Google Scholar
  54. Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394CrossRefGoogle Scholar
  55. Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacteriumAchromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188PubMedCrossRefGoogle Scholar
  56. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621PubMedCrossRefGoogle Scholar
  57. Jiménez DJ, Montaña JS, Martínez MM (2011) Characterization of free nitrogen fixing bacteria of the genusAzotobacter in organic vegetable-grown Colombian soils. Braz J Microbiol 42:846–858PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kämpfer P, Glaeser SP, McInroy JA, Busse H-J (2016)Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 66:1869–1874PubMedCrossRefGoogle Scholar
  59. Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20CrossRefGoogle Scholar
  60. Khalid A, Arshad M, Zahir Z (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedCrossRefGoogle Scholar
  61. Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236CrossRefGoogle Scholar
  62. Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH (2008) Plant growth promotion andPenicillium citrinum. BMC Microbiol 8:231PubMedPubMedCentralCrossRefGoogle Scholar
  63. Khan AA, Jilani G, Akhtar MS, Naqvi SS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  64. Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, ur Rehman S, Kim J-G, Lee I-J (2012) Pure culture ofMetarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494PubMedCrossRefGoogle Scholar
  65. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017) Drought tolerant phosphorus solubilizing microbes: diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceeding of national conference on advances in food science and technology, p 166Google Scholar
  66. Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma A, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369PubMedCrossRefGoogle Scholar
  67. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014a) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64(2):741–751CrossRefGoogle Scholar
  68. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014b) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:127,http://dx.doi.org/10.4172/ijbbd.1000127
  69. Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009Google Scholar
  70. Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017)β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609PubMedCrossRefGoogle Scholar
  71. Lavania M, Chauhan P, Chauhan SVS, Singh H, Nautiyal C (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteriaSerratia marcescens NBRI1213. Curr Microbiol 52:363–368PubMedCrossRefGoogle Scholar
  72. Lenart A (2012) Occurrence characteristics and genetic diversity ofAzotobacter chroococcum in various soils of Southern Poland. Pol J Environ Stud 21:415–424Google Scholar
  73. Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209CrossRefGoogle Scholar
  74. Lim J-H, Kim S-D (2013) Induction of drought stress resistance by multi-functional PGPRBacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lin L, Xu X (2013) Indole-3-acetic acid production by endophyticStreptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217PubMedCrossRefGoogle Scholar
  76. Liu Y, Zhai L, Wang R, Zhao R, Zhang X, Chen C, Cao Y, Cao Y, Xu T, Ge Y, Zhao J, Cheng C (2015)Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 65:4533–4538PubMedCrossRefGoogle Scholar
  77. Mano H, Morisaki H (2007) Endophytic bacteria in the rice plant. Microb Environ JSME 23:109–117CrossRefGoogle Scholar
  78. Marag PS, Priyanka, Yadav AN, Shukla L, Suman A (2015) Endophytic bacterial population in composite and hybrid maize (Zea mays L.) and their potential role in plant growth promotion. In: Proceeding of 56th annual conference of association of microbiologists of India & International symposium on “Emerging discoveries”. doi: 10.13140/RG.2.1.3810.6964
  79. Martyniuk S, Martyniuk M (2003) Occurrence ofAzotobacter spp. in some Polish soils. Polish J Environ Stud 12:371–374Google Scholar
  80. Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwen 101:777–786CrossRefGoogle Scholar
  81. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen,Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280PubMedCrossRefGoogle Scholar
  82. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacteriumPseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313PubMedCrossRefGoogle Scholar
  83. Mishra PK, Joshi P, Bisht SC, Bisht JK, Selvakumar G (2011a) Cold-tolerant agriculturally important microorganisms. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 273–296,https://doi.org/10.1007/978-3-642-13612-2_12
  84. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011b) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513Google Scholar
  85. Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effectsin vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  86. Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28:2229–2241Google Scholar
  87. Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activitiesin vitro. Microbiol Res 164:290–296PubMedCrossRefGoogle Scholar
  88. Narula S, Anand R, Dudeja S, Pathak D (2013) Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legum Res 36:344–350Google Scholar
  89. Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeastWilliopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108CrossRefGoogle Scholar
  90. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296PubMedCrossRefGoogle Scholar
  91. Oren A (2002a) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7PubMedCrossRefGoogle Scholar
  92. Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedCrossRefGoogle Scholar
  93. Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Inst 2:1117–1142Google Scholar
  94. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77:1474–1480PubMedCrossRefGoogle Scholar
  95. Pankievicz V, Amaral FP, Santos KF, Agtuca B, Xu Y, Schueller MJ, Arisi ACM, Steffens M, Souza EM, Pedrosa FO (2015) Robust biological nitrogen fixation in a model grass–bacterial association. Plant J 81:907–919PubMedCrossRefGoogle Scholar
  96. Park K-H, Lee O-M, Jung H-I, Jeong J-H, Jeon Y-D, Hwang D-Y, Lee C-Y, Son H-J (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerantBurkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–955PubMedCrossRefGoogle Scholar
  97. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384PubMedCrossRefGoogle Scholar
  98. Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Rexer K-H, Kost G, Luis P, Kaldorf M (2008) Interaction ofPiriformospora indica with diverse microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin/Heidelberg, pp 237–265,https://doi.org/10.1007/978-3-540-74051-3_15 CrossRefGoogle Scholar
  99. Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophytePseudomonas stutzeri A15. Arch Microbiol.https://doi.org/10.1007/s00203-016-1332-3
  100. Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N (2015) Preferential association of endophyticBradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 81:3049–3061PubMedPubMedCentralCrossRefGoogle Scholar
  101. Purnawati A (2014) Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Trop Life Sci 4:33–36CrossRefGoogle Scholar
  102. Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582CrossRefGoogle Scholar
  103. Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwen 81:537–547CrossRefGoogle Scholar
  104. Rabie G, Almadini A (2005) Role of bioinoculants in development of salt-tolerance ofVicia faba plants under salinity stress. Afr J Biotechnol 4:210–222Google Scholar
  105. Ramesh M, Lonsane B (1987) A novel bacterial thermostable alpha-amylase system produced under solid state fermentation. Biotechnol Lett 9:501–504CrossRefGoogle Scholar
  106. Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen,Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55CrossRefGoogle Scholar
  107. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th AMI-2016 and international symposium on “Microbes and Biosphere: What’s New What’s Next” p 453Google Scholar
  108. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI & the symposium on “Science, technology and entrepreneurship for human welfare in The Himalayan Region”, p 80Google Scholar
  109. Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, p 41Google Scholar
  110. Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2014) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266CrossRefGoogle Scholar
  111. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224CrossRefGoogle Scholar
  112. Rawat L, Bisht TS, Kukreti A, Prasad M (2016) Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum L.). Mol Soil Biol 7:1–15,https://doi.org/10.5376/msb.2016.07.0004
  113. Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102CrossRefGoogle Scholar
  114. Reis VM, Teixeira KRS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55:931–949PubMedCrossRefGoogle Scholar
  115. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  116. Saikia S, Jain V, Khetrapal S, Aravind S (2007) Dinitrogen fixation activity ofAzospirillum brasilense in maize (Zea mays). Curr Sci 93:1296–1300Google Scholar
  117. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol M 55:74–81CrossRefGoogle Scholar
  118. Saxena AK, Kaushik R, Yadav AN, Gulati S, Sharma D (2015a) Role of Archaea in sustenance of plants in extreme saline environments. In: Proceeding of 56th AMI-2015 & international symposium on “Emerging Discoveries in Microbiology”. doi: 10.13140/RG.2.1.2073.9925
  119. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015b) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: Proceeding of 56th international conference on “Low temperature science and biotechnological advances”, p 114. doi: 10.13140/RG.2.1.2853.5202
  120. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248CrossRefGoogle Scholar
  121. Sehgal S, Gibbons N (1960) Effect of some metal ions on the growth ofHalobacterium cutirubrum. Can J Microbiol 6:165–169PubMedCrossRefGoogle Scholar
  122. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011)Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135CrossRefGoogle Scholar
  123. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerantPseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362CrossRefGoogle Scholar
  124. Shah DA, Sen S, Shalini A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secretingPseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance inArabidopsis thaliana. Rhizosphere 3:16–19CrossRefGoogle Scholar
  125. Shanker AK, Maheswari M, Yadav S, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Function Integ Genom 14:11–22CrossRefGoogle Scholar
  126. Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Poll 156:1164–1170CrossRefGoogle Scholar
  127. Shivaji S, Shyamala Rao N, Saisree L, Sheth V, Reddy G, Bhargava PM (1988) Isolation and identification ofMicrococcus roseus andPlanococcus sp. from Schirmacher Oasis, Antarctica. J Biosci 13:409–414CrossRefGoogle Scholar
  128. Shivaji S, Rao NS, Saisree L, Reddy G, Kumar GS, Bhargava P (1989) Isolates ofArthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229CrossRefGoogle Scholar
  129. Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J Appl Biol Biotechnol 4:30–37Google Scholar
  130. Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic moldSporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276PubMedCrossRefGoogle Scholar
  131. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophicArthrobacter agilis strain L77. Stand Genom Sci 11:54.https://doi.org/10.1186/s40793-016-0176-4 CrossRefGoogle Scholar
  132. Srivastava AK, Kumar S, Kaushik R, Saxena AK, Padaria JC, Gupta A, Pal KK, Gujar GT, Sharma A, Singh P (2014) Diversity analysis ofBacillus and other predominant genera in extreme environments and its utilization in Agriculture. Technical report, 414402/C30026. doi: 10.13140/2.1.1357.3927
  133. Steenhoudt O, Vanderleyden J (2000)Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506PubMedCrossRefGoogle Scholar
  134. Stella M, Halimi M (2015) Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. J Trop Agric and Fd Sc 43:41–53Google Scholar
  135. Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17:39–45CrossRefGoogle Scholar
  136. Suman A, Yadav AN, Verma P (2016a) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial Inoculants in sustainable agricultural productivity, vol 1, Research Perspectives. Springer India, New Delhi, pp 117–143,https://doi.org/10.1007/978-81-322-2647-5_7
  137. Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016b) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol Appl Sci 5:890–901CrossRefGoogle Scholar
  138. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424Google Scholar
  139. Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70:305–313CrossRefGoogle Scholar
  140. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Exp 4:26CrossRefGoogle Scholar
  141. Tabatabaei S, Ehsanzadeh P, Etesami H, Alikhani HA, Glick BR (2016) Indole-3-acetic acid (IAA) producingPseudomonas isolates inhibit seed germination andα-amylase activity in durum wheat (Triticum turgidum L.) Spanish J Agric Res 14:0802CrossRefGoogle Scholar
  142. Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.) World J Microbiol Biotechnol 30:719–725PubMedCrossRefGoogle Scholar
  143. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49CrossRefGoogle Scholar
  144. Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2:224–233CrossRefGoogle Scholar
  145. Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150Google Scholar
  146. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soil 47:907CrossRefGoogle Scholar
  147. Tripathi A, Singh GS (2013) Perception, anticipation and responses of people to changing climate in the Gangetic Plain of India. Curr Sci 105:1673Google Scholar
  148. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  149. Uleberg E, Hanssen-Bauer I, van Oort B, Dalmannsdottir S (2014) Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Clim Chang 122:27–39CrossRefGoogle Scholar
  150. Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Review Phytopathol 36:453–483CrossRefGoogle Scholar
  151. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J General Microbiol 128:1959–1968Google Scholar
  152. Verma P (2015) Genotypic and functional characterization of wheat associated microflora from different agro-ecological zones. Ph.D. Thesis. National Institute of Technology, Durgapur and Indian Agricultural Research Institute, New Delhi, pp 152Google Scholar
  153. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226Google Scholar
  154. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447Google Scholar
  155. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2015a) Plant growth promotion and mitigation of cold stress in inoculated wheat (Triticum aestivum L.) by K-solubilizing psychrotolerantMethylobacterium phyllosphaerae strain IARI-HHS2-67. In: Proceeding of international conference on “Low Temperature Science and Biotechnological Advances” doi: 10.13140/RG.2.1.4885.1362
  156. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015b) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  157. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Alleviation of cold stress in wheat seedlings byBacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  158. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58PubMedCrossRefGoogle Scholar
  159. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci.https://doi.org/10.1016/j.sjbs.2016.01.042
  160. Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK (2017) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Sustainable termite management, Springer International. doi:https://doi.org/10.1007/978-3-319-68726-1_9
  161. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescentPseudomonas. BMC Microbiol 9:174PubMedPubMedCentralCrossRefGoogle Scholar
  162. Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescentPseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol 58:425–434PubMedCrossRefGoogle Scholar
  163. Wang Y, Ke X, Wu L, Lu Y (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32:27–36PubMedCrossRefGoogle Scholar
  164. Wei C-Y, Lin L, Luo L-J, Xing Y-X, C-J H, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixingKlebsiella variicola strain DX120E promotes sugarcane growth. Biol Fert Soil 50:657–666Google Scholar
  165. Wellner S, Lodders N, Kämpfer P (2011) Diversity and biogeography of selected phyllosphere bacteria with special emphasis onMethylobacterium spp. Syst Appl Microbiol 34:621–630PubMedCrossRefGoogle Scholar
  166. Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacteriumPseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71CrossRefGoogle Scholar
  167. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producingBacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845PubMedCrossRefGoogle Scholar
  168. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. thesis. Birla Institute of Technology, Mesra, Ranchi and Indian Agricultural Research Institute, New Delhi, pp 234. doi: 10.13140/RG.2.1.2948.1283/2
  169. Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106PubMedCrossRefGoogle Scholar
  170. Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2013) Genetic and functional diversity of fluorescentPseudomonas from rhizospheric soils of wheat crop. J Basic Microbiol 54:425–437PubMedCrossRefGoogle Scholar
  171. Yadav AN, Sachan SG, Kaushik R, Saxena AK (2014) Cold tolerant microbes from Indian Himalayas: diversity and potential applications in biotechnology and agriculture. In: Proceeding of 84th annual session of NASI and symposium on “Desert Science-Opportunities and Challenges” p 17Google Scholar
  172. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693,https://doi.org/10.1016/j.jbiosc.2014.11.006
  173. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108,https://doi.org/10.1007/s11274-014-1768-z
  174. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293.https://doi.org/10.1038/srep12293 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Saxena AK (2015d) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629Google Scholar
  176. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2015e) Microbes mediated alleviation of cold stress for growth and yield of wheat (Triticum aestivum L.). In: Proceeding of international conference on “Low Temperature Science and Biotechnological Advances” doi: 10.13140/RG.2.1.2374.2883
  177. Yadav AN, Rana KL, Kumar V, Dhaliwal HS (2016a) Phosphorus solubilizing endophytic microbes: potential application for sustainable agriculture. EU Voice 2:21–22Google Scholar
  178. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016b) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefGoogle Scholar
  179. Yadav AN, Sachan SG, Verma P, Saxena AK (2016c) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 52:142–150Google Scholar
  180. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2016d) Microbiome of Indian Himalayan regions: molecular diversity, phylogenetic profiling and biotechnological applications. In: Proceeding of 86th annual session of NASI & the symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, p 58Google Scholar
  181. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4. doi: 10.26717/BJSTR.2017.01.000321 Google Scholar
  182. Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017a) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298Google Scholar
  183. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. doi: 10.19080/IJESNR.2017.03.555601
  184. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4Google Scholar
  185. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Neha P, Gupta VK, Saxena AK (2017d) Biodiversity of the genusPenicillium in different habitats. In: Gupta V, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, USA, pp 3–18. doi: 10.1016/B978-0-444-63501-3.00001-6
  186. Yadav AN, Verma P, Sachan SG, Saxena AK (2017e) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54Google Scholar
  187. Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017f) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16. doi: 10.19080/AIBM.2017.05.555671
  188. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  189. Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium,Bacillus subtilis CAS15, has a biocontrol effect onFusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145CrossRefGoogle Scholar
  190. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control againstVerticillium wilt disease. PLoS One 12:e0170557PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002)Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90PubMedCrossRefGoogle Scholar
  192. Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungiTrichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci doi:https://doi.org/10.3389/fpls.2016.01405

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Priyanka Verma
    • 1
  • Ajar Nath Yadav
    • 2
    Email author
  • Vinod Kumar
    • 2
  • Dhananjaya Pratap Singh
    • 3
  • Anil Kumar Saxena
    • 3
  1. 1.Department of Microbiology, Akal College of Basic SciencesEternal UniversitySirmourIndia
  2. 2.Microbial Biotechnology Laboratory, Department of Biotechnology, Akal College of AgricultureEternal UniversitySirmourIndia
  3. 3.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia

Personalised recommendations