Skip to main content
Log in

Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml−1 of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova TN, Prinsen EA, Veselov SU, Martynenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Baera JM, Brown ME (1974) Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol 37:583–593

    Article  Google Scholar 

  • Cervantes SE, Graham EA, Andrade JL (2005) Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol 179:107–118

    Article  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–250

    Article  CAS  Google Scholar 

  • Dileepkumar BS, Dube HC (1992) Seed bacterization with fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol Biochem 24:539–542

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Freyermuth SK, Long RLG, Mathur S (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, Dordrecht, pp 277–284

    Chapter  Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci USA 103:13186–13191

    Article  PubMed  CAS  Google Scholar 

  • Green PN (1992) The genus Methylobacterium. In: Baloes A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin, pp 2342–2349

    Google Scholar 

  • Green PN, Bousifield IJ (1982) A taxonomic study of gram negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    PubMed  CAS  Google Scholar 

  • Heyer J, Galchenko VF, Dunfield PF (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846

    Google Scholar 

  • Hirano SS, Upper CD (1991) Bacterial community dynamics. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 271–294

    Chapter  Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiol 115:865–868

    PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1992) Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948

    Article  PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic Methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    Article  CAS  Google Scholar 

  • Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4(6):719–728

    Article  PubMed  CAS  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Yergeau E, Leveau JHJ, Sessitsch A, Bailey M (2010) Plant-associated microbial communities. In: Lui W-T, Jansson JK (eds) Environmental molecular microbiology. Caister Academic Press, New York

    Google Scholar 

  • Kuklinsky SJ, Welington LA, Rodrigo M, Isaias OG, Aline APK, Joao LA (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evoilved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78

    Article  PubMed  Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2005) Physiological enhancement of early growth of rice seedlings (Oryza sativa) by production of phytohormone of N2-fixing methylotrophic isolates. Biol Fertil Soils 2:402–408

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H, Yang J, Sundaram SP, Tongmin SA (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–325

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee HS, Hari K, Sundaram SP, Tongmin SA (2005) Pink-pigmented facultative methylotrophic bacteria accelerate germination growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol Fertil Soils 41:350–358

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sundaram SP, Tongmin SA (2006) A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ Exp Bot 57:168–176

    Article  CAS  Google Scholar 

  • McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224

    PubMed  CAS  Google Scholar 

  • Naik N, Sreenivasa MN (2009) Influence of bacteria isolated from panchagavya on seed germination and seed vigour in wheat. Karnataka J Agri Sci 22:231–232

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Olivier N, Emma N, Marina GK, Mary EL, Ludmila C (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71(11):6885–6899

    Article  Google Scholar 

  • Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  • Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram positive bacteria. Trends Genet 11:217–218

    Article  PubMed  CAS  Google Scholar 

  • Radha TK, Savalgi VP, Alagawadi AR (2009) Effect of methylotrophs on growth and yield of soybean (Glycine max L.) Merrill. Karnatak J Agri Sci 22:118–121

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbour joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Soumya VI, Sundaram SP, Meenakumari KS (2011) Pink pigmented facultative methylotrophs induce direct morphogenesis in cowpea (Vigna unguiculata (L.) walp). Legume Res 34(2):111–116

    Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. Academic Press, San Diego

    Google Scholar 

  • Sy A, Timmers ACJ, Knief C, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  PubMed  CAS  Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–7680

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri MS, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907–916

    Article  CAS  Google Scholar 

  • Wellner S, Lodders N, Kamfer P (2011) Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. Syst Appl Microbiol 34:621–630

    Article  PubMed  CAS  Google Scholar 

  • Zahra SO, Riccardo T, Berndt G (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47:319–332

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported and funded by the Indian Council of Agricultural Research (ICAR), New Delhi, India. The authors are thankful to Prof. S. P. Singh, Department of Botany, Banaras Hindu University, India for critical manuscript corrections and language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh K. Meena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meena, K.K., Kumar, M., Kalyuzhnaya, M.G. et al. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie van Leeuwenhoek 101, 777–786 (2012). https://doi.org/10.1007/s10482-011-9692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9692-9

Keywords

Navigation