Skip to main content

Advertisement

Log in

Characterization of Novel Plant Growth Promoting Endophytic Bacterium Achromobacter xylosoxidans from Wheat Plant

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nine diazotrophic bacteria were isolated from surface-sterilized roots and culms of wheat variety Malviya-234, which is grown with very low or no inputs of nitrogen fertilizer. Out of the nine bacteria, four showed indole acetic acid (IAA) production, and five were positive for P solubilization. One isolate, WM234C-3, showed appreciable level of nitrogenase activity, IAA production, and P solubilization ability, and was further characterized with a view to exploiting its plant growth promoting activity. Based on 16S rDNA sequence analysis, this isolate was identified as Achromobacter xylosoxidans. Diazotrophic nature of this particular isolate was confirmed by Western blot analysis of dinitrogenase reductase and amplification of nifH. Analysis of the nifH sequence showed close homology with typical diazotrophic bacteria. Endophytic nature and cross-infection ability of WM234C-3 were tested by molecular tagging with gusA fused to a constitutive promoter followed by inoculation onto rice seedlings in axenic conditions. At 21 days after inoculation, the roots showed blue staining, the most intense color being at the emergence of lateral roots and root tips. Microscopic observation confirmed colonization of gus-tagged WM234C-3 in the intercellular spaces of cortical as well as vascular zones of roots. Inoculation of gus-tagged WM234C-3 to rice plants resulted in significant increase in root/shoot length, fresh weight, and chlorophyll a content. Plant growth promoting features coupled with cross-infection ability suggest that this endophytic bacterium may be exploited as agricultural agent for various crops after a thorough and critical pathogenicity test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aisenberg G, Rolston KV, Safdar A (2004) Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003). Cancer 101:2134–2140

    Article  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schafeer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    CAS  Google Scholar 

  4. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  5. Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  6. Caballero-Mellado J, Martý´nez-Aguilar L, Paredes-Valdez G, Estrada-de los Santos P (2004) Burkholderia unamae sp. nov., a N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  PubMed  CAS  Google Scholar 

  7. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  8. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    PubMed  CAS  Google Scholar 

  9. Estrada-de los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  PubMed  CAS  Google Scholar 

  10. Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  11. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  PubMed  CAS  Google Scholar 

  12. Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J, Martnez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128

    CAS  Google Scholar 

  13. Gillis M, Van VT, Bardin R, Goor M, Hebber P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixfing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  14. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Alter Agric 1:51–57

    Google Scholar 

  16. Gordon SA, Weber RP (1951) Colorimetric estimation of indole-acetic acid. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  17. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  PubMed  CAS  Google Scholar 

  18. James EK, Olivares FL (1998) Infection and colonization of sugarcane and other gramineous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  19. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  20. Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320

    Article  PubMed  CAS  Google Scholar 

  21. Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:5–55

    Article  Google Scholar 

  22. Ladha JK, Reddy PM (2000) Steps towards nitrogen fixation in Rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila, Philippines, pp 33–46

    Google Scholar 

  23. Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Envrion Manage 90:831–837

    Google Scholar 

  24. Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiol 140:1045–1050

    Article  CAS  Google Scholar 

  25. Marinetti GV (1962) Chromatographic separation, identification and analysis of phosphatides. J Lipid Res 3:1–20

    CAS  Google Scholar 

  26. Miller TA, Lauzon CR, Lampe D, Durvasula R, Mathews C (2006) In: Bourtzis K, Miller TA (eds) Paratransgenesis applied to control insect transmitted plant pathogen: the Pierces’s disease case. Insect symbiosis 2. Taylor and Francis, London, pp 247–263

    Google Scholar 

  27. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KW, Park K, Son CY, Sa T, Caballero-Mellado J (2001) Natural association of Gluconoacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  CAS  Google Scholar 

  28. Ramos HJ, Roncato-Maccari LD, Souza EM, Soares-Ramos JR, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA gene constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–52

    Article  PubMed  CAS  Google Scholar 

  29. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, de Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L) Knuth), and descriptions of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Google Scholar 

  30. Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  PubMed  CAS  Google Scholar 

  31. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  32. Sandhu GR, Aslam Z, Salim M, Sattar A, Qureshi RH, Ahmed N, Jones RGW (1981) The effect of salinity on the yield and composition of Diplachne fusca (Kallar grass). Plant Cell Environ 4:177–181

    Article  Google Scholar 

  33. Schloter M, Bode W, Hartmann A (1995) Characterization and application of a strain-specific monoclonal antibody against the rhizosphere bacterium Azospirillum brasilense Wa3. Hybridoma 16:183–187

    Article  Google Scholar 

  34. Son H, Park G, Cha M, Heo M (2005) Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soyabean rhizosphere. Bioresource Technol 97:204–210

    Article  CAS  Google Scholar 

  35. Stoltzfus JR, de Bruijn J (2000) Evaluating diazotrophy, diversity, and endophytic colonization ability of bacteria isolated from surface-sterilized rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation. International Rice Research Institute, Manila, Philippines, pp 63–91

    Google Scholar 

  36. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable system of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  37. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  Google Scholar 

  38. Vanessa MC, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  Google Scholar 

  39. Waters JK, Hughes BL, Purcell LC, Gerhardt KO, Mawhinney TP, Emerich DW (1998) Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc Natl Acad Sci U S A 95:12038–12042

    Article  PubMed  CAS  Google Scholar 

  40. Wellinghausen N, Wirths B, Poppert S (2006) Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients. J Clin Microbiol 44:3415–3417

    Article  PubMed  CAS  Google Scholar 

  41. Wilson KJ (1995) Molecular techniques for the study of rhizobial ecology in the field. Soil Biol Biochem 27:501–514

    Article  CAS  Google Scholar 

  42. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  43. Zhang C, Zeng G, Yuan L, Yu J, Li J, Huang G, Xi B, Liu H (2007) Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68:181–190

    Article  PubMed  CAS  Google Scholar 

  44. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuezmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to P.W. Ludden, University of Wisconsin, Madison, USA, for providing antibodies against dinitrogenase reductase as gift. PNJ is thankful to CSIR, India for the award of Senior Research Fellowship, which enabled him to carry out this study. Research works were partly supported by the grant received from the Department of Biotechnology, New Delhi (No.BT/PR/1239/AGR/02/065/98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P., Kumar, A. Characterization of Novel Plant Growth Promoting Endophytic Bacterium Achromobacter xylosoxidans from Wheat Plant. Microb Ecol 58, 179–188 (2009). https://doi.org/10.1007/s00248-009-9485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9485-0

Keywords

Navigation