Skip to main content

Cryopreservation of in vitro cultures of graminaceous species

  • Chapter
In Vitro Haploid Production in Higher Plants

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 24))

  • 288 Accesses

Abstract

The advent of in vitro techniques has supplemented conventional breeding methods. In the past, monocotyledonous species were considered to be recalcitrant in tissue culture. However, in the last decade, considerable progress has been made with the major cereal crops and pasture grasses, even though the initiation of tissue cultures continues to be strongly genotype-dependent. In most studies, immature embryo-, microspore- or anther-derived calli have been used to produce friable and embryogenic callus. These calli have typically been subcultured on solid media in order to select cell types suitable for the initiation of embryogenic cell suspensions. Currently, such cell lines are the only reliable source of totipotent protoplasts and provide promising targets for particle bombardment, and thereby, have become an excellent material for genetic transformation of cereals. However, the regeneration capacity of embryogenic cell lines has been found to decrease gradually during maintenance (Lührs and Lörz, 1988; Jähne et al., 1991; Datta et al., 1992). Therefore, it has been necessary to re-establish cell lines routinely. This is expensive and time consuming and incurs the risk of irretrievable loss through genetic change via somaclonal variation, microbial contamination or human error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assy-Bah, B. and F. Engelmann, 1993. Medium-term conservation of mature embryos of coconut. Plant Cell Tiss. Org. Cult. 33: 19–24.

    Article  CAS  Google Scholar 

  • Augereau, J.M., D. Courtois and V. Petiard, 1986. Long term storage of callus cultures at low temperature or under mineral oil layer. Plant Cell Rep. 5: 372–376.

    Article  Google Scholar 

  • Bajaj, Y.P.S., 1984. The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice. Theor. Appl. Genet. 67: 525–528.

    Article  Google Scholar 

  • Bajaj, Y.P.S., 1989. Cryopreservation of plant protoplasts. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 8: Plant Protoplasts and Genetic Engineering, pp. 97106. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Benson, E.E. and J.D. Hamil, 1991. Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss. Org. Cult. 24: 163–172.

    Article  CAS  Google Scholar 

  • Boutron, P., 1986. Comparison with the theory of the kinetics and extent of ice-crystallization and the glass-forming tendency in aqueous cryoprotective solutions. Cryobiology 23: 88–102.

    Article  PubMed  CAS  Google Scholar 

  • Bridgen, M.P. and G.L. Staby, 1981. Low pressure storage and low oxygen storage of plant tissue cultures. Plant Sci. Lett. 22: 177–186.

    Article  Google Scholar 

  • Caplin, S.M., 1959. Mineral-oil overlayer for conservation of plant tissue cultures. Am. J. Bot. 46: 324–329.

    Article  Google Scholar 

  • Carpenter, J.F. and J.H. Crowe, 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25: 244–255.

    Article  PubMed  CAS  Google Scholar 

  • Cella, R., R. Colombo, M.G. Galli, E. Nielsen, F. Rollo and F. Sala, 1982. Freeze preservation of rice Oryza sativa cv. Roncarolo cells. A physiological study of freeze thawed cells. Physiol. Plant. 55: 279–284.

    Article  CAS  Google Scholar 

  • Chen, T.H.H. and L.V. Gusta, 1983. Abscisic acid induced freezing resistance in cultured plant cells. Plant Physiol. 73: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H.H., K.K. Kartha and L.V. Gusta, 1985. Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tiss. Org. Cult. 4: 101–109.

    Article  Google Scholar 

  • Cornejo, M.J., V.-L. Wong and A.E. Blechl, 1995. Cryopreserved callus: a source of protoplasts for rice transformation. Plant Cell Rep. 14: 210–214.

    Article  CAS  Google Scholar 

  • Cram, W.J., 1984. Mannitol transport and suitability as an osmoticum in root cells. Physiol. Plant. 61: 396–404.

    Article  CAS  Google Scholar 

  • Datta, K., I. Potrykus and S.K. Datta, 1992. Efficient fertile plant regeneration from protoplasts of the Indica rice breeding line IR72 (Oryza sativa L.). Plant Cell Rep. 11: 229–233.

    Article  Google Scholar 

  • Dereuddre, J., S. Blandin and N. Hansen, 1991. Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen. 1. Effects of pre-culture. Cryo-Lett. 12: 125–134.

    Google Scholar 

  • Fahy, G.M., D.J. Levy and S.E. Ali, 1987. Some engineering principles underlaying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 24: 196–213.

    Article  PubMed  CAS  Google Scholar 

  • Finkle, B.J., M.E. Zavala and J.M. Ulrich, 1985. Cryoprotective compounds in the viable freezing of plant tissues. In: K.K. Kartha (Ed.), Cryopreservation of Plant Cells and Organs, pp. 75–113. CRC Press, Boca Raton.

    Google Scholar 

  • Finch-Savage, W.E. and C.I. McQuistan, 1988. The potential of newly-germinated cabbage seed survival and storage at sub-zero temperatures. Ann. Bot. 62: 509–512.

    Google Scholar 

  • Franks, F., 1985. Biophysics and Biochemistry of Low Temperature. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fretz, A. and H. Lörz, 1995. Cryopreservation of barley cultures. J. Plant Physiol. (accepted for publication).

    Google Scholar 

  • Galiba, G. and J. Sutka, 1988. A genetic study of frost resistance in wheat callus culture. Plant Breed. 101: 132–136.

    Article  Google Scholar 

  • Gnanapragasam, S. and I.K. Vasil, 1990. Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep. 9: 419–423.

    Article  CAS  Google Scholar 

  • Gnanapragasam, S. and I.K. Vasil, 1992. Cryopreservation of immature embryos, embryogenic callus and cell suspension culture of gramineous species. Plant Sci. 83: 205–215.

    Article  Google Scholar 

  • Gordon-Kamm, W.J., T.M. Spencer, M.L. Mangano, T.R. Adams, R.J. Daines, W.G. Start, J.V. O’Brian, S.A. Chambers, W.R. Adams Jr., N.G. Willetts, T.B. Rice, C.J. Mackey, R.W. Kruger, A.P. Kausch and P.G. Lemaux, 1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Grout, B.W.W. and G.J. Morris, 1987. Freezing and cellular organization. In: B.W.W. Grout and G.J. Morris (Eds.), The Effects of Low Temperature on Biological Systems, pp. 147–173. Edward Arnold, London.

    Google Scholar 

  • Gupta, H.S. and A. Pattanayak, 1993. Plant regeneration from mesophyll protoplasts of rice (Oryza sativa L.). Bio/Technol. 11: 90–94.

    Article  Google Scholar 

  • Hahne, G. and H. Lörz, 1987. Cryopreservation of embryogenic callus-cultures from barley (Hordeum vulgare L.). Plant Breed. 99: 330–332.

    Article  Google Scholar 

  • Hällgren, J.E. and G. Öquist, 1990. Adaptations to low temperatures. In: Alscher, R.G. and J.R. Cumming (Eds.), Stress Responses in Plants: Adaptation and Acclimation Mechanisms, pp. 265–293. Wiley-Liss, New York.

    Google Scholar 

  • Hausman, J.-F., O. Neys, V. Kevers and T. Gaspar, 1994. Effect of in vitro storage at 4°C on survival and proliferation of poplar shoots. Plant Cell Tiss. Org. Cult. 38: 65–67.

    Article  Google Scholar 

  • Hellergren, J. and P.H. Li, 1981. Survival of Solanum tuberosum potato suspension cultures to −14°C: the mode of action of proline. Physiol. Plant. 52: 449–453.

    Article  CAS  Google Scholar 

  • Jacob, S.W. and R. Herschler, 1986. Pharmacology of DMSO. Cryobiology 23: 14–27.

    Article  PubMed  CAS  Google Scholar 

  • Jähne, A., P.A. Lazzeri, M. Jäger-Gussen and H. Lörz, 1991. Plant regeneration from embryogenic cell suspensions derived from anther cultures of barley (Hordeum vulgare L.). Theor. Appl. Genet. 82: 74–80.

    Article  Google Scholar 

  • Kartha, K.K., 1985. Cryopreservation of Planted Cells and Organs. CRC Press, Boca Raton.

    Google Scholar 

  • Kendall, E.J., K.K. Kartha, J.A. Qureshi and P. Chermak, 1993. Cryopreservation of immature spring wheat zygotic embryos using an abscisic acid pretreatment. Plant Cell Rep. 12: 89–94.

    Article  CAS  Google Scholar 

  • Kendall, E.J., J.A. Qureshi, K.K. Kartha, N. Chevrier, N. Leung and K. Carswell, 1990. Regeneration of freezing tolerant spring wheat (Triticum aestivum L.) plants from cryoselected callus. Plant Physiol. 94: 1756–1762.

    Article  PubMed  CAS  Google Scholar 

  • King, J.R., 1965. The storage of pollen - particularly by the freeze-drying method. Bull. Torey Bot. Club 92: 270–287.

    Article  Google Scholar 

  • Knight, C.A., J. Hallett and A.L. de Vries, 1988. Solute effects on ice crystallization. Cryobiology 25: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Ko, W.-H., S.-C. Hwang and F.-M. Ku, 1991. A new technique for storage of meristem-tip cultures of “Cavendish” banana. Plant Cell Tiss. Org. Cult. 25: 179–183.

    Google Scholar 

  • Lalk, L. and K. Dörffling, 1985. Hardening, abscisic acid, proline and freezing resistance in two wheat varieties. Physiol. Plant. 63: 287–292.

    Article  Google Scholar 

  • Langis, R. and P.L. Steponkus, 1990. Cryopreservation of rye protoplasts by vitrification. Plant Physiol. 92: 666–671.

    Article  PubMed  CAS  Google Scholar 

  • Lovelock, J.E. and M.W.H. Bishop, 1959. Prevention of freezing damage to living cells by dimethylsulfoxide. Nature 183: 1394–1395.

    Article  PubMed  CAS  Google Scholar 

  • Lu, T.G. and C.S. Sun, 1992. Cryopreservation of millet (Setaria italica L.). J. Plant Physiol. 139: 295–298.

    Article  CAS  Google Scholar 

  • Lührs, R. and H. Lörz, 1988. Initiation of morphogenetic cell-suspensions and protoplast cultures of barley. Planta 175: 71–81.

    Article  Google Scholar 

  • Lynch P., E.E. Benson, J. Jones, E.C. Cocking, J.B. Power and M.R. Davey, 1994. Rice cell cryopreservation: the influence of culture methods and the embryogenic potential of cell suspension post-thawing recovery. Plant Sci. 98: 185–192.

    Article  CAS  Google Scholar 

  • MacFarlane, D.R., 1987. Physical aspects of vitrification in aqueous solutions. Cryobiology 24: 181–195.

    Article  Google Scholar 

  • Mannonen, L., L. Toivonen and V. Kauppinen, 1990. Effects of long-term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures. Plant Cell Rep. 9: 173–177.

    Article  CAS  Google Scholar 

  • Mazur, P., 1984. Freezing of living cells: mechanism and implications. Am. J. Physiol. 247: 125–142.

    Google Scholar 

  • Meijer, E.G.M., F. van Iren, L.A.M. Hensgens and R.A. Schilperoort, 1991. Retention of the capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.). Plant Cell. Rep. 10: 171–174.

    Article  Google Scholar 

  • Moriguchi, T., J. Kozaki, N. Matsuta and S. Yamaki, 1988. Plant regeneration from grape callus stored under a combination of low temperature and silicone treatment. Plant Cell. Tiss. Org. Cult. 15: 67–71.

    Article  Google Scholar 

  • Nitzsche, W., 1980. One year storage of dried carrot callus. Z. Pflanzenphysiol. 100: 269–271.

    Google Scholar 

  • Nitzsche, W., 1983. Germplasm preservation. In: D.A. Evans, W.R. Sharp, P V Ammirato and Y. Yamada (Eds.), Handbook of Plant Cell Culture, Vol. 1: Techniques for Propagation and Breeding, pp. 782–805. Macmillan Publishing Co., New York.

    Google Scholar 

  • Pâques, M., 1991. Vitrification and micropropagation - causes, remedies and prospects. Acta Hortic. 289: 283–290.

    Google Scholar 

  • Preil, W. and M. Hoffmann, 1985. In vitro storage in Chrysanthemum breeding and propagation. In: A. Schäfer-Menhur (Ed.), In Vitro Techniques. Propagation and Long Term Storage, pp. 161–165. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Pritchard, H.W., B.W.W. Grout and K.C. Short, 1986a. Osmotic stress as a pregrowth procedure for cryopreservation. 1. Growth and ultrastructure of sycamore and soybean cell suspension. Ann. Bot. 57: 41–48.

    Google Scholar 

  • Pritchard, H.W., B.W.W. Grout and K.C. Short, 1986b. Osmotic stress as a pregrowth procedure for cryopreservation. 2. Water relations and metabolic state of sycamore and soybean cell suspensions. Ann. Bot. 57: 371–378.

    Google Scholar 

  • Pritchard, H.W., B.W.W. Grout and K.C. Short, 1986c. Osmotic stress as a pregrowth procedure for cryopreservation. 3. Cryobiology of sycamore and soybean cell suspensions. Ann. Bot. 57: 379–387.

    Google Scholar 

  • Quatrano, R.S., 1968. Freeze-preservation of cultures flax cells utilizing dimethylsulfoxide. Plant Physiol. 43: 2057–2061.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, P.J., 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22: 128–146.

    Article  PubMed  CAS  Google Scholar 

  • Reed, B.M., 1988. Cold-acclimation as a method to improve survival of cryopreserved Rubus meristems. Cryo-Lett. 9: 166–171.

    Google Scholar 

  • Rikin, A., M. Waldmann, A.E. Richmond and A. Dovrat, 1975. Hormonal regulation of morphogenesis and cold-resistance: I. Modifications by abscisic and by gibberelic acid in alfalfa Medicago sativa L. seedlings. J. Exp. Bot. 26: 175–183.

    Article  CAS  Google Scholar 

  • Sakai, A. and Y. Sugawara, 1973. Survival of poplar callus at superlow temperatures after cold acclimation. Plant Cell. Physiol. 14: 1201–1204.

    Google Scholar 

  • Sakai, A. and M. Noshiro, 1975. Some factors contributing to the survival of crop seeds cooled to the temperature of liquid nitrogen. In: O.H. Frankel and J.C. Hawkes (Eds.), Crop Genetic Resources for Today and Tomorrow, pp. 317–326. Cambridge University Press, Cambridge.

    Google Scholar 

  • Santarius, K.A., 1990. Freezing of isolated thylakoid membranes in complex media. VI. The effect of pH. Cryobiology 27: 547–561.

    Article  Google Scholar 

  • Shillito, R.D., G.K. Carswell, C.M. Johnson, J.J. di Maio and C.T. Harms, 1989. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technol. 7: 581–587.

    Article  Google Scholar 

  • Son, S.H., Y.W. Chun and R.B. Hall, 1991. Cold storage of in vitro cultures of hybrid poplar shoots (Populus alba L. × P. grandidentata Michx.). Plant Cell Tiss. Org. Cult. 27: 161–168.

    Article  Google Scholar 

  • Spangenberg, G., Z.Y. Wang, J. Nagel and I. Potrykus, 1994. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci. 97: 83–94.

    Article  CAS  Google Scholar 

  • Stanwood, P.C. and N. Bass, 1978. Ultracold preservation of seed germplasm. In: P.H. Li and A. Sakai (Eds.), Plant Cold Hardiness and Freezing Stress, pp. 361–371. Academic Press, New York.

    Google Scholar 

  • Steponkus, P.L. and D.V. Lynch, 1989. The behaviour of large unilamellar vesicles of rye plasma membrane lipids during freeze thaw-induced osmotic excursions. Cryo-Lett. 10: 43–50.

    Google Scholar 

  • Takahashi, T., A. Hirsh, E.F. Erbe and R.J. Williams, 1988. Mechanism of cryoprotection by extracellular polymeric solutes. Biophys. J. 54: 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara, M. and T. Hirosawa, 1992. Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell. Rep. 11: 550–553.

    Google Scholar 

  • Visser, T., 1955. Germination and storage of pollen. Meded. Landbouwhogesch. Wageningen 55: 1–68.

    Google Scholar 

  • Wang, Z.X., I. Nagel and G. Spangenberg, 1993. Plants from cell suspension-derived protoplasts of Lolium species. Plant Sci. 84: 179–193.

    Article  Google Scholar 

  • Westcott, R.J., 1981. Tissue culture storage of potato germplasm. Use of growth retardants. Potato Res. 24: 343–352.

    Article  CAS  Google Scholar 

  • Withers, L.A. and P.J. King, 1979. Proline: a novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiol. 64: 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Withers, L.A. and H.A. Street, 1977. Freeze preservation of cultured plant cells. III. The pregrowth phase. Physiol. Plant. 39: 171–178.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fretz, A., Lörz, H. (1996). Cryopreservation of in vitro cultures of graminaceous species. In: Jain, S.M., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0477-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0477-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4580-5

  • Online ISBN: 978-94-017-0477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics