Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

17.1 Auf den Text bezogene Literaturstellen

  • Aguilera PA, Frenich AG, Torres JA, Castro H, Vidal JLM, Canton M (2001) Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Wat Res 35: 4053–4062

    Article  Google Scholar 

  • Altschuh J, Brüggemann R, Karcher W (1993) Attempts to classify QSARs with respect to their validity: Vapour pressure estimation as an example. The Science of the Total Environ, Supplement 1993: 1409–1419.

    Google Scholar 

  • Altschuh J, Brüggemann R, Santl H, Eichinger G, Piringer OG (1999) Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods. Chemosphere 39: 1871–1887

    Article  Google Scholar 

  • Atkins PW (1987) Physikalische Chemie, 1. Aufl. VCH, Weinheim, S 1–890

    Google Scholar 

  • Axelrodt R (1997) The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press, Princeton, pp 1–248

    Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics: Physiographic and hydraulic studies of rivers. US Geological Survey Professional Paper 422-I: 1–37

    Google Scholar 

  • Banai-Kashani R (1989) A new method for site suitability analysis: The analytical hierarchy process. Environmental Management 13(6): 685–693.

    Article  Google Scholar 

  • Bandemer H, Gottwald S (1993) Einführung in Fuzzy-Methoden. Akademie-Verlag, S 5–264

    Google Scholar 

  • Bartel HG (1994) Formalbegriffsanalytische Untersuchung ausgewählter Aromatizitätskriterien. Match 30: 9–35

    Google Scholar 

  • Bartel HG (1996) Mathematische Methoden in der Chemie. Spektrum Akademischer Verlag, Oxford, S 1–353

    Google Scholar 

  • Bartel HG (1997) Ein neuer Ansatz zur formalbegriffsanalytischen Objektklassifikation und seine Anwendung auf aromatische Heterocyclische Verbindungen. Match 36: 185–215

    Google Scholar 

  • Bartel HG, Brüggemann R (1998) Application of formal concept analysis to structure-activity relationships. Fresenius J Anal Chem 361: 23–28

    Article  Google Scholar 

  • Bartel HG, John PE (1999) Formalbegriffsanalytische Untersuchung von Struktur-Eigenschafts-Beziehungen an Stannoacanen und Stannatranen unter Verwendung von 119Sn-NMR-Daten. Zs Phys Chem 209: 141–158

    Article  Google Scholar 

  • Bartell SM, Breck JE, Gardner RH, Brenkert AL (1986): On individual parameter perturbation and error analysis of the fish bioenergetics model. Can J Fish Aquat Sci 43(1): 160–168

    Article  Google Scholar 

  • Bartell SM, O’Neill RV, Gardner RH (1988) Temporal variation in regulation of production in a pelagic food web model. In: Carpenter SR (ed) Complex interactions in lake communities — Prod Workshop Univ Notre Dame. Springer-Verlag, New York, pp 101–118

    Chapter  Google Scholar 

  • Basak SC (1990) A nonempirical approach to predicting molecular properties using graph-theoretic invariants: Practical applications of quantitative structure-activity-relationships (QSAR). In: Karcher W, Devillers J (eds) Environmental chemistry and toxicology. Kluwer Academic Publishers, Dordrecht, pp 83–103

    Google Scholar 

  • Basak SC, Grunwald GD (1994) Molecular similarity and risk assessment: Analog selection and property estimation using graph invariants. SAR and QSAR Environ Res 2: 289–307

    Article  Google Scholar 

  • Basak SC, Mills DR (2001) Use of mathematical structural invariants in the development of QSPR models. Match 44: 15–30

    Google Scholar 

  • Basak SC, Niemi GJ, Regal RR, Veith GD (1987) Topological indices: Their nature, mutual relatedness and applications. Math Modelling 8: 300–305

    Article  Google Scholar 

  • Basak SC, Niemi GJ, Veith GD (1990) Recent developments in the characterization of chemical structure using graph-theoretic indices. In: Rouvray DH (ed) Computational chemical graph theory. Nova, New York, pp 235–274

    Google Scholar 

  • Basak SC, Balaban AT, Grunwald GD, Gute BD (2000) Topological indices: Their nature and mutual relatedness. J Chem Inf Comp Sci 40, 891–898

    Article  Google Scholar 

  • Basak SC, Nikolic S, Trinajstic N (2000) QSPR modeling: Graph connectivity indices versus line graph connectivity indices. J Chem Inf Comp Sci 40: 927–933

    Article  Google Scholar 

  • Bauernschmidt S, Gasteiger G (1997) Overcoming the limitations of a connection table description: A universal representation of chemical species. J Chem Inf Comp Sci 37: 705–714

    Article  Google Scholar 

  • Baum EJ (1998) Chemical property estimation: Theory and application. Lewis Publishers, Boca Raton, p 179

    Google Scholar 

  • Bear J (1977) Dynamics of fluid in porous media. Elsevier Sci Publ Comp, Amsterdam, pp 1–764

    Google Scholar 

  • Beese F (1982) Transport von gelösten Stoffen im Boden. Beiträge zur Hydrologie 4: 267–300

    Google Scholar 

  • Beese F (1992) Umweltbelastungen und Standort. In: AGF (Hrsg) Boden, Wasser, Luft — Umweltvorsorge in der AGF Proc 26. Nov. 92, Bonn AGF, Bonn, pp 36–39.

    Google Scholar 

  • Behrendt H (2000) Nährstoffemissionen und-frachten in den Flussgebieten Deutschlands und ihre Veränderung. UBA-Texte 29/00: 6–28

    Google Scholar 

  • Behrendt H, Brüggemann R (1993) Modeling the fate of organic chemicals in the soil plant environment: Model study of root uptake of pesticides. Chemosphere 27: 2325–2332

    Article  Google Scholar 

  • Behrendt H, Brüggemann R (1994) Benzol-Modellrechnungen zum Verhalten in der Umwelt. UWSFZ Umweltchem Ökotox 6(2): 1–10

    Google Scholar 

  • Behrendt H, Brüggemann R (1995) Numerical and analytical model of pesticide root uptake, model comparison and sensitivities. Chemosphere 30: 1905–1920

    Article  Google Scholar 

  • Behrendt H, Matthies M, Gildemeister H, Görlitz G (1990) Leaching and transformation of glufosinateammonium and its main metabolite in a layered soil column. Envir Tox Chem 9: 541–549

    Article  Google Scholar 

  • Behrendt H, Steindl H, Morgenstern M (1994) Methoden zur Früherkennung und Prognose von Stoffverlagerungen in Böden auf den Datengrundlagen des Bodeninformationssystems. GSF-Bericht 26: 1–298

    Google Scholar 

  • Behrendt H, Huber P, Kornmilch M, Opitz D, Schmoll O, Scholz G (2000) Nährstoffemissionen und — frachten in den Flussgebieten Deutschlands und ihre Veränderung. In: Umweltbundesamt (Hrsg) UBA-Texte 29/00: 6–28

    Google Scholar 

  • Benndorf J, Recknagel F (1982) Problems of application of the ecological model SALMO to lakes and reservoirs having various trophic states. Ecol Mod 17: 129–145

    Article  Google Scholar 

  • Bentzen E, Lean DRS, Taylor WD, Mackay D (1996) Role of food web structure on lipid and bioaccumulation of organic contaminants by lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 53: 2397–2407

    Article  Google Scholar 

  • Benz J (1986) A modelling attempt for estimating ecotoxicity. In: GSF/PUC (ed) Proc workshop on environmental modelling for priority setting among existing chemicals. Ecomed, Landsberg, S 354–370

    Google Scholar 

  • Benz J (1987) Umweltmodelle und rechnergestützte Entscheidungshilfen für die vergleichende Bewertung und Prioritätensetzung bei Umweltchemikalien, Anhang IV-I: ETSYS, Modell zur Simulation indirekter Wirkungen von Chemikalien. In: Rohleder H (Hrsg) Abschlussbericht des Projektes „Umweltgefährdungspotentiale von Chemikalien“. FKZ/UBA 106 04 016, S 1–68

    Google Scholar 

  • Benz J (1995) ECOBAS Dokumentation mathematischer Beschreibungen ökologischer Prozesse. In: Gnauck A, Frischmuth A, Kraft A (Hrsg) Ökosysteme: Modellierung und Simulation.Umweltwiss. E. Blottner Verlag, Taunusstein, Bd 6, S 131–140

    Google Scholar 

  • Benz J, Voigt K, Mücke W (1989) Strategy for computer-aided searches for information about chemicals. Online Review 13(5): 383–393

    Article  Google Scholar 

  • Berding V, Matthies M (2002) european scenarios for EUSES regional distribution model. ESPR-Environ Sci Pollut Res 9: 193–198

    Article  Google Scholar 

  • Berding V, Schwartz S, Matthies M (1999) Visualisation of the complexity of EUSES. ESPR-Environ Sci Pollut Res 6: 37–43

    Article  Google Scholar 

  • Berding V, Schwartz S, Matthies M (2000) Scenario analysis of a level III multimedia model using generic and regional data. ESPR-Environ Sci & Pollut Res 7: 147–158

    Article  Google Scholar 

  • Beven KJ (1997) Distributed hydrological modelling applications of the TOPMODEL concept. John Wiley & Sons, Chichester, pp 1–348

    Google Scholar 

  • Bittrich HJ, Haberland D, Just G (1979) Methoden chemisch-kinetischer Berechnungen. Verlag Chemie, Weinheim, S 1–217

    Google Scholar 

  • Bloomfield JA, Park RA, Scavia D, Zahorcak SC (1974) Aquatic modelling in the eastern deciduous forest biome, U.S. Int Biol Program. In: Moddlebrooks E, Falkenberg DH, Maloney TE (eds) Modelling the ecosystem process. Ann Arbor, pp 139–158

    Google Scholar 

  • Bock HH (1974) Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttingen, S 6–480

    Google Scholar 

  • Boethling RS, Campbell SE, Lynch DG, LaVeck GD (1988) Validation of „CHEMEST“, an on-line system for the estimation of chemical properties. Ecotox, Envir Saf 15: 21–30

    Article  Google Scholar 

  • Bogart KP (2000) Introductory combinatorics. Harcourt Sci and Techn Comp, pp 1–654

    Google Scholar 

  • Bollobas B (1988) Combinatorics, set systems, hypergraphs, families of vectors, and combinatorial probability. Cambridge Univ Press, pp 1–177

    Google Scholar 

  • Bradbury SP (1994) Predicting modes of toxic action from chemical structure: An overview. SAR and QSAR Envir Res 2: 8059–8104

    Google Scholar 

  • Bradbury SP (1995) Quantitative structure-activity relationships and ecological risk assessment: An overview of predictive aquatic toxicology research. Toxicology Letters 79: 229–237

    Article  Google Scholar 

  • Brans JP, Vincke PH (1985) A preference ranking organisation method (The PROMETHEE method for multiple criteria decision-making). Management Sci 31: 647–656

    Article  Google Scholar 

  • Brans JP, Vincke PH, Marechal B (1986) How to select and how to rank projects: The PROMETHEE method. Europ J Oper Res 24: 228–238

    Article  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1983a) Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13: 495–504

    Article  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA, Williams M (1983b) Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots. Pestic Sci 14: 492–500

    Article  Google Scholar 

  • Broering U, Wiegleb G (1998) Ecological orientators: Pattern and process of succession in relation to ecological orientors. In: Müller F, Leupelt M (eds) Eco targets, goal functions and orientors. Springer-Verlag, Berlin, S 34–62

    Chapter  Google Scholar 

  • Brüggemann R (2001) Ansatze zur vergleichenden Bewertung unter spezieller Berücksichtigung der Hassediagrammtechnik. In: Neumann-Hensel H, Ahlf W, Wachendörfer (Hrsg) Nachweis von Umweltchemikalien — Auswerte-und Interpretationsmethoden für Toxizitätsdaten aus einer ökotoxikologischen Testkombination. E. Schmidt, Berlin, S 27–46

    Google Scholar 

  • Brüggemann R, Altschuh (1991a) A validation study for the estimation of aqueous solubility from n-octanol/water partition coefficients. The Sci of Total Envir 109–110: 41–57

    Google Scholar 

  • Brüggemann R, Altschuh J (1991b) Validierung von Abschätzmethoden für physikalisch-chemische Eigenschaften organischer Substanzen, GSF-Bericht 34/91: 1–198

    Google Scholar 

  • Brüggemann R, Bartel HG (1999) A theoretical concept to rank environmentally significant chemicals. J Chem Inf Comp Sc 39: 211–217

    Article  Google Scholar 

  • Brüggemann R, Benz J (1987) EDV-gestützte Bewertung der Umweltgefährlichkeit von Chemikalien. In: Gasteiger J (Hrsg) Softwareentwicklung in der Chemie, Springer-Verlag, Berlin Heidelberg, S 331–367

    Google Scholar 

  • Brüggemann R, Pudenz S (2001) Hassediagrammtechnik zur Bewertung wasserwirtschaftlicher Maßnahmen. In: Wasserforschung e.V. (Hrsg) Nachhaltige Entwicklung in der Wasserwirtschaft — Konzepte, Planung und Entscheidungsfindung. Interdisziplinäre Fachtagung, 27.6. u. 28.6. Berlin, Dokumentation. IFV Berlin, Berlin S 225–239

    Google Scholar 

  • Brüggemann R, Steinberg C (1999) Ein Ansatz zur Methodik der vergleichenden Bewertung von Bodenbelastungen. UWSF-Z Umweltchem Okotox 11: 135–143

    Article  Google Scholar 

  • Brüggemann R, Steinberg C (2000) Einsatz der Hassediagrammtechnik zur vergleichenden Bewertung von Analysendaten am Beispiel der Umweltuntersuchungen in den Regionen Baden-Württembergs. In: Günzler J (Hrsg) Analytiker Taschenbuch 21. Springer-Verlag, Berlin, S 3–33

    Google Scholar 

  • Brüggemann R, Wilhelm T (2002) Scaling laws by randomly generated networks. In: Hölker F (ed) Scales hierarchies and emergent properties in ecological models. Reihe Theorie in der Ökologie. Peter Lang, Frankfurt/M.

    Google Scholar 

  • Brüggemann R, Altschuh J, Matthies M (1990) QSAR for estimating physicochemical data. In: Devillers J, Karcher W (eds) Practical applications of quantitative structure-activity relationsships (QSAR) in environmental toxicology and chemistry. Kluwer Acad Publishers, Dordrecht, pp 197–211

    Google Scholar 

  • Brüggemann R, Trapp S, Matthies M (1991) Behavior assessment for a volatile chemical in the Middle and Lower German part of the Rhine River. Envir Tox Chem 10: 1097–1103

    Article  Google Scholar 

  • Brüggemann R, Münzer B, Altschuh J (1992) Abschätzung von expositionsrelevanten Substanzeigenschaften. GSF-Bericht München-Neuherberg 5/92, S 1–39

    Google Scholar 

  • Brüggemann R, Behrendt H, Seiler KP, Trapp S, Voigt K (1994) Einsatz der Hasse-Diagrammtechnik zum Vergleich von Chemikalien hinsichtlich ihrer Umweltgefährdungspotentiale. DGM 38: 122–127

    Google Scholar 

  • Brüggemann R, Drescher-Kaden U, Münzer B (1996a) E4CHEM, a simulation program for the fate of chemicals in the Environment. GSF-Bericht 2/96, S 1–229

    Google Scholar 

  • Brüggemann R, Kaune A, Klein J, Zellner R (1996b) Anwendung der Hasse-Diagrammtechnik zur Bewertung ökologischer Schutzziele. UWSF-Z Umweltchem Ökotox 8(2): 89–96

    Article  Google Scholar 

  • Brüggemann R, Münzer B, Steinberg C (1996) Anwendung des EDV-Programms POND zur Abschätzung der Wirkung von Atrazin und Metolachlor in Teichökosystemen. DGM 40(5): 216–217

    Google Scholar 

  • Brüggemann R, Kaune A, Komossa D, Kreimes K, Pudenz S, Voigt K (1997) Anwendungen der Theorie partiell geordneter Mengen in Bewertungsfragen. DGM 41(5): 205–209

    Google Scholar 

  • Brüggemann R, Grell J, Pudenz S, Simon U (1998) Proceedings of the workshop on order theoretical tools in environmental sciences, Berichte des IGB, Heft 6, Sonderheft I (1998), Berlin

    Google Scholar 

  • Brüggemann R, Bücherl C, Pudenz S, Steinberg C (1999a) Application of the concept of partial order on comparative evaluation of environmental chemicals. Acta hydrochim hydrobiol 27: 170–178

    Article  Google Scholar 

  • Brüggemann R, Pudenz S, Bartel HG (1999b) Rule generation by means of lattice theory. In: Gini GC, Katritzky AR (eds) Predictive toxicology of chemicals: Experiences and impact of AI tools. Papers from the 1999 AAAI Spring Symposium, Technical Report Ss-99-01. AAAI Press, Meno Park, California pp 90–93

    Google Scholar 

  • Brüggemann R, Pudenz S, Voigt K, Kaune A, Kreimes K (1999c) An algebraic/graphical tool to compare ecosystems with respect to their pollution, IV: Comparative regional analysis by Boolean arithmetics. Chemosphere 38: 2263–2279

    Article  Google Scholar 

  • Brüggemann R, Fromm O, Steinberg C (2000) Biodiversitätsmase — kritische Überlegungen aus naturwissenschaftlicher und ökonomischer Sicht. Wasser & Boden 52: 31–35

    Google Scholar 

  • Brüggemann R, Halfon E, Welzl G, Voigt K, Steinberg C (2001a) Applying the concept of partially ordered sets on the ranking of near-shore sediments by a battery of tests. J Chem Inf Comp Sci 41: 918–925

    Article  Google Scholar 

  • Brüggemann R, Luther B, Lühr HP (2001b) Darstellung der Grundwasserbeschaffenheit mit der Methode der Hassediagrammtechnik (HDT). Wasser & Boden 53: 40–47

    Google Scholar 

  • Brüggemann R, Pudenz S, Carlsen L, Sørensen PB, Thomsen M, Mishra RK (2001c) The use of Hasse diagrams as a potential approach for inverse QSAR. SAR and QSAR Envir Res 11: 473–487

    Article  Google Scholar 

  • Bücherl C, Brüggemann R, Halfon E (1995) HASSE — Ein Programm zur Analyse von Hasse-Diagrammen. GSF-Bericht 19/95

    Google Scholar 

  • Buliersch R, Stoer J (1966) Numerical treatment of ordinary differential equations by extrapolation methods. Numer Math 8: 1–13

    Article  Google Scholar 

  • Burmeister P (2002) ConImp und Diagram, http://www.mathematik.tu-darmstadt.de/ags/ag1/SoftwareDOS-Programme/Welcome_de.html

  • Bytautas L, Klein DJ (1998) Chemical combinatories for alkane-isomer enumeration and more. J Chem Inf Comp Sci 38: 1063–1078

    Article  Google Scholar 

  • Canfield ER, Rouvray DH, Robinson RW (1985) Determination of the Wiener molecular branching index for the general tree. J Computational Chem 6: 598–609

    Article  Google Scholar 

  • Carlsen L, Sørensen PB, Thomsen M (2001) Partial order ranking — based QSAR’s: Estimation of solubilities and octanol-water partitioning. Chemosphere 43: 295–302

    Article  Google Scholar 

  • Carlsen L, Sørensen PB, Thomsen M, Brüggemann R (2002) QSAR’s based on partial order ranking. SAR and QSAR Envir Res 13: 153–165

    Article  Google Scholar 

  • Cash GG (1995) Correlation of physicochemical properties of alkylphenols with their graph-theoretical parameter. Chemosphere 31: 4307–4315

    Article  Google Scholar 

  • Chou JT, Jurs PC (1979) Computer-assisted computation of partition coefficients from molecular structures using fragment constants. J Chem Inf Comp Sci 19: 172 ff

    Article  Google Scholar 

  • Christensen JB, Botma JJ, Christensen TH (1999) Complexation of Cu and Pb by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2). Water Res 33: 3231–3238

    Article  Google Scholar 

  • Clementi S, Cruciani G, Cesareo D, Tosato ML (1989) Comparison of chemometric methods in toxicology. Chimicaoggi, March, pp 57–61

    Google Scholar 

  • Clements RG, Nabholz JV (1994) ECOSAR, A computer program for estimating the ecotoxicity of industrial chemicals based on structure activity relationships: User guide. U.S. Environmental Protection Agency (US-EPA), Washington D.C., pp 1–21

    Google Scholar 

  • Coburn RA, Fa. Biosoft: QSAR-PC: PAR Quantitative structure-activity relationship studies physicochemical-activity relationship methods for IBMPC. Montreal

    Google Scholar 

  • Cohen JE, Briand F, Newman CM (1990) Community food webs data and theory. Springer-Verlag, Berlin, S 1–308

    Google Scholar 

  • COMMPS (2001) EU-Working Document ENV/191000/01 „Identification of priority hazard substances. Internet: http://europa.eu.int/comm/environment/water/water-dangersub/pri_substances.htmoder http://www.ime.fraunhofer.de/oeko/abt/riscon/riscon_p1.htm, s. auch Lerche et al. 2002b

  • Conway Computerspiel „Life“, s. Gerhardt M, Schuster H (1995)

    Google Scholar 

  • Czernuszenko W, Rowinski PM (1997) Properties of the dead-zone model of longitudinal dispersion in rivers. J Hydraulic Res 35(4): 491–504

    Article  Google Scholar 

  • Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge Math Textbooks, Cambridge Univ Press, Cambridge, pp 1–248

    Google Scholar 

  • Dearden JC (1990) Physico-chemical descriptors. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. Kluwer Acad Publ, Dordrecht, pp 23–59

    Google Scholar 

  • Dearden JC, Nicholson RM (1986) The prediction of biodegradability by the use of quantitative structureactivity relationships: Correlation of biological oxygen demand with atomic charge difference. Pestic Sci 17: 305–310

    Article  Google Scholar 

  • Dearden JC, Nicholson RM (1987) Correlation of biodegradability with atomic charge difference and superdelocalizability. In: Kaiser KLE (ed) QSAR in environmental toxicology, vol II. D Reidel Publ Comp, Dordrecht, pp 83–89

    Chapter  Google Scholar 

  • Denbigh K (1974) Prinzipien des chemischen Gleichgewichts. Dr. D. Steinkopff Verlag S 1–397

    Google Scholar 

  • Diamond ML, Priemer DA, Law NL (2001) Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 44: 1655–1667

    Article  Google Scholar 

  • Dias JR (1992) An example molecular orbital calculation using the Sachs Graph method. J Chem Educ 69: 695–700

    Article  Google Scholar 

  • Dixon W, Smyth GK, Chiswell B (1999) Optimized selection of river sampling sites. Wat Res 33: 971–978

    Article  Google Scholar 

  • Doetsch G (1981) Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. R Oldenbourg Verlag, München, S 1–256

    Google Scholar 

  • Drechsler M (2000) Die Bewertung von Biodiversitätsmaßnahmen mit Hilfe multikriterieller Analyse. In: UFZ-Workshop 27.9.-29.9.00, Leipzig, UFZ-Diskussionspapiere UFZ 9/2000, S 1–18

    Google Scholar 

  • Drechsler M, Wätzold F (1999) Towards an efficient spatial allocation of biodiversity — enhancing farming practises. UFZ 1/1999, Leipzig pp 1–22

    Google Scholar 

  • Drechsler M, Johst K, Wätzold F (2001) Ökologisch-ökonomische Modellierung zur Entwicklung von Strategien und umweltpolitischen Instrumenten für den Artenschutz. In: Horsch H, Ring I, Herzog F (Hrsg) Nachhaltige Wasserbewirtschaftung und Landnutzung — Methoden und Instrumente der Entscheidungsfindung und-umsetzung. Metropolis Verlag, Marburg, S 367–386

    Google Scholar 

  • Duynisveld WHM (1983) Entwicklung von Simulationsmodellen für den Transport von gelösten Stoffen in wasserungesättigten Böden und Lockersedimenten. Forschgber 10202303, Umweltbundesamt, Berlin

    Google Scholar 

  • Dvorakova M, Koerski HP (1980) Three-layer model of an aquatic ecosystem. ISEM J 2: 63–70

    Google Scholar 

  • Dyck S, Peschke G (1983) Grundlagen der Hydrologie. Ernst & Sohn, Verlag für Architektur und technische Wissenschaften, Berlin, S 1–388

    Google Scholar 

  • Ebenhöh W (1994) Competition an coexistence: Modelling approaches. Ecol Mod 75/76: 83–98

    Article  Google Scholar 

  • Eidner R, Gnauck A, Rothe K (1999) Statistische Analyse und mathematische Modellierung des Spree-Havel-Gewässersystems. In: Gnauck A (Hrsg) Gewässermodellierung. BTU-Cottbus-UWV, Cottbus, S 16–32

    Google Scholar 

  • El-Basil S, Randic M (1992) Equivalence of mathematical objects of interest in chemistry and physics. Adv in Quantum Chem 24: 239–290

    Article  Google Scholar 

  • El-Masri HA, Mumtaz MM, Choudhary G, Cubulas W, De Rosa CT (2002) Applications of computational toxicology methods at the agenca for toxic substances and disease registry. Int J Hyg Environ Health 205: 63–69

    Article  Google Scholar 

  • Estrada E (1995) Graph theoretical invariant of Randic revisited. J Chem Inf Comp Sci 35: 1022–1025

    Article  Google Scholar 

  • Estrada E (1995) Three-dimensional molecular descriptors based on electron charge density weighted graphs. J Chem Inf Comp Sci 35: 708–713

    Article  Google Scholar 

  • Estrada E (1999) Generalized spectral moments of the iterated line graphs sequence: A novel approach to QSPR studies. J Chem Inf Com Sci 39: 90–95

    Article  Google Scholar 

  • Estrada E, Rodriguez L, Gutierrez A (1997) Matrix algebraic manipulation of molecular graphs. 1. Distance and vertex-adjacency matrices. Match 35: 145–156

    Google Scholar 

  • Exner O (1988) Correlation analysis of chemical data. Plenum Press, New York, pp 11–275

    Google Scholar 

  • Faires ID, Burden RI (1994) Numerische Methoden: Naherungsverfahren und ihre praktische Anwendung, 1. Aufl. Spektrum Akademischer Verlag, Heidelberg 35, S 1–630

    Google Scholar 

  • Feddes RA (1971) Water, heat, and crop growth. Thesis Comm Agric Univ Wageningen, pp 1–184

    Google Scholar 

  • Feddes RA, Kabat P, Van Bakel PJT, Bronswijk JJB, Halbertsma J (1988) Modelling soil water dynamics in the unsaturated zone — State of the art. J Hydrol 100: 69–111

    Article  Google Scholar 

  • Fent K (1998) Ökotoxikologie: Umweltchemie — Toxikologie — Ökologie. E Thieme Verlag, Stuttgart, S 1–288 (hier: S 264)

    Google Scholar 

  • Ferreira JG (1995) ECOWIN — an object-oriented ecological model for aquatic ecosystems. Ecological Modelling 79: 21–34

    Article  Google Scholar 

  • Ferson S, Ginzburg L, Silvers A (1989) Extreme event risk analysis for age structured populations. Ecol Mod 47: 175–187

    Article  Google Scholar 

  • Fisher HB (1968) Dispersion predictions in natural streams. J Sanitary Engin Div, ASCE 94: 927–943

    Google Scholar 

  • Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley & Sons, London, pp 1–249

    Google Scholar 

  • Fränzle O (1993) Grundlagen zur Bewertung der Belastung und Belastbarkeit von Böden als Teilen von Ökosystemen. UBA-Texte 59/53, Berlin, S 1–215

    Google Scholar 

  • Fränzle O (1997) Harmony between ecology and economy: Methodological reflections on the concept of sustainable development. J Korean Geographical Soc 32(3): 285–298

    Google Scholar 

  • Fredenslund FC, Nendza AM, Herbst T (1995) Cosolute interactions on aqueous contaminant concentrations. SAR and QSAR Environ Res 3: 293–300

    Article  Google Scholar 

  • Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7: 395–399

    Article  Google Scholar 

  • Friederichs M, Fränzle O, Salski A (1996) Fuzzy clustering of existing chemicals according to their ecotoxicological properties. Ecol Mod 85: 27–40

    Article  Google Scholar 

  • Friege H (2002) Das EU-Weißbuch zum Umgang mit Stoffen: Chancen und offene Fragen bei der Umsetzung. UWSF-Z Umweltchem Ökotox 14: 254

    Article  Google Scholar 

  • Fromm O, Brüggemann R (1999a) Ökonomische Ansatze zur Ökosystembewertung — am Beispiel des Bodens, Teil I: Der Boden aus ökologischer, ökonomischer und ökologisch-ökonomischer Sicht. UWSF-Z Umweltchem Ökotox 11: 120–124

    Google Scholar 

  • Fromm O, Brüggemann R (1999b) Ökonomische Ansatze zur Ökosystembewertung — am Beispiel des Bodens, Teil II: Verfahren zur Monetarisierung von Ökosystemleistungen. UWSF-Z Umweltchem Ökotox 11: 177–179

    Article  Google Scholar 

  • Gaedke U. (1995) A comparison of whole-community and ecosystems approaches (biomass size distributions, food weg analysis, network analysis, simulation models) to study the structure, function and regulation of pelagic food webs. J. Plankton Research 17(6): 1273–1305

    Article  Google Scholar 

  • Ganter B, Wille R (1996) Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag, Berlin, S 1–286

    Book  Google Scholar 

  • Ganter B, Wille R, Wolff KE (1987) Beiräge zur Begriffsanalyse. BI Wissenschaftsverlag, Mannheim, S 7–254

    Google Scholar 

  • Gasteiger J, Zupan J (1993) Neuronale Netze in der Chemie. Angew Chem 105: 510–536

    Article  Google Scholar 

  • Gerhardt M, Schuster H (1995) Das digitale Universum — Zellulare Automaten als Modelle der Natur. F. Vieweg & Sohn, Braunschweig

    Book  Google Scholar 

  • Geyer H, Scheunert I, Brüggemann R, Steinberg C, Korte F, Kettrup A (1991) QSAR for organic bioconcentration in daphnia, algae, and mussels. The Science of the Total Environ 109–110: 387–394

    Article  Google Scholar 

  • Geyer H, Scheunert I, Brüggemann R, Langer D, Korte F, Kettrup A, Mansour M (1997) Half-lives and bioconcentration of lindan (g-HCH) in different fish species and relationship with their lipid content. Chemosphere 35(1–2): 343–351

    Article  Google Scholar 

  • Geyer H, Kaune A, Schramm KW, Rimkus G, Scheunert I, Bruggemann R, Altschuh J, Steinberg C, Vetter W, Kettrup A, Muir DCG (1999) Predicting bioconcentration factors (BCFs) of polychlorinated nornane (toxaphene) congeners in fish and comparison with bioaccumulation factors (BAFs) in biota from the aquatic environment. Chemosphere 39: 655–663 (BCF)

    Article  Google Scholar 

  • Gmehling J, Kolbe B (1988) Thermodynamik. G. Thieme Verlag, Stuttgart S 1–288

    Google Scholar 

  • Gmehling J, Rassmussen P, Fredenslund (1980) Eine Übersicht zur Berechnung von Phasengleichgewichten mit Hilfe der UNIFAC-Methode. Chemie Ing Technik 52: 724–734

    Article  Google Scholar 

  • Gnauck A (1999) Gewässermodellierung. BTU Cottbus, Cottbus, pp 1–74

    Google Scholar 

  • Gonzales-Andujar JL (1997) A matrix model for the population dynamics and vertical distribution of weed sandbanks. Ecol Mod 97: 117–120

    Article  Google Scholar 

  • Grimm V, Drechsler M (2000) Risikoabschätzung und Entscheidungen in der Populationsgefährdungsanalyse. In: Brechling B, Müller F (Hrsg) Der ökologische Risikobegriff, P. Lang Gmbh, FrankfurtM., S 139–151

    Google Scholar 

  • Gutman I, Diudea MV (1998) Correcting the definition of Cluj matrices. Match 37: 195–201

    Google Scholar 

  • Gutman I, Popovic L, Khadikar PV, Karmarkar S, Joshi S, Mandloi M (1997) Relations between Wiener and Szeged indices of monocyclic molecules. Match 35: 91–103

    Google Scholar 

  • Gutman I, Rada J, Araujo O (2000) The Wiener index of starlike trees and a related partial order. Match 42: 145–154

    Google Scholar 

  • Halfon E (1979) Computer-based development of large-scale ecological models: Problems and prospects. In: Innis GS, O’Neill RV (eds) System analysis of ecosystems, pp 197–209

    Google Scholar 

  • Halfon E (1979) On the parameter structure of a large scale ecological model. Contemp Quant Ecol and Related Ecometrics 12: 279–293

    Google Scholar 

  • Halfon E (1983a) Is there a best model structure? I: Modelling the fate of a toxic substance in a lake. Ecol Mod 20: 135–152

    Article  Google Scholar 

  • Halfon E (1983b) Is there a best model structure? II: Comparing the model structures of different fate Models. Ecol Mod 20: 153–163

    Article  Google Scholar 

  • Halfon E, Brüggemann R (1989) Environmental hazard ranking of chemicals spilled in the Rhine River in November 1986. Acta hydrochim hydrobiol 17: 47–60

    Article  Google Scholar 

  • Halfon E, Brüggemann R (1998) On ranking chemicals for environmental hazard: Comparison of methodologies. In: Brüggemann R, Grell J, Pudenz S, Simon U (eds) Proc. Workshop on Order Theoretical Tools in Environmental Sciences. Berichte IGB H6, pp 11–48

    Google Scholar 

  • Halfon E, Oliver BG (1990) Simulation and data analysis of four chlorobenzenes in a large lake system (Lake Ontario) with TOXFATE, a contaminant fate model. Modeling in Ecotox 13: 197–213

    Google Scholar 

  • Halfon E, Reggiani MG (1986) On ranking chemicals for environmental hazard. Environ Sci Technol 20: 1173–1179

    Article  Google Scholar 

  • Halfon E, Altschuh J, Brüggemann B, Karcher W (1991) Estimations of aqueous solubility from Noctanolwater partition coefficients analyzed by the Bootstrap method. Chemosphere 22: 953–957

    Article  Google Scholar 

  • Halfon E, Galassi S, Brüggemann R, Provini A (1996) Selection of priority properties to assess environmental hazard of pesticides. Chemosphere 33: 1543–1562

    Article  Google Scholar 

  • Halfon E, Schito N, Ulanowicz RE (1996) Energy flow through the Lake Ontario food web: Conceptual model and an attempt at mass balance. Ecological Modelling 86: 1–36

    Article  Google Scholar 

  • Hallam TG, Trawick TL, Wolff WF (1996) Modeling effects of chemicals on a population: Application to a wading bird nesting colony. Ecol Mod 92: 175–178

    Article  Google Scholar 

  • Hammett LP (1970) Physikalische Organische Chemie — Reaktionsgeschwindigkeiten, Gleichgewichte, Mechanismen (Übersetzung: Schmid P), Verlag Chemie, Weinheim, S 1–413

    Google Scholar 

  • Hannappel S (1996) Die Beschaffenheit des Grundwassers in den hydrogeologischen Strukturen der neuen Bundeslander. Berliner Geowiss Abh Reihe A 182

    Google Scholar 

  • Hannon BM (1985) Ecosystem flow analysis. Canad Bull Fisheries and Aquat Sci 213: 97–118

    Google Scholar 

  • Hannon BM (1987) Life and the production of entropy. Proc R Soc London B 323: 181–192

    Google Scholar 

  • Hansch C, Leo AJ (1979) Cluster analysis and the design of congener sets. In: Hansch C, Leo AJ (eds) Substituent constants for correlation analysis in chemistry and biology. J Wiley & Sons, Toronto, pp 48–63

    Google Scholar 

  • Hansch C, Leo AJ (1979) Substituent constants for correlation analysis in chemistry and biology. J. Wiley & Sons, Toronto, pp 48–63

    Google Scholar 

  • Hansch C, Lien EJ (1968) An analysis of the structure-activity relationship in the adrenergic blocking activity of the s-haloalkylamines. Biochem Pharmacol 17: 709–720

    Article  Google Scholar 

  • Hansen BG, Van Haelst AG, Van Leeuwen K, Van der Zandt P (1999) Priority setting for existing chemicals. Envir Tox Chem 18 (4): 772–779

    Article  Google Scholar 

  • Harary F (1974) Graphentheorie. Oldenbourg Verlag, Munchen

    Google Scholar 

  • Harris JM (2000) Combinatorics and graph theory (Undergraduate texts in mathematics). Springer-Verlag, pp 1–225

    Google Scholar 

  • Harsch G (1985) Vom Wurfelspiel zum Naturgesetz: Simulation und Modelldenken in der Physikalischen Chemie. VCH Verlagsgesellschaft, Weinheim, pp 1–269

    Google Scholar 

  • Hartung J, Elpelt B (1992) Multivariate Statistik; Lehr-und Handbuch der angewandten Statistik. R. Oldenbourg Verlag, München, S 1–815

    Google Scholar 

  • Hehre WJ (1986) Ab initio molecular orbital theory. J. Wiley & Sons, New York, pp 1–548

    Google Scholar 

  • Heidorn CA, Hansen BG, Sokull-Kluettgen B, Vollmer G (1997) EUSES-A practical tool in risk assessment. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schuurmann G, Voigt K (eds) ECO-INFORMA 97: Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 143–146

    Google Scholar 

  • Heinrich R, Brüggemann R, Ertl C, Möller K, Müller M, Pudenz S, Simon U, Weigert B, Wittwer C (2001) Leitfaden Wasser — Nachhaltige Wasserwirtschaft: Ein Weg zur Entscheidungsfindung. Wasserforschung e. V. S 1–26

    Google Scholar 

  • Henrion R, Henrion G (1995) Multivariate Datenanalyse — Methodik und Anwendung in der Chemie und verwandten Gebieten. Springer-Verlag, Berlin, S 1–261

    Book  Google Scholar 

  • Hethcote HW (1989) Three basic epidemiological models. In: Levin SA, Hallam TG, Gross LJ (eds) Applied mathematical ecology. Springer-Verlag, Berlin, pp 119–144

    Chapter  Google Scholar 

  • Hogg T, Huberman BA, McGlade J (1989) The stability of ecosystems. Proc R Soc London B 237: 43–51

    Article  Google Scholar 

  • Hommen U, Ratte HT (1991) Modelling a mesocosmplankton community after insecticide application: A first approach. Syst Anal Model Simul 8: 821–828

    Google Scholar 

  • Hommen U, Ratte HT (1997) Mathematische Modelle zur Effektabschätzung. UWSF-Z Umweltchem Ökotox 9(5): 267–272

    Article  Google Scholar 

  • Hommen U, Poethke HJ, Dülmer U, Ratte HT (1993) Simulation models to predict ecological risk of toxins in freshwater systems. ICES J mar Sci 50: 337–347

    Article  Google Scholar 

  • Horsch H, Ring I, Herzog F (2001) Nachhaltige Wasserbewirtschaftung und Landnutzung — Methoden und Instrumente der Entscheidungsfindung und-umsetzung. Metropolis Verlag, Marburg, S 1–488

    Google Scholar 

  • Huisman J (1997) The struggle for light. Promotionsschrift an der Rijksuniversiteit Groningen: Natuurwetenschappen, pp 1–216

    Google Scholar 

  • Huisman J, Weissing F J (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410

    Article  Google Scholar 

  • Ihme W, Lin Y, Wichmann H-E (1992) Risk assessment bei der Bewertung von Sanierungsalternativen aus umweltmedizinischer Sicht. In: Jessberger HL (Hrsg) Erkundung und Sanierung von Altlasten. A. A. Balkema, Rotterdam, S 117–131

    Google Scholar 

  • Janssen R (1992) Multiobjective decision support for environmental management. Kluwer Acad Publ. Dordrecht, pp 1–232

    Google Scholar 

  • Jenne EA(1979) Chemical modelling in aqueous systems. American Chemical Society, Washington D.C. pp 3–914

    Google Scholar 

  • Jørgensen SE (1996) The application of ecosystem theory in limnology. Verh IntVerein Limnol 26: 181–196

    Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1981) Use of models for assessing relative volatility, mobility and persistence of pesticides and other trace organics in soil systems. In: Saxena J (ed) Hazard assessment of chemicals, vol 2. Academic Press, New York, pp 1–43

    Google Scholar 

  • Jury WA, Farmer WJ, Spencer WJ (1983) Behavior assessment model for trace organics in soil, I: Model description. J Envir Qual 12(4): 558–564

    Article  Google Scholar 

  • Jury WA, Farmer WJ, Spencer WJ (1984a) Behavior assessment model for trace organics in soil, II: Chemical classification and parameter sensitivity. J Envir Qual 13(4): 567–572

    Article  Google Scholar 

  • Jury WA, Farmer WJ, Spencer WJ (1984b) Behavior assessment model for trace organics in soil, III: Application of screening models. J Envir Qual 13(4): 573–579

    Article  Google Scholar 

  • Jury WA, Farmer WJ, Spencer WJ (1984c) Behavior assessment model for trace organics in soil, IV: Review of experimental evidence. J Envir Qual 13(4): 580–586

    Article  Google Scholar 

  • Kamlet MJ, Doherty RM, Abboud JLM, Abraham MH, Taft RW (1986) Solubility — A new look. CHEMTECH, Sept 1986, pp 566–576

    Google Scholar 

  • Kanowski S (1988) Gefährliche Stoffe im Wasserrecht. Vom Wasser 71: 15–26

    Google Scholar 

  • Karickhoff SK (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–846

    Article  Google Scholar 

  • Kerler F, Schönherr J (1988) Permeation of lipophilic chemicals across plant cuticles: Prediction from partition coefficients and molar volumes. Arch Envir Contam Tox 17: 7–12

    Article  Google Scholar 

  • Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press

    Google Scholar 

  • Kinzelbach W (1992) Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser, 2. Aufl. Oldenbourg Verlag, München. S 1–343

    Google Scholar 

  • Klauer B (1998) Nachhaltigkeit der Naturbewertung. Physica Verlag, Heidelberg, S 1–222

    Book  Google Scholar 

  • Klauer B (2000) Ecosystem prices: Activity analysis applied to ecosystems. Ecol Economies 33: 473–486

    Article  Google Scholar 

  • Klein DJ (1986) Chemical graph-theoretic cluster expansions. Int J Quant Chem 20: 153–171

    Article  Google Scholar 

  • Klein J (1992) Bilanzen in der Chemie. Nachr Chem Tech Lab 40: 957

    Article  Google Scholar 

  • Klein AW, Klein W, Kordel W, Weiss M (1988) Structure-activity relationships for selecting and setting priorities for existing chemicals — A computer-assisted approach. Envir Tox Chem 7: 455–467

    Article  Google Scholar 

  • Klöpffer W (1994) Environmental hazard — Assessment of chemicals and products, part I: General assessment principles. ESPR-Environ Sci & Pollut Res 1: 47–53

    Article  Google Scholar 

  • Klöpffer W (1997a) Life cycle assessment. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schuurmann G, Voigt K (eds) ECO-INFORMA 97: Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, Int J LCA 3: 61–62

    Google Scholar 

  • Klöpffer W (1997b) Verhalten und Abbau von Umweltchemikalien: Physikalisch-chemische Grundlagen, Ecomed, Landsberg, S 1–380

    Google Scholar 

  • Klöpffer W (1998) Subjectivity is not arbitrary. Int J LCA 3: 61–62

    Article  Google Scholar 

  • Klopman G (1992) MULTICASE I: A hierarchical computer automated structure evaluation program. Quant Struct-Act Rel 11: 176–184

    Article  Google Scholar 

  • Koelmans AA, Van der Heijde A, Knijff LM, Aalderink RH (2001) Integrated modelling of eutrophication and organic contaminant fate and effects in aquatic ecosystems — A review. Wat Res 35: 3517–3536

    Article  Google Scholar 

  • Kooijman S (1987) A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res 21(3): 269–276

    Article  Google Scholar 

  • Kortüm G (1963) Einfuhrung in die chemische Thermodynamik. Vandenhoeck & Ruprecht Verlag Chemie, S 1–470

    Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry. McGraw-Hill Kogakusha Ltd., pp 1–617

    Google Scholar 

  • Kubinyi H (1993) QSAR: Hansch analysis and related approaches, vol 1: Methods and principles in medicinal chemistry. VCH Verlagsgesellschaft, Weinheim, pp 1–240

    Book  Google Scholar 

  • Kümmerer K (2001) Zeiten in der Ökotoxikologie. In: Steinberg C, Brüggemann R, Kümmerer K, Ließ M, Pflaugmacher S, Zauke GP (Hrsg) Stress in limnischen Ökosystemen — Neue Ansatze in der ökotoxikologischen Bewertung von Binnengewässern, S 193–205

    Google Scholar 

  • Lagonegro M, Hull V (1994) AQUAMOD. In: Benz J, Knorrenschild M (Hrsg) Register of ecological models (REM) der GhK Kassel. UFIS/ECOBAS: http://dino.wiz.uni-kassel.de

  • Landesanstalt für Umweltschutz Baden-Württemberg (1993) Ökologisches Wirkungskataster Baden-Württemberg. Jahresbericht 1990/1991, Bd 1, Verlag G. Braun, Karlsruhe, S 5–144

    Google Scholar 

  • Landesanstalt für Umweltschutz Baden-Württemberg (1994) Signale aus der Natur — 10 Jahre Ökologisches Wirkungskataster Baden-Württemberg. Jahresbericht 1990/1991, Bd 1, Verlag G. Braun, Karlsruhe, S 1–63

    Google Scholar 

  • Lerche D, Brüggemann R, Sørensen PB, Carlsen L, Nielsen OJ (2002a) A comparison of partial order techniques with three methods of multicriteria analysis for ranking of chemical substances. J Chem Inf Comp Sc 42: 1086–1098

    Article  Google Scholar 

  • Lerche D, Sørensen PB, Larsen HL, Carlsen L, Nielsen OJ (2002b) Comparison of the combined monitoring — based and modelling — based priority setting scheme with partial order theory and random linear extensions for ranking of chemical substances. Chemosphere 49: 637–649

    Article  Google Scholar 

  • Leslie PH, (1945) On the use of matrices in certain population mathematics. Biometrika 33: 183–212

    Article  Google Scholar 

  • Levenspiel O (1972) Chemical reaction engineering, 2nd edn. John Wiley & Sons, New York, pp 1–578

    Google Scholar 

  • Lien EJ, Hansch C (1968) An analysis of the structure-activity relationship in the adrenergic blocking activity of the ß-haloalkylamines. Biochem Pharmacol 17: 709–720

    Article  Google Scholar 

  • Liess M (1993) Zur Ökotoxikologie der Einträge von landwirtschaftlich genutzten Flächen in Fließgewässern. Cuvillier-Verlag, Göttingen, S 1–133

    Google Scholar 

  • Lindsay WI (1979) Chemical equilibria in soils. Wiley-Interscience Publ., New York, pp 1–449

    Google Scholar 

  • Lootsma FA (1993) Scale sensitivity in the multiplicative AHP and SMART. J of Multi-Criteria Decision Analysis 2: 87–110

    Article  Google Scholar 

  • Lundgren JR (1989) Foodwebs, competition graphs, competition-common enemy graphs, and niche graphs. In: Roberts F (ed) Applications of combinatorics and graph theory to the biological and social sciences. Springer-Verlag, New York, pp 221–243

    Chapter  Google Scholar 

  • Luther B, Brüggemann R, Pudenz S (2000) An approach to combine cluster analysis with order theoretical tools in problems of environmental pollution. Match 42: 119–143

    Google Scholar 

  • Luther B, Brüggemann R, Gnauck A (2002) Multivariate Datenanalyse mit partiellen Ordnungen — Erstellung und Interpretation. In: Gnauck A (Hrsg) Theorie und Modellierung von Ökosystemen — Workshop Kölpingsee. Shaker Verlag, Aachen, S 119–133

    Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of chemical property estimation methods — Environmental behavior of organic compounds. McGraw-Hill Book Company, New York, pp 1–863

    Google Scholar 

  • Mackay D, Paterson S (1983) Fugacity models of indoor exposure to volatile chemicals. Chemosphere 12: 143–154

    Article  Google Scholar 

  • Mackay D, Paterson S (1984) Spatial concentration distributions. Envir Sci Technol 18: 207A–214A

    Article  Google Scholar 

  • Mackay D, Bobra AM, Chan DW, Shiu WY (1982) Vapor pressure correlations for low volatility environmental chemicals. Envir Sci & Technol 16: 645–649

    Article  Google Scholar 

  • Mackay D, Joy M, Paterson S (1983) A quantitative water, air, sediment interaction (QUASI) fugacity model for describing the fate of chemicals in rivers. Chemosphere 12: 1193–1208

    Article  Google Scholar 

  • Mackay D, Di Guardo A, Paterson S, Kiesi G, Cowan CE (1996a) Assessing the fate of new and existing chemicals: A five-stage process. Envir Tox Chem 15: 1618–1626

    Article  Google Scholar 

  • Mackay D, Di Guardo A, Paterson S, Kiesi G, Cowan CE, Kane DM (1996b) Assessment of chemical fate in the environment using evaluative, regional and local-scale models: Illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Envir Tox Chem 15: 1638–1648

    Article  Google Scholar 

  • Mackay D, Di Guardo A, Paterson S, Cowan CE (1996c) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Envir Tox Chem 15: 1627–1637

    Article  Google Scholar 

  • Mackay D, Di Guardo A, Hickie B, Webster E (1997) Environmental modelling: Progress and prospects. SAR and QSAR Envir Res 6: 1–17

    Article  Google Scholar 

  • Magnuson VR, Harriss DK, Basak SC (1983) Topological indices based on neighborhood symmetry: Chemical and biological applications. In: King RB (ed) Chemical applications of topology and graph theory — A collection of papers from a symposium held at the University of Georgia, Athens. Elsevier Science Publisher, Amsterdam, pp 178–191

    Google Scholar 

  • Malle KG (1978) Wie schmutzig ist der Rhein? Chemie in unserer Zeit 12: 111–121

    Article  Google Scholar 

  • Matthies M, Behrendt H, Münzer B (1987) EXSOL — Modell für den Transport und Verbleib von Stoffen im Boden. GSF-Bericht 23/87

    Google Scholar 

  • Matthies M, Brüggemann R, Münzer B, Schernewski G, Trapp S (1989) Exposure and ecotoxicity estimation for environmental chemicals (E4CHEM): Application of fate models for surface waters and soils. Ecological Modelling 47: 115–140

    Article  Google Scholar 

  • Matthies M, Brüggemann R, Münzer B (1992) Screening assessment model system SAMS — A program of simple models for exposure assessment to chemicals; version 1.0. OECD-Environmental Directorate, Monograph, pp 1–69

    Google Scholar 

  • Matthies M, Koormann F, Schulze C, Wagner JO (1999) GREAT-ER — ein georeferenziertes Instrument zur Bewertung der regionalen Schadstoffbelastung europäischer Flüsse. In: Geller W (ed) Flusseinzugsgebietsmanagement — Herausforderung an die Forschung. UFZ-Bericht, Leipzig-Halle 31/1999, S 116–119

    Google Scholar 

  • Maxwell T (1994) Scaling spatial predictability: An approach tomulti-resolution modeling. Envir Tox Chem 13: 1875–1880

    Article  Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: Stable points, stable cycles and chaos. Sci 186: 645–647

    Article  Google Scholar 

  • McFarlane C, Pfleeger T, Fletcher J (1990) Effect, uptake and disposition of nitrobenzene in several terrestrial plants. Envir Tox Chem 9: 513–520

    Google Scholar 

  • McLeod WL, Butz RG (1991) RISKPRO: Environmental pollution modelling system. J Chem Inf Comp Sci 31: 427

    Article  Google Scholar 

  • Messner F, Klauer B, Drechsler M (2001) Der Nutzungskonflikt zwischen Trinkwasserschutz und wirtschaftlicher Entwicklung im Torgauer Raum. JB Ökologische Ökonomik 2: Ökonomische Naturbewertung, Metropolis Verlag, S 335–351

    Google Scholar 

  • Mezey PG (1991) Mathematical modelling in chemistry. VCH Verlag, Weinheim, pp 3–386

    Google Scholar 

  • Mihalic M, Trinajstic N (1992) A graph theoretical approach to structure property relationships. J Chem Educ 69: 701–712

    Article  Google Scholar 

  • Millington RJ, Quirk JM (1961) Permeability of porous solids. Trans Faraday Soc 57: 1200–1207

    Article  Google Scholar 

  • Molodtsov SG (1998) The generation of molecular graphs with obligatory, forbidden, and desirable fragments. Match 37: 157–162

    Google Scholar 

  • Moss S, Pahl-Wostl C, Downing T (2001) Agent-based integrated assessment modelling: The example of climate change. Integrated Assessment 2: 17–30

    Article  Google Scholar 

  • Mostaghimi S, Park SW, Cooke RA, Wang SY (1997) Assessment of management alternatives on a small agricultural watershed. Wat Res 31: 1867–1878

    Article  Google Scholar 

  • Mucke W, Voigt K, Benz J (1988) System to access data sources for environmental chemicals. Toxicological and Environmental Chemistry 17: 237–247

    Article  Google Scholar 

  • Müller S, Duschl M (1985) Die Gewässergütesimulation als Planungsinstrument — dargestellt am Beispiel der wasserwirtschaftlichen Rahmenuntersuchung Donau und Main. Bayerisches Landesamt für Umweltschutz (Hrsg) H 65, S 1–116

    Google Scholar 

  • Münzer B, Brüggemann R (1996) Hypothesenbildung zur Ökotoxikologie: Eine Anwendung des Simulationsprogramms POND. In: Hartmann A, Brüggemann R (Hrsg) Beiträge zur Ökotoxikologie; Proc GSF-Workshop 10.11.1995 GSF-Bericht 12/96, S 95–109

    Google Scholar 

  • Myrdal P, Manka AM, Yalkowsky SH (1995) AQUAFAC 3: Aqueous functional group activity coefficients; Application to the estimation of aqueous solubility. Chemosphere 30: 1619–1637

    Article  Google Scholar 

  • N.N. (1988) Konzeption für ein Messnetz am Rhein: 15 Millionen DM, verteilt über 5 Jahre. Chem Rdschau 13

    Google Scholar 

  • N.N. (1990) Der bessere Preis für eine bessere Umwelt. Chem Rdschau 43: 24

    Google Scholar 

  • N.N. (1992) Anwendung hydrogeochemischer Modelle. DVWK-Schriftenreihe, Bd 100, Paul Parey, Hamburg, S 1–344

    Google Scholar 

  • N.N. (1995) Umweltbundesamt: Methodik der produktbezogenen Ökobilanzen — Wirkungsbilanz und Bewertung. Berlin, Bd 23/95

    Google Scholar 

  • N.N. (1996) EC-Technical Guide

    Google Scholar 

  • Naito W, Miyamoto K, Nakanishi J, Masunaga S, Bartell SM (2002) Application of an ecosystem model for aquatic ecological risk assessment of chemicals for a Japanese lake. Wat Res 36: 1–14

    Article  Google Scholar 

  • Neely WB, Mackay D (1982) Evaluativemodel for estimating environmental fate. In: Maki AW, Cairns JJ (eds) Modelling the fate of chemicals in the aquatic environment. Ann Arbor Science, Ann Arbor, pp 127–143

    Google Scholar 

  • Neumann K (1975) Operations Research Verfahren, Bd III: Graphentheorie, Netzplantechnik. Carl Hanser Verlag, München

    Google Scholar 

  • Neumann-Hensel H, Brüggemann R, Heise S, Ahlf W (2000) Auswerte-und Interpretationsmethoden für Befunde aus Testkombinationen zur Bodenbewertung. In: Heiden S, Erb R, Dott W, Eisenträger A (Hrsg) Toxikologische Beurteilung von Böden — Leistungsfähigkeit biologischer Testverfahren. Spektrum Akad Verlag, Heidelberg, pp 201–218

    Google Scholar 

  • Niederfellner J, Lenoir D, Matuschek G, Rehfeldt F, Utschick H, Brüggemann R (1997) Description of vapour pressures of polycyclic aromatic compounds by graph theoretical indices. Quant Struct-Act Relat 16: 38–48

    Article  Google Scholar 

  • Niemi GJ (1987) Structural features associated with degradable and persistent chemicals. Envir Tox Chem 6: 515–527

    Article  Google Scholar 

  • Nirmalakhandan NN, Speece RE (1988a) QSAR model for predicting Henry’s law constant. Environ Sci & Technol 22: 1349–1357

    Article  Google Scholar 

  • Nirmalakhandan NN, Speece RE (1988b) Structure-activity relationships — Quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ Sci Technol 22: 606–615

    Article  Google Scholar 

  • Nirmalakhandan NN, Speece RE (1988c) Prediction of aqueous solubility of organic chemicals based on molecular structure. Environ Sci Technol 22: 328–338

    Article  Google Scholar 

  • Norton BG, Ulanowicz RE (1992) Scale and biodiversity policy: A hierarchical approach. Ambio 21(3): 244–249

    Google Scholar 

  • Oellien F, Engel T, Hemmer C (2000) Chemische Visualisierung WoldWideWeb. Nachr Chem Tech Lab 48(12): 1507–1510

    Article  Google Scholar 

  • Ohmayer G (1984) CAVE. TU München: Computer Programm

    Google Scholar 

  • Ohmayer G, Seiler H (1985) Numerische Grupperung und graphische Darstellung von Daten: Ein Methodenvergleich. EDV in Medizin und Biologie 16(2): 65–73

    Google Scholar 

  • Omlin M, Reichert P (1999) A comparison of techniques for the estimation of model prediction uncertainty. Ecol Mod 115. 45–59

    Article  Google Scholar 

  • Opperhuizen A, Hutzinger A, Hutzinger O (1982) Multi-criteria analysis and risk assessment. Chemosphere 11: 675–678

    Article  Google Scholar 

  • Page B, Kreutzer W, Wohlgemuth V, Brüggemann R (1997) Ein Anwendungsvergleich ausgewählter graphischer Modellierungswerkzeuge in der Expositionsanalyse von Chemikalien in der Umwelt. In: Grützner R (Hrsg) Modellierung und Simulation im Umweltbereich. F. Vieweg, Braunschweig, S 147–172

    Chapter  Google Scholar 

  • Pahl-Wostl C (1993a) The hierarchical organization of the aquatic ecosystem: An outline how reductionism and holism may be reconciled. Ecol Mod 66: 81–100

    Article  Google Scholar 

  • Pahl-Wostl C (1993b) Food webs and ecological networks across temporal and spatial scales. Oikos 66: 415–432

    Article  Google Scholar 

  • Pahl-Wostl C (1995) The dynamic nature of ecosystems — Chaos and order entwined. John Wiley & Sons, Chichester, pp 1–267

    Google Scholar 

  • Pahl-Wostl C, Ulanowicz RE (1993) Quantification of species as functional units within an ecological network. Ecol Mod 66: 75–79

    Google Scholar 

  • Pahl-Wostl C, Ulanowicz RE (1994) Sensitivity analysis of ecosystem dynamics based on macroscopic community descriptors: A simulation study. Ecol Mod 75/76: 51–62

    Article  Google Scholar 

  • Park RA, O’Neill RV, Bloomfield JA, Shugart HH, Booth RS, Goldstein RA, Mankin JB, Koonce JF, Scavia D, Adams MS, Clescere LS, Colon EM, Dettmann EH, Hoopes J, Huff DD, Katz S, Kitchell JF, Kohberger RC, Larow EJ, McNaught DC, Peterson JL, Tutus JE, Weiler PR, Wilkinson JW, Zahorcak CS (1974) A generalized model for simulating lake ecosystems. Simulation 23: 33–50

    Article  Google Scholar 

  • Parlar H, Angerhöfer D (1991) Chemische Ökotoxikologie. Springer-Verlag, Berlin, S 1–384

    Google Scholar 

  • Partheniades E (1965) Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91: 105–138

    Google Scholar 

  • Patten BC (1985) Energy cycling, length of food chains, and direct versus indirect effects in ecosystems. In: Ulanowicz RE, Platt T (eds) Ecosystem theory for biological oceanography. Can Bull Fish and Aqu Sci 213: 119–138

    Google Scholar 

  • Patten BC, Higashi M, Burns TP (1990) Trophic dynamics in ecosystem networks: Significance of cycles and storage. Ecol Modelling 51: 1–28

    Article  Google Scholar 

  • Pauly D, Sambilay VJ, Opitz S (1993) Estimates of relative food consumption by fish and invertebrate populations, required for modelling the Bolinao reef ecosystem, Phillipines. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM Conf Proc 26, pp 236–251

    Google Scholar 

  • Pierotti GJ, Deal CH, Derr EL (1959) Activity coefficients and molecular structure. Ind and Engin Chem 51: 95–102

    Article  Google Scholar 

  • Pimm SL (1991a) Biodiversity and the balance of nature. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer-Verlag, Berlin pp 347–359

    Google Scholar 

  • Pimm SL (1991b) The balance of nature? Ecological issues in the conservation of species and communities. The University of Chikago Press, Chikago, pp 1–434

    Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 669–674

    Google Scholar 

  • Poethke HJ, Oertel D, Seitz A (1991) Zur Problematik der Risikoabschätzung bei Schadstoffimmissionen im pelagischen Ökosystem: Eine Simulationsstudie. In: Gesellschaft für Ökologie (Hrsg) Verhandlungen der Gesellschaft für Ökologie, Freising, H 20, S 823–831

    Google Scholar 

  • Prochnow D, Bungartz H (1990) Zur numerischen Aufbereitung des k-ε-Modells für Strömungen in flachen Gewässern. Acta Hydrophys (Berlin) 34: 245–264

    Google Scholar 

  • Prochnow D, Bungartz H, Friedrich J (1991) Grundmodelle des Absetzverhaltens partikulären Materials in Gewässern. Acta Hydrophys (Berlin) 35: 61–78

    Google Scholar 

  • Prochnow D, Bungartz H, Friedrich J (1991) Partikelsuspension, Sedimentation und mittlere maximale Volumenkonzentration in Fließgewässern. Acta Hydrophys (Berlin) 35: 361–407

    Google Scholar 

  • Prochnow D, Bungartz H, Engelhardt C, Kruger A, Sauer W, Schild R, Thiele M (1997) Modellierung und Simulation der Schwebstoffdynamik in eutrophen Fließgewässern. Institut f. Gewässerokologie und Binnenfischerei Berlin (Hrsg) IGB Jahresforschungsbericht 1996, H 3, S 62–81

    Google Scholar 

  • Prochnow D, Bungartz H, Engelhardt D, Krüger A, Schild R (1998) Das Programmsystem PAMIR zur Simulation der turbulenten Strömung und der Ausbreitung von Schweb-, Nähr-und Schadstoffen in Fließgewässern. DGM 42: 113–117

    Google Scholar 

  • Prochnow D, Bungartz H, Engelhardt C, Schild R (2000) Modellierung der Schwebstoffdynamik in eutrophen Fließgewässern. In: Steinberg C, Calmano W, Klapper H, Wilken R (Hrsg) Handbuch Angewandte Limnologie, 10. Erg.-Lieferung. Ecomed, Landsberg, 26 Seiten

    Google Scholar 

  • Pudenz S (1999) Modellierung der regionalen Phosphorverlagerung im Boden und Grundwasser. Verlag Dr. Köster, Berlin, S 1–146

    Google Scholar 

  • Pudenz S, Nützmann G (1997) Abschätzung der Phosphatverlagerung im Boden-und Grundwasser mit Hilfe des Kompartimentmodells MORPHO. DGM 41: 72–74

    Google Scholar 

  • Pudenz S, Nützmann G, Brüggemann R (1999) Das komplexe Modell MORPHO als ein Baustein in der ökologischen Modellierung. In: Pelz DR, Rau O, Saborowski J (Hrsg) Herbstkolloquium der Arbeitsgruppe Ökologie, Region Freiburg, der Int Biometr. Ges, S 202–211

    Google Scholar 

  • Pudenz S, Brüggemann R, Luther B, Kaune A, Kreimes K (2000) An algebraic/graphical tool to compare ecosystems with respect to their pollution, V: Cluster analysis and Hasse diagrams. Chemosphere 40: 1373–1382

    Article  Google Scholar 

  • Pudenz S, Brüggemann R, Voigt K, Welzl G (2002) Nachhaltige Entwicklung von Managementstrategien — Multikriterielle Bewertungs-und Entscheidungshilfe-Instrumente. UWSF-Z Umweltchem Ökotox 14: 52–57

    Article  Google Scholar 

  • Rack C (1984) Die Theorie unscharfer Teilmengen und ihre Anwendung in der Wasserwirtschaft. DGM 28: 3–79

    Google Scholar 

  • Randic M (1978a) Graph-theoretical analysis of structure-property and structure-activity correlations. Int J Quant Chem 5: 245–255

    Google Scholar 

  • Randic M (1978b) On comparability of structures. Chem Phys Lett 55: 547–551

    Article  Google Scholar 

  • Randic M (1990) The nature of chemical structure. J Math Chem 4: 157–184

    Article  Google Scholar 

  • Randic M (1992) In search of structural invariants. J Math Chem 9: 97–146

    Article  Google Scholar 

  • Randic M (1994) Hosoya matrix — A source of new molecular descriptors. Croatica Chemica Acta 67: 415–429

    Google Scholar 

  • Randic M (1997) On characterization of chemical structure. J Chem Inf Comp Sci 37: 672–687

    Article  Google Scholar 

  • Randic M (2002) On use of partial ordering in chemical applications. In: Voigt K, Welzl G (eds) Order theoretical tools in environmental sciences — order theory (Hasse diagram technique) meets multivariate statistics. Shaker-Verlag, Aachen, pp 55–64

    Google Scholar 

  • Randic M, Wilkins CL (1979) Graph theoretical ordering of structures as a basis for systematic searches for regularities in molecular data. J Phys Chem 83: 1525–1540

    Article  Google Scholar 

  • Randic M, Blazic BJ, Rouvray DH, Seybold PG, Grossman SC (1987) The search for active substructures in structure-activity studies. Int J Quant Chem 14: 245–260

    Article  Google Scholar 

  • Rashevsky N (1956) Life, information theory, and topology. Bull Math Biophysics 17: 229–235

    Article  Google Scholar 

  • Rashevsky N (1956) What type of empirically verifiable predictions can topological biology make? Bull Math Biophys 18: 173–188

    Article  Google Scholar 

  • Rauschmayer F (2000) Entscheidungsverfahren in der Naturschutzpolitik. Peter Lang-Verlag, FrankfurtM., S 1–232

    Google Scholar 

  • Ray SK, Basak SC, Raychaudhury C, Roy AB, Ghosh JJ (1983) The utility of information content, structural information content, hydrophobicity and Van der Waals volume in the design of barbiturates and tumor inhibitory triazenes. Arzneimittel Forsch/Drug Res, 33(1)(3): 352–356.

    Google Scholar 

  • Raynolds M, Fraser R, Checkel D (2000) The relative mass-enery-enconomic (RMEE) method for system boundary selection, part 2: Selecting the boundary cut-off parameter (ZRME) and its relationship to overall uncertainty. Int J LCA 5: 96–104

    Article  Google Scholar 

  • Recknagel IF, Petzoldt T, Jaeke O, Krusche F (1994) Hybrid expert system DELAQUA, a toolkit for water quality control of lakes and reservoirs. Ecological Modelling 71: 17–36

    Article  Google Scholar 

  • Reichardt C (1965) Empirische Parameter der Lösungsmittelpolarität. Angew Chem 77: 30–40

    Article  Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill Book Co, New York, pp 1–688

    Google Scholar 

  • Richter O (1985) Simulation des Verhaltens okologischer Systeme — Mathematische Methoden und Modelle. VCH, Weinheim

    Google Scholar 

  • Richter O, Söndgerath D (1990) Parameter estimation in ecology — The link between data and models. VCH, Weinheim, S 1–218

    Google Scholar 

  • Richter O, Diekkrüger B, Nörtersheuser P (1996) Environmental fate modeling of pesticides. VCH Weinheim, S 1–219

    Google Scholar 

  • Rippen G, Voigt K (1999) Umweltchemikalien. CD Ecomed, Ecomed Media Explorer 6/1999

    Google Scholar 

  • Rippen G, Voigt K (2000) Umweltchemikalien. CD Ecomed, Ecomed Media Explorer 5/2000

    Google Scholar 

  • Rohleder H, Matthies M, Benz J, Brüggemann R, Münzer B, Trenkle R, Voigt K (1986a) Umweltmodelle und rechnergestützte Entscheidungshilfen für die vergleichende Bewertung und Prioritätensetzung bei Umweltchemikalien. GSF-Bericht, Neuherberg 42/86, S 1–216

    Google Scholar 

  • Rohleder H, Münzer B, Voigt K (1986b) E4CHEM (Exposure and ecotoxicity estimation for environmental chemicals) — A computerized aid for priority setting. In: GSF/PUC (ed) Proc Workshop Envir Modelling for Priority Setting among Existing Chemicals. Ecomed, Landsberg, pp 491–524

    Google Scholar 

  • Rouvray DH (1974) Uses of graph theory. Chem Brit 10: 11–15

    Google Scholar 

  • Rouvray DH (1976) The topological matrix in quantum chemistry. In: Balaban AT (ed) Chemical applications of graph theory. Chem Brit 10: 11–15

    Google Scholar 

  • Rouvray DH (1986) Molekül-Topologie und chemische Eigenschaften. Spektrum der Wissenschaft Nov. 1986, S 92–150

    Google Scholar 

  • Rouvray DH, Tatong W (1989) Novel applications of topological indices, 3: Prediction of the vapor pressure in polychlorinated biphenyls. Int J Envir Studies 33: 247–257

    Article  Google Scholar 

  • Roy AB, Basak SC, Harriss DK, Magnuson VR (1983) Neighborhood complexities and symmetry of chemical graphs and their biological applications. In: Avula XJR, Kalman RE, Liapis AI, Rodin EY (eds) Mathematical modelling in science and technology — The fourth international conference, Zurich, August 1983. Pergamon Press, New York, pp 745–750

    Google Scholar 

  • Ruch E, Gutman I (1979) The branching extent of graphs. J Combinatorics. Inform Systems Sci, 4(4): 285–295

    Article  Google Scholar 

  • Russom CL, Bradbury SP, Carlson AR (1995) Use of knowledge bases and QSARS to estimate the relative ecological risk of agrochemicals: A problemformulating exercise. SAR and QSAR Environ Res 4: 83–95

    Article  Google Scholar 

  • Saaty TL (1994) How to make a decision: The analytical hierarchy process. Interfaces 24: 19–43

    Article  Google Scholar 

  • Sabljic A (1983) Quantitative structure-toxicity relationship of chlorinated compounds: A molecular connectivity investigation. Bull Environ Contam Tox 30: 301–310

    Article  Google Scholar 

  • Sabljic A (1987a) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: Kaiser KLE (ed) QSAR in Environmental Toxicology, vol II. D. Reidel Publishing Comp, Dordrecht, S 309–332

    Chapter  Google Scholar 

  • Sabljic A (1987b) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of molecular topology model. Envir Sci Techn 21: 358–366

    Article  Google Scholar 

  • Sabljic A (1987c) The prediction of fish bioconcentration factors of organic pollutants from the molecular connectivity model. Z Gesamte Hyg 33: 493–496

    Google Scholar 

  • Sabljic A (1988) Application of molecular topology for the estimation of physical data for environmental chemicals. In: Jochum C, Hicks HG, Sunkel J (eds) Physical property prediction in organic chemistry. Springer-Verlag, Berlin, pp 335–348

    Chapter  Google Scholar 

  • Sabljic A (1990) Topological indices and environmental chemistry. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. Kluwer Acad Publ, Dordrecht pp 61–82

    Google Scholar 

  • Sabljic A, Güsten A (1989) Predicting Henry’s lawconstants for polychlorinated biphenyls. Chemosphere 19: 1503–1511

    Article  Google Scholar 

  • Sabljic A, Protic M (1982) Molecular connectivity: A novel method for prediction of bioconcentration factor of hazardous chemicals. Chem Biol Interactions 42: 301–310

    Article  Google Scholar 

  • Sabljic A, Trinajstic N (1981) Quantitative structure-activity relationships: The role of topological indices. Acta Pharm Jugosl 31: 189–214

    Google Scholar 

  • Sabljic SC, Gusten H, Verhaar HJM, Hermens JLM (1995) QSAR modelling of soil sorption: Improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31(11/12): 4489–4514

    Article  Google Scholar 

  • Sachs L (1992) Angewandte Statistik, 7. Aufl. Springer-Verlag, Berlin, S 1–846

    Book  Google Scholar 

  • Sachsse H (1969) Philosophie für Chemiker? Chemie in unserer Zeit 3: 33–39

    Article  Google Scholar 

  • Salomon DL (1979) A comparative approach to species diversity. In: Grassie JF, Patil GP, Smith W, Taillie C (eds) Ecological diversity in theory and practice. Int Co-operative Publ. House, Fairland, Maryland, pp 29–35

    Google Scholar 

  • Salski A (1993) Fuzzy-Sets-Anwendungen in der Umweltforschung-Fuzzy Logic, Theorie und Praxis. Springer-Verlag, 13–21

    Google Scholar 

  • Salski A (1997) Application of fuzzy set and logic approaches in ecological information and modelling systems. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schüürmann G, Voigt K (eds) ECO-INFORMA 97: Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 90–97

    Google Scholar 

  • Saykowski F, Marsmann M (1997) Ökobilanzen — Fortschrittsbericht. UWSF-Z Umweltch Ökotox 9: 112–115

    Article  Google Scholar 

  • Schauser I, Hupfer M, Brüggemann R (2000a) Quantitative Abschätzung der Auswirkungen seeinterner Maßnahmen auf die Phosphor-Bindung im Sediment. In: Wittmann J, Gnauck A, Page B, Wohlgemuth V (Hrsg) Simulation in Umwelt-und Geowissenschaften — Workshop Kölpingsee 1999, Shaker-Verlag, Aachen S 255–267

    Google Scholar 

  • Schauser I, Lewandowski J, Brüggemann R, Hupfer M (2000b) Modification of the diagenesis and retention of phosphorus by in-lake measures. In: IGB (ed) Annual Report, Berlin, pp 161–170

    Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Pop and Comm Bio Ser 20, Chapman & Hall, 1–257

    Google Scholar 

  • Schellenberger G, Behrendt H, Kozerski HP, Mohaupt V (1983) Ein mathematisches Ökosystemmodell für eutrophe Flachgewasser. Acta Hydrophys, Berlin, 28(1/2): 109–172.

    Google Scholar 

  • Schellenberger G, Kozerski HP, Behrendt H, Hoeg S (1984) A mathematical ecosystemmodel applicable to shallow water bodies. In: IAHS-AISH (ed) Modelling the water quality of the hydrological cycle, Proc Baden-Baden Sympos, Sept 1978, IAHS-AISH Baden, Publ No 125, pp 128–136

    Google Scholar 

  • Schild R (2000) Kopplung von biologischen und hydraulischenMechanismen der Schwebstoffdynamik in eutrophen Fließgewässern: Modelluntersuchungen am Beispiel der Spree. Logos Verlag, Berlin

    Google Scholar 

  • Schild R, Prochnow D (2001) Coupling of biomass production and sedimentation of suspended sediments in eutrophic rivers. Ecol Mod 145: 263–274

    Article  Google Scholar 

  • Schneeweiss C (1991) Planung 1 — Systemanalytische und entscheidungstheoretische Grundlagen. Springer-Verlag, Berlin, S 1–279

    Google Scholar 

  • Schneeweiss C (1992) Planung 2 — Konzepte der Prozess-und Modellgestaltung. Springer, Berlin, S 1–389

    Google Scholar 

  • Schnoor JL (1996) Environmental modeling fate and transport of pollutants in water, air and soil. JWiley & Sons Inc., New York, pp 1–682

    Google Scholar 

  • Schröder A, Matthies M (2002) Ammonium in Fließgewässern des Saale-Einzugsgebietes — Vergleich von Messwerten und Modellrechnungen in GREAT-ER. UWSF-Z Umweltchem Ökotox 14: 37–44

    Article  Google Scholar 

  • Schwartz S, Trapp S (1997) Chemical exposure model system — CEMOS. In: Alef J, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schüürmann G, Voigt K (eds) Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 530–533

    Google Scholar 

  • Schwartz S, Berding V, Matthies M (1999) Umweltexpositionsabschätzung des polycyclischen Moschus-Duftstoffes HHCB — Szenarienanalyse mit EUSES. Umweltmedizin in Forschung und Praxis 4: 7–11

    Google Scholar 

  • Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater. J Environ Sci & Technol 15: 1360–1367

    Article  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. John Wiley & Sons Inc, New York, pp 1–681

    Google Scholar 

  • Schweingruber M (1980) VH Ausbreitungsanalyse: Behandlung von Fällungs-und Redoxgleichgewichten sowie formal analoger Nebenbedingungen in MINEQL. Techn. Report der EIR/Schweiz TM-45-80-35

    Google Scholar 

  • Seydel R (1994) Practical bifurcation and stability analysis; from equilibrium to chaos. Berlin, Springer-Verlag, S 1–405

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell System Techn J 27: 379–423

    Google Scholar 

  • Sharpe S, Mackay D (2000) A framework for evaluating bioaccumulation in food webs. Envir Sci & Technol 34: 2373–2379

    Article  Google Scholar 

  • Shields A (1936) Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt. Preuss Versuchsanstalt Wasserbau und Schiffsbau 26: 5–25

    Google Scholar 

  • Silvert W (1993) Object-orientated ecosystem modelling. Ecological Modelling 68: 91–118.

    Article  Google Scholar 

  • Sixt S (1998) Methoden zur Abschätzung umweltrelevanter physikalisch-chemischer und ökotoxikologischer Eigenschaften organischer Substanzen aus der Molekülstruktur. Herbert Utz Verlag Wissenschaft, München, S 1–271

    Google Scholar 

  • Sixt S, Altschuh J, Brüggemann R (1995) Quantitative structure-toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere 30: 2397–2414.

    Article  Google Scholar 

  • Sørensen PB, Mogensen BB, Carlsen L, Thomsen M (2000) The influence on partial order ranking from input parameter uncertainty — Definition of a robustness parameter. Chemosphere 41: 595–600

    Article  Google Scholar 

  • Sørensen PB, Mogensen BB, Gyldenkaerne S, Rasmussen AG (1998) Pesticide leaching assessment method for ranking both single substances and scenarios of multiple substance use. Chemosphere 36(10): 2251–2276

    Article  Google Scholar 

  • Sørensen PB, Bruggemann R, Carlsen L, Mogensen BB, Kreuger J, Pudenz S (2003) Analysis of monitoring data of pesticide residues in surface waters using partial order ranking theory. Envir Chem Tox (i. Dr.)

    Google Scholar 

  • Sonnen MB (1977) Subroutine for settling velocities of spheres. ASCE J Hydr/Hyg 9: 1097

    Google Scholar 

  • Sonnenschein M, Gronewold A (1995) Diskrete Petrinetze für individuenbasierte Modelle. In: Oekosysteme: Modellierung und Simulation Umweltwissenschaften Bd 6. Eberhart Blottner Verlag, S 109–130

    Google Scholar 

  • Southworth GR (1979) The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments. Bull Environ Contam Tox 21: 507–514

    Article  Google Scholar 

  • Spies M (1993) Unsicheres Wissen, Wahrscheinlichkeit, Fuzzy-Logik, neuronale Netze und menschliches Denken. Spektrum Akad Verlag, Ed 1, S 17–389

    Google Scholar 

  • Steinberg C, Brüggemann R (2000) Bioindikation höher aggregierter Systeme: Operationalisierung aus der theoretischen Ökologie. In: Fomin A, Arndt U, Elsner D, Klumpp A (Hrsg) Bio-Indikation, Biologische Testverfahren. 2. Hohenheimer Workshop zur Bioindikation am Kraftwert Altbach Deizisau 1998, G. Heimbach, Stuttgart, pp 59–75

    Google Scholar 

  • Steinberg C, Geller W (1993) Biodiversity and interactions within pelagic nutrient cycling and productivity. In: Schulze ED, Mooney H A (eds) Biodiversity and ecosystem function. Springer-Verlag, Berlin, pp 43–64

    Google Scholar 

  • Steinberg C, Brüggemann R, Hartmann A, Heller W, Kirchner M, Lienert D, Müller K, Pestlin G, Scheunert I, Seiler KP, Ernst D, Spieser OH, Klein J (1996) Wirkungstests; Handbuch der Angewandten Limnologie, 1. Erg.-Lfg 5/96. Ecomed Verlag BAYES, Daten

    Google Scholar 

  • Steinberg IJ, Reckhow KH, Wolpert RL (1996) Bayesian model for fate and transport of chlorinated biphenyls in Upper Hudson River. J Envir Engin, May: 341–349

    Google Scholar 

  • Steinberg C, Haitzer M, Brüggemann R, Perminova IV, Yashchenko NY, Petrosyan VS (2000) Towards a quantitative structure activity relationship (QSAR) of dissolved humic substances as detoxifying agents in freshwater. Int Rev Hydrobiol 85: 253–266

    Article  Google Scholar 

  • Steinberg C, Brüggemann R, Kümmerer K, Liess M, Pflugmacher S, Zauke GP (2001) Stress in limnischen Ökosystemen. Parey Buchverlag, Berlin, S 1–276

    Google Scholar 

  • Steinberg C, Schäfer H, Brüggemann R (2001) Biomarker auf ökosystemarer Ebene — Beispiel Biomassespektren. In: Steinberg C, Brüggemann R, Kümmerer K, Liess M, Pflugmacher S, Zauke GP (Hrsg) Stress in limnischen Ökosystemen — Neue Ansätze in der ökotoxikologischen Bewertung von Binnengewässern. Parey Buchverlag/Blackwell Wiss. Verlag, Berlin, S 101–108

    Google Scholar 

  • Steinberg C, Weigert B, Möller K, Jekel M (2002) Nachhaltige Wasserwirtschaft — Entwicklung eines Bewertungs-und Prüfsystems. E. Schmidt Verlag, Berlin, S 1–311

    Google Scholar 

  • Straskraba M, Gnauck A (1983) Aquatische Ökosysteme, Modellierung und Simulation. G. Fischer-Verlag, Stuttgart, S 1–279

    Google Scholar 

  • Strassert G (1995) Das Abwägungsproblem bei multikriteriellen Entscheidungen — Grundlagen und Lösungsansatz unter besonderer Brücksichtigung der Regionalplanung. P. Lang Verlag, S 1–111

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons, Ed 2, pp 1–780

    Google Scholar 

  • Sugihara G (1984a) Ecosystems dynamics group report. In: May RM (ed) Exploitation of marine communities. Dahlem Conference, pp 131–153

    Google Scholar 

  • Sugihara G (1984b) Graph theory, homology and food webs. Proc Symp Appl Meth 30: 83–101

    Article  Google Scholar 

  • Sugihara G, Schoenly K, Trombla A (1989) Scale invariance in food web properties. Science 245: 48–52

    Article  Google Scholar 

  • Sukhodolov A, Nikora V, Rowinski PM (1997) A case study of longitudinal dispersion in small lowland rivers. Water Envir Res 69(7): 1246–1253

    Article  Google Scholar 

  • Sukhodolov A, Engelhardt C, Bungartz H, Krüger A, Krüger H (2001) Flow structure in groyne fields. Case study on the Elbe river. In: IGB (ed) Annual Report 2000, IGB, Berlin pp 27–34

    Google Scholar 

  • Sukhodolov A, Uijttewaal WSJ, Engelhardt C (2002) On the correspondence between morphological and hydrodynamical patterns of Groyne fields. Earth Surface Processes and Landforms 27: 289–305

    Article  Google Scholar 

  • Swanson MB, Davis GA, Kincaid LE, Schultz TW, Bartmess JE, Jones SL, George EL (1997) A screening method for ranking and scoring chemicals by potential human health and environmental impacts. Envir Tox Chem 16: 372–383

    Article  Google Scholar 

  • Szyrmer J, Ulanowicz RE (1987) Total flows in ecosystems. Ecological Modelling 35: 123–136

    Article  Google Scholar 

  • Tay JH, Zhang X (2000) A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res 34: 2849–2860

    Article  Google Scholar 

  • Thieken AH, Köhne M (2001) Ranking of organic pollutants in a regional groundwater contamination: Contamination profiles. In: Pudenz S, Brüggemann R, Luhr HP (eds) Cluster analysis and Hasse diagram technique. Berichte der IGB, Berlin, 14: 39–51

    Google Scholar 

  • Thomsen M, Carlsen L (2002) Evaluation of empirical versus non-empirical descriptors. SAR and QSAR Environ Res 13: 525–540

    Article  Google Scholar 

  • Tilman D (1996) Biodiversity, population versus ecosystem stability. Ecology 77(2): 350–363

    Article  Google Scholar 

  • Tischner T (1999) Untersuchungen zur Phosphatverlagerung und Phosphatbindung im Boden und Grundwasser einer landwirtschaftlich genutzten Fläche. TU Berlin, Berlin, S 1–187

    Google Scholar 

  • Trapp S (1992) Modellierung der Aufnahme anthropogener organischer Substanzen in Pflanzen. Diss rer nat, TU München (s. Trapp u. Matthies 1998)

    Google Scholar 

  • Trapp S, Matthies M (1998) Chemodynamics and environmental modeling — An introduction. Springer-Verlag, Berlin, S 1–285

    Book  Google Scholar 

  • Todeschini R, Consonni V, Mauri A, PaVan M (2003) DRAGON-Software for the calculation of molecular descriptors, Manual-Download: http://www.disat.unimib.it/chm/Dragon.htm

  • Tosato ML, Marchini S, Passerini L, Pino A, Eriksson L, Lindgren F, Hellberg S, Jonsson J, Sjöström M Skagerberg B, Wold S (1990) QSARs based on statistical design and their use for identifying chemicals for further biological testing. Envir Tox Chem 9: 265–277

    Article  Google Scholar 

  • Trapp S, Brüggemann R, Münzer B (1990a) Estimation of releases into rivers with the steady state surface water model EXWAT using dichloromethane. Ecotox and Environ Saf 19(1): 72–80

    Article  Google Scholar 

  • Trapp S, Matthies M, Scheunert I, Topp EM (1990b) Modeling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24(8): 1246–1251

    Article  Google Scholar 

  • Trapp S, McFarlane, Matthies M (1994) Model for uptake of xenobiotics into plants: Validation with bromacil experiments. Envir Tox Chem 13: 413–422

    Article  Google Scholar 

  • Trapp S, Schwartz S (2000) Proposals to overcome limitations in the EU chemical risk assessment scheme. Chemosphere 41: 965–971

    Article  Google Scholar 

  • Ugi I, Bauer J, Brandt J, Friedrich J, Gasteiger J, Jochum C, Schubert W (1979) Neue Anwendungsgebiete für Computer in der Chemie. Angewandte Chemie 91: 99–111

    Article  Google Scholar 

  • Ulanowicz RE (1969) A phenomenology of evolving networks. Systems Review 6: 209–217

    Article  Google Scholar 

  • Ulanowicz RE (1983) Identifying the strucure of cycling in ecosystems. Mathematical Biosciences 65: 219–237

    Article  Google Scholar 

  • Ulanowicz RE (1990) Symmetrical overhead in folw networks. Int J Systems Sci 21: 429–437

    Article  Google Scholar 

  • Ulanowicz RE (1997) Ecology, the ascendant perspective. Columbia Univ Press, New York, ed 1, pp 1–201

    Google Scholar 

  • Ulbrich K, Weissbrodt E, Marsula R, Jeltsch F (1994) Modellierung oekotoxikologischer Belastungsmuster in Fliessgewaessern anhand von Experimentaluntersuchungen an der Weissen Elster. Verh Ges Oekol 23: 399–406

    Google Scholar 

  • Ulbrich K, Hanschmann G, Weissbrodt E (1994) Modelling possible impacts of river sediments on a watered meadow ecosystem. In: Peters A, Wittum G, Herrling B, Meissner U, Brebbria CA, Gray WG, Pinder GF (eds) Computational methods in water resources X, vol 2. Kluwer Acad Publ, Dordrecht, pp 1365–1372

    Google Scholar 

  • Van Almsick M, Dolhaine H, Honig H (2000) Efficient algorithms to enumerate isomers and diamutamers with more than one type of substituent. J Chem Inf Comp Sc 40: 956–966

    Article  Google Scholar 

  • Van de Waterbeemd H, El Tayar N, Carrupt PA, Testa B (1989) Pattern recognition study of QSAR substituent descriptors. J Comput-Aided Design 3: 111–132

    Article  Google Scholar 

  • Van Leeuwen CJE, Hermens JLM (1995) Risk assessment of chemicals: An introduction. Kluwer Academic Publishers, Dordrecht, pp 1–374

    Book  Google Scholar 

  • Van Leeuwen CJE, Van der Zandt PTJ, Aaldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSAR’s, extrapolation and equilibrium partitioning in aquatic effects assessment, 1: Narcotic industrial pollutants. Envir Tox Chem 11: 267–282

    Article  Google Scholar 

  • Van Mazijk IR (1987) Die Dispersion von Stoffen im Rhein und ihre Konsequenzen für die Gewässerschutzpolitik. Bericht von der 11. Arbeitstagung der Int Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet. NL 1005 AD Amsterdam, PF 8169, Amsterdam (s. Trapp u. Matthies 1998)

    Google Scholar 

  • Van Straalen NM, Denneman CAJ (1989) Exotoxicological evaluation of soil quality criteria. Ecotox Envir Safety 18: 241–251

    Article  Google Scholar 

  • Van Straalen NM, Loekke H (1997) Ecological risk assessment of contaminants in soil, 1st edn. Chapman & Hall

    Google Scholar 

  • Verhaar HJM (1995) Predictive methods in aquatic toxicology. Dissertation Utrecht, pp 1–173

    Google Scholar 

  • Verhaar HJM, Van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants, 1: Structureactivity relationships for prediction of aquatic toxicity. Chemosphere 25(4): 471–491

    Article  Google Scholar 

  • Verhaar HJM, Eriksson L, Sjöström M, Schuurmann G, Seinen W, Hermens JLM (1994) Modelling the toxicity of organophosphates: A comparison of the multiple linear regression and PLS regression methods. Quant Struct-Act Relat 13: 133–143

    Google Scholar 

  • Verhaar HJM, Van Leeuwen CJ, Bol J, Hermens JLM (1994) Application of QSARs in risk management of existing chemicals. SAR and QSAR Environ Res 2: 3–58

    Google Scholar 

  • Verhaar HJM, Rorije E, Borkent H, Hermens JLM (1996) Modeling the nucleophilic reactivity of small organochlorine electrophiles: A mechanistically based quantitative structure-activity relationship. Envir Tox Chem 15: 1011–1018

    Google Scholar 

  • Vogt F, Wille R (1995) TOSCANA — A graphical tool for analyzing and exploring data. In: Tamassia R, Tollis IG (eds) Graph drawing. Springer-Verlag, Berlin, pp 226–233

    Google Scholar 

  • Voigt K (1997) Erstellung von Metadatenbanken zu Umweltchemikalien und vergleichende Bewertung von Online Datenbanken und CD-ROMs. Shaker Verlag, Aachen, S 1–209

    Google Scholar 

  • Voigt K, Gasteiger J, Brüggemann R (2000) Comparative evaluation of chemical and environmental online and CD-Rom databases. J Chem Inf Comp Sci 40: 44–49

    Article  Google Scholar 

  • Volkwein S, Gihr R, Klöpffer W (1996) The valuation step within LCA, Part II: A formalized method of prioritization by expert panels. Int J LCA 1: 182–192

    Article  Google Scholar 

  • Volkwein S, Hurtig HW, Klöpffer W (1999) Life cycle assessment of contaminated sites remediation. Int J LCA 4(5): 263–274

    Article  Google Scholar 

  • Wagenet RJ, Hutson JL (1987) LEACHM — Leaching estimation and chemistry, Model Version 1. Cornell Univ Centre for Environmental Res, 468 Hollister Hall, Cornell Univ, Ithaca, NY 14853 USA (EDV-Programm)

    Google Scholar 

  • Walley J, Fontama VN (1998) Neural network predictors of average score per taxon and numbers of families at unpolluted river sites in Great Britain. Water Res 32: 613–622

    Article  Google Scholar 

  • Walz R(1997) Grundlagen für ein nationales Umweltindikatorensystem: Weiterentwicklung von Indikatorensystemen für die Umweltberichterstattung. Texte Umweltbundesamt 37/97, S 1–470

    Google Scholar 

  • Watts DJ (1999) Small worlds — The dynamics of networks between order and randomness. Princeton Univ Press, Princeton, pp 1–262

    Google Scholar 

  • Weber K (1993) Mehrkriterielle Entscheidungen. Oldenbourg Verlag, München, S 1–218

    Google Scholar 

  • Wessolek G, Gäth S (1989) Integration der Wurzellangendichte in Wasserhaushalts-und Kaliumanlieferungsmodellen. Kali-Briefe 19: 491–503

    Google Scholar 

  • Westrich B (1988) Fluvialer Feststofftransport — Auswirkung auf die Morphologie und Bedeutung für die Gewässergüte. Oldenbourg Verlag, München, S 1–173

    Google Scholar 

  • Wilhelm T, Brüggemann R (2001) Information theoretic measures for the maturity of ecosystems. In: Matthies M, Malchow H, Kriz J (eds) Integrative systems approaches to natural and social dynamics. Springer-Verlag, Berlin pp 263–273

    Chapter  Google Scholar 

  • Wissel C (1989) Theoretische Ökologie — Eine Einführung. Springer-Verlag, Berlin, pp 1–299

    Book  Google Scholar 

  • Wohlgemuth V, Page B, Meyer U, Möller A, Rolf A, Schmidt M (1997) Computer based support for LCA’s and company ecobalances using material flow networks. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schüürmann G, Voigt K (eds) Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 179–191

    Google Scholar 

  • Yalkowsky SH (1979) Estimation of entropies of fusion of organic compounds. Ind Eng Chem Fundam 18: 108–111

    Article  Google Scholar 

  • Zachmann HG (1972) Mathematik für Chemiker. Verlag Chemie, Weinheim, Bergstr. S 1–593

    Google Scholar 

  • Zanke UCE (1982) Grundlagen der Sedimentbewegung. Springer-Verlag, Berlin, S 1–402

    Book  Google Scholar 

  • Zanke UCE (1994) Ein numerisches Modell für bewegliche Sohle. Wasser und Boden 12: 28–34

    Google Scholar 

  • Zanke UCE (1999) Analytische Lösung für den Geschiebebetrieb. Wasser und Boden 51(6): 46–52

    Google Scholar 

  • Zefirov NS, Baskin II, Palyulin VA (1994) SYMBEQ program and its application in computer-assisted reaction design. J Chem Inf Comp Sci 34: 994–999

    Article  Google Scholar 

  • Zeleznik FJ, Gordon S (1968) Calculation of complex chemical equilibria. Industrial and Engineering Chem 60: 27–57

    Article  Google Scholar 

Nützliche Literaturstellen für vertiefende Studien

  • Faires ID, Burden RL (1994) Numerische Methoden: Näherungsverfahren und ihre praktische Anwendung. Spektrum Adademischer Verlag, Heidelberg, S 1–630

    Google Scholar 

  • Altschuh J, Brüggemann R (1992) Limitations on the calculation of physicochemical properties. In: Calamari D (ed) Chemical exposure predictions. Lewis Publ., Boca Raton, pp 1–11

    Google Scholar 

  • Altschuh J, Brüggemann R (1993) Estimation of aqueous solubility from boiling point. In: Wermuth CG (ed) Trends in QSAR and molecular modelling. ESCOM Science Publ., Leiden, pp 381–383

    Chapter  Google Scholar 

  • Balaban AT (1979) Chemical graphs, XXXIV: Five new topological indices for the branching of treelike graphs. Theor Chim Acta 53: 355–375

    Article  Google Scholar 

  • Balaban AT, Catana C (1994) New topological indices for substituents (molecular fragments). SAR and QSAR Environ Res 2: 1–16

    Article  Google Scholar 

  • Balaban AT, Mills D, Basak SC (2002) Alkane ordering as a criterion for similarity between topological indices: Index J as a „sharpened Wiener Index“. Match 45: 5–26

    Google Scholar 

  • Basak SC, Grunwald GD (1995) Molecular similarity and estimation of molecular properties. J Chem Inf Com Sci 35: 366–372

    Article  Google Scholar 

  • Basak SC, Grunwald GD (1995) Tolerance space and molecular similarity. SAR and QSAR Environ Res 3: 265–277

    Article  Google Scholar 

  • Basak SC, Gute BD, Drewes LR (1996) Predicting blood-brain transport of drugs: A computation approach. Pharmaceutical Res 13(5): 775–778

    Article  Google Scholar 

  • Basak SC, Grunwald GD, Niemi GJ (1997) Use of graph-theoretic and geometrical molecular descriptors in structure-activity relationships. In: Balaban AT (ed) From chemical topology to three-dimensional geometry. Plenum Press, New York, pp 73–116

    Google Scholar 

  • Gutman I, Hou Y (2001) Bipartite unicyclic graphs with greatest energy. Match 43: 17–28

    Google Scholar 

  • Gutman I, Klavzar S, Petkovsek M, Zigert P (2001) On Hosoya polynomials of benzenoid graphs. Match 43: 49–66

    Google Scholar 

  • Hansch C (1991) New perspectives in QSAR. In: Silipo C, Vittoria A (eds) Rational approaches to the design of bioactive compounds. Elsevier, Amsterdam, pp 3–10

    Google Scholar 

  • Hansch C, Hoekman D, Leo A, Zhang SL, Li P (1995) The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicology Letters 79: 45–53

    Article  Google Scholar 

  • Hosoya H (1975) Sextett polynomial: A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Letters 52: 4659–4662

    Article  Google Scholar 

  • Kier LB, Hall LH (1991) A differential molecular connectivity index. Quant Struct Act Relat 10: 134–140

    Article  Google Scholar 

  • Kubinyi H (1976) Quantitative structure-activity relationships, 2: A mixed approach, based on Hansch and free Wilson analysis. J Med Chem 19(5): 587–600

    Article  Google Scholar 

  • Mackay D, Shiu WY (1984) Relationships between physical-chemical and environmental partitioning coefficients. In: Kaiser KLE (ed) QSAR in Environmental toxicology. D. Reidel Publ., Dordrecht, pp 261–275

    Chapter  Google Scholar 

  • Sabljic A (1984) Calculation of retention indices by molecular topology: Chlorinated alkanes. J Chromat 314: 1–12

    Article  Google Scholar 

  • Sabljic A (1984) Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. J Agric Food Chem 32: 243–246

    Article  Google Scholar 

  • Sabljic A (1985) Calculation of retention indices by molecular topology: Chlorinated benzenes. J Chromat 319: 1–8

    Article  Google Scholar 

  • Schüürmann G (1990) Quantitative structure-property relationships for the polarizability, solvatochromatic parameters and lipophilicity. Quant Struct-Act Relat 9: 326–333

    Article  Google Scholar 

  • Schüürmann G, Rothenbacher C (1992) Evaluation of estimation methods for the air-water partition coefficients. Fresenius Envir Bull 1: 10–15

    Google Scholar 

  • Sixt S, Altschuh J (1997) Prediction of luminescent bacteria toxicity using quantum chemical descriptors: Test of a classification scheme. In: Chen F, Schüürmann G (eds) Quantitative structure-activity relationships in environmental sciences. SETAC Press, Pensacola FL, pp 343–362

    Google Scholar 

  • Sixt S, Altschuh J, Brüggemann R (1996a) Abschätzung von Toxizitätsdaten mit Hilfe von quantenchemischen Prediktoren. In: Hartmann A, Brüggemann R (Hrsg) Beiträge zur Ökotoxikologie. Proceedings des GSF-Workshops vom 10.11.95, GSF-Bericht 12/96: 76–87

    Google Scholar 

  • Sixt S, Altschuh J, Brüggemann R (1996b): Prediction of pKa for organic oxyacids using semiempirical quantum chemical methods. In: Gasteiger J (Hrsg) Software-Entwicklung in der Chemie 10: 147–153, Frankfurt: Gesellschaft Deutscher Chemiker

    Google Scholar 

  • Vaes WHJ, Ramos EU, Verhaar HJM, Hermens JLM (1998) Acute toxicity of nonpolar versus polar narcosis: Is there a difference? Envir Tox Chem 17: 1380–1384

    Article  Google Scholar 

  • Verhaar HJM, Morroni JR, Reardon KF, Hays SM, Gaver JrDP, Carpenter RL, Yang RSH (1997) A proposed approach to study the toxicology of complex mixtures of petroleum products: The integrated use of QSAR, lumping analysis and Pbpk/pd modeling. Environ Health Perspectives 105, Suppl 1: 179–195

    Article  Google Scholar 

  • Behrendt H, Altschuh J, Sixt S, Gasteiger J, Kostka T (1997) Model calculations to assess the fate of triazines and their metabolites in soil-plant-systems. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schüürmann G, Voigt K (eds) ECO-INFORMA 97: Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 559–565

    Google Scholar 

  • Behrendt H, Altschuh J, Sixt S, Gasteiger J, Höllering R, Kostka T (1999) A unified approach to exposure assessment by computer models for degradation reactions and soil accumulation: The triazine herbicide example. Chemosphere 38(8): 1811–1823

    Article  Google Scholar 

  • Benedict BA (1981) Modeling of toxic spills into waterways. In: Saxena J, Fisher F (eds) Hazard assessment of chemicals — Current developments, Vol I. Acad Press, New York, pp 251–301

    Google Scholar 

  • Brüggemann R (1986) Mackays Fugazitätsmodell mit Level I bis IV — Parameter, Kompartimentalisierung, Sensitivität. GSF-Bericht 43/86, S 1–124 (ISSN 0721-1694)

    Google Scholar 

  • Brüggemann R (1989a) RLTEC, release from technosphere. In: Compendium of environmental exposure assessment methods for chemicals. OECD Environment Monographs 27: 28–31

    Google Scholar 

  • Brüggemann R (1989b) EXWAT, exposure of surface water bodies. In: Compendium of environmental exposure assessment methods for chemicals. OECD Environment Monographs 27: 97

    Google Scholar 

  • Brüggemann R, Münzer B (1987) EXWAT, Multikompartment-Modell für den Transport von Stoffen in Oberflächengewässern. GSF-Bericht 33/87

    Google Scholar 

  • Bungartz H, Shteinman BS, Thiele M, Parparov A (2000) Modelling of flow and suspended sediment transport in the Jordan river. Arch Hydrobio Spec Issues Advanc Limnol 55: 283–299

    Google Scholar 

  • Engelhardt C, Krüger A (1998) Stoffrückhalt auf Polderflächen während des Oder-Hochwassers 1997. Wasser & Boden 49/12: 14–27

    Google Scholar 

  • Engelhardt C, Prochnow D, Bungartz H (1995) Modeling and simulation of sedimentation processes in a lowland river. Mathematics and Computers in Simulation 39: 627–633

    Article  Google Scholar 

  • Mackay D, Yeun TK (1991) Volatilization rates of organic contaminants from rivers. Wat Poll Res J, Canada 15: 83–98

    Google Scholar 

  • Scheil S, Baumgarten G, Reiter B, Schwartz S, Wagner JO, Matthies M, Trapp S (1994) CEMOS — Eine objekt-orientierte Software zur Expositionsmodellierung. In: Totsche K, Matthies M, Strutzenberger F, Tepek W, Klöpffer W, Czedik-Eysemberg P, Meinholz H, Fiedler H, Alef K, Hutzinger O (Hrsg) Ökobilanzen, Produktlinienanalysen, Öko-Audit, UVP, Integrierter Umweltschutz, Modellierung und Risikoabschätzung, Ökometrie. UBA Wien, Wien Bd 7, S 391–404

    Google Scholar 

  • Scheringer M, Berg M (1994) Spatial and temporal range as measures of environmental threat. Fresenius Envir Bull 3: 493–498

    Google Scholar 

  • Scheringer M, Steinbach D, Escher B, Hungerbühler K (2002) Probabilistic approaches in the effect assessment of toxic chemicals — what are the benfits and limitations? ESPR-Environ Sci & Pollut Res 9: 307–314

    Article  Google Scholar 

  • Büssenschütt M, Pahl-Wostl C (1997) Temporal self-organization in generic ecosystem models. In: Self-organization of complex structures — From individual to collective dynamics. Gordon and Breach Sci Publ, Chapter 25, pp 307–318

    Google Scholar 

  • Gnauck A, Matthäus E, Straskraba M, Affa L (1990) The use of SONCHES for aquatic ecosystem modelling. Syst Anal Model Simul 7: 439–458

    Google Scholar 

  • Johst K, Brandl R, Pfeifer R (2001) Foraging in patchy and dynamic landscape: Human and land use and the white stork. Ecol Appl. 11: 60–69

    Article  Google Scholar 

  • Perez-Espana H, Arreguin Sanchez F (2001) An inverse relationship between stability and maturity in models of aquatic ecosystems. Ecol Mod 145: 189–196

    Article  Google Scholar 

  • Wilhelm T, Brüggemann R (2000) Goal functions for the development of natural systems. Ecol Mod 132: 231–246

    Article  Google Scholar 

  • Berger T (2000) Agentenbasierte räumliche Simulationsmodelle in der Landwirtschaft — Anwendungsmöglichkeiten zur Bewertung von Diffusionsprozessen, Ressourcennutzung und Politikoptionen. Agrarwirtschaft 168(Sdh.): 1–176

    Google Scholar 

  • Brüggemann R, Voigt K (1996) Stability of comparative evaluation — Example: Environmental databases. Chemosphere 33: 1997–2006

    Article  Google Scholar 

  • Brüggemann R, Altschuh J, Behrendt H, Nützmann G, Sixt S (2002) Priority setting applying concepts of the theory of partially ordered sets: Results from exposure models as an example. In: Gnauck A (Hrsg) Systemtheorie und Modellierung von Ökosystemen. Physica-Verlag, Heidelberg, pp 124–135

    Chapter  Google Scholar 

  • Emrich A (1997) Wassergefährdende Stoffe; Ein Leitfaden durch die Rechtsvorschriften, 1. Aufl. Berlin: BIFAU e.V.

    Google Scholar 

  • Gershon M, Duckstein L, McAniff R (2001) Multiobjective river basin planning with qualitative criteria. Wat Resource Res 18: 193–202

    Article  Google Scholar 

  • Klein J, Brüggemann R, Voigt K, Steinberg C (1995) Advances in comparative analysis of adverse effects in aquatic ecosystems with emphasis on studies with humic substances and on progress in mathematical analysis techniques. Wat Res 29: 2261–2268

    Article  Google Scholar 

  • Kümmerer K (1997) Die Bedeutung der Zeit, Teil I: Die Vernachlässigung der Zeit in den Umweltwissenschaften; Beispiele — Folgen — Perspektiven. UWSF-Z Umweltchem Ökotox 9: 49–54

    Article  Google Scholar 

  • Mackay D (1997) The role of mass balance modelling in environmental regulation and monitoring of chemicals. In: Alef K, Brandt J, Fiedler H, Hauthal W, Hutzinger O, Mackay D, Matthies M, Morgan K, Newland L, Robitaille H, Schlummer M, Schuurmann G, Voigt K (eds) ECO-INFORMA 97: Information and communication in environmental and health issues. ECO-INFORMA Press, Bayreuth, pp 500–508

    Google Scholar 

  • Neumann HG (1998) Versuch einer toxikologischen Bewertung. Umweltmedizin in Forschung und Praxis 3: 234–234

    Google Scholar 

  • Pudenz S, Brüggemann R, Luther B (1998) Combination of fuzzy clustering and Hasse diagrams in comparative regional evaluation. In: Brüggemann R, Grell J, Pudenz S, Simon U (eds) Proceedings of the workshop on order theoretical tools in environmental sciences. Berichte des IGB, Heft 6, Sonderheft I, Berlin, pp 95–99

    Google Scholar 

  • Sørensen PB, Mogensen BB, Carlsen L, Thomsen M (1998) The role of uncertainty in Hasse diagram ranking. Proc Workshop on Order Theoretical Tools in Environmental Sciences. Ber IGB H 6(1), pp 71–84

    Google Scholar 

  • Steinhäuser KG (1996) Prüfung und Bewertung wassergefährdender Stoffe — Sachstand und Probleme. UWSF-Z Umweltchem Ökotox 8(1): 22–33

    Article  Google Scholar 

  • Steinhäuser KG, Amann W, Polenz A (1985) Bewertung des Wassergefährdungspotentials von Stoffen — Katalog wassergefährdender Stoffe. Vom Wasser 65: 119–126

    Google Scholar 

17.3 Empfehlenswerte Bücher

  • Atkins PW (1987) Physikalische Chemie. VCH Weinheim, S 1–890

    Google Scholar 

  • Baccini P, Bader HP (1996) Regionaler Stoffhaushalt; Erfassung, Bewertung und Steuerung. Spektrum Akademischer Verlag, Heidelberg, S 1–420

    Google Scholar 

  • Bacher J (1994) Clusteranalyse, anwendungsorientierte Einführung. R. Oldenbourg-Verlag, München, S 1–424

    Google Scholar 

  • Bartel HG (1996) Mathematische Methoden in der Chemie. Spektrum AkademischerVerlag, Oxford, S 1–353

    Google Scholar 

  • Baum EJ (1998) Chemical property estimation: Theory and application. Lewis Publishers, Boca Raton pp 1–386

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: Individuals, populations, and communities. Blackwell Science, Oxford, pp 3–1068

    Book  Google Scholar 

  • Beltrami E (1993) Von Krebsen und Kriminellen: MathematischeModelle in Biologie und Soziologie. Verlag Vieweg, Braunschweig, S 1–198

    Book  Google Scholar 

  • Berg E, Kuhlmann F (1993) Systemanalyse und Simulation für Agrarwissenschaftler und Biologen. Eugen Ulmer, Stuttgart-Hohenheim, S 1–344

    Google Scholar 

  • Bock HH (1974) Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttingen, S 6–480

    Google Scholar 

  • Danzer K, Hobert H, Fischbacher C, Jagemann KU (2001) Chemometrik — Grundlagen und Anwendungen. Springer-Verlag, Berlin, S 1–405

    Google Scholar 

  • Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge, pp 1–248

    Google Scholar 

  • Dyck S, Peschke G (1983) Grundlagen derHydrologie. Ernst & Sohn, Verlag für Architektur und technische Wissenschaften, Berlin, S 1–388

    Google Scholar 

  • Eckes T, Rossbach H (1980) Clusteranalysen. Verlag W. Kohlhammer, Frankfurt/Main, S 1–124

    Google Scholar 

  • Fent K (1998) Ökotoxikologie: Umweltchemie — Toxikologie — Ökologie. G. Thieme Verlag, Stuttgart, S 1–288

    Google Scholar 

  • Ganter B, Wille R (1996) Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag, Berlin, S 1–286

    Book  Google Scholar 

  • Gerhardt M, Schuster H (1995) Das digitale Universum — Zelluläre Automaten als Modelle der Natur. F.Vieweg & Sohn, Braunschweig, S 1–320

    Book  Google Scholar 

  • Gmehling J, Kolbe B (1988) Thermodynamik. G. Thieme Verlag, Stuttgart, S 1–288

    Google Scholar 

  • Harary F (1974) Graphentheorie. R. Oldenbourg-Verlag, München, S 11–279

    Google Scholar 

  • Hartung J, Elpelt B (1992) Multivariate Statistik, Lehr-und Handbuch der angewandten Statistik. R. Oldenbourg Verlag, München, S 1–815

    Google Scholar 

  • Heinrich R, Brüggemann R, Ertl C, Möller K, Müller M, Pudenz S, Simon U, Weigert B, Wittwer C (2001) Leitfaden Wasser — Nachhaltige Wasserwirtschaft; Ein Weg zur Entscheidungsfindung. Wasserforschung e. V., Berlin, S 1–26

    Google Scholar 

  • Henrion R, Henrion G (1994) Multivariate Datenanalyse — Methodik und Anwendung in der Chemie und verwandten Gebieten. Springer-Verlag, Berlin, S 1–261

    Google Scholar 

  • Holzbecher E (1996) Modellierung dynamischer Prozesse in der Hydrologie: Grundwasser und ungesättigte Zone. Springer-Verlag, Berlin, S 1–211

    Google Scholar 

  • Horsch H, Ring I, Herzog F (2001) Nachhaltige Wasserbewirtschaftung und Landnutzung — Methoden und Instrumente der Entscheidungsfindung und-umsetzung. Metropolis-Verlag, Marburg, S 1–488

    Google Scholar 

  • Ihringer T (1994) Diskrete Mathematik. Teubner-Verlag, Stuttgart, S 1–252

    Book  Google Scholar 

  • Kinzelbach W (1992) Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser. Oldenbourg-Verlag, München, S 1–343

    Google Scholar 

  • Kubinyi H (1993) QSAR: Hansch analysis and related approaches, vol. 1: Methods and principles in medicinal chemistry. VCH-Verlagsgesellschaft, Weinheim, pp 1–240

    Book  Google Scholar 

  • Levenspiel O (1972) Chemical reaction engineering. John Wiley & Sons, New York, pp 1–578

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley-Interscience Publication, New York, pp 1–449

    Google Scholar 

  • Lyman, WJ, Reehl WF, Rosenblatt DH (1982) Handbook of chemical property estimation methods: Environmental behavior of organic compounds. McGraw-Hill Book Company, New York, pp 1–863

    Google Scholar 

  • Mackay D (1991) Multimedia environmental models — The fugacity approach. Lewis Publisher

    Google Scholar 

  • Mucha HJ (1992) Clusteranalyse mit Mikrocomputern. Akademie-Verlag, Berlin, S 1–206

    Google Scholar 

  • Pahl-Wostl C (1995) The dynamic nature of ecosystems — Chaos and order entwined. John Wiley & Sons, Chichester, pp 1–267

    Google Scholar 

  • Parlar H, Angerhöfer D (1991). Chemische Ökotoxikologie. Springer-Verlag, Berlin, S 1–384

    Google Scholar 

  • Pimm SL (1991) The balance of nature? Ecological issues in the conservation of species and communities. The University of Chicago Press, Chicago, pp 1–434

    Google Scholar 

  • Precht M (1987) Bio-Statistik: Eine Einführung für Studierende der biologischenWissenschaften. R. Oldenbourg Verlag, Munchen, S 5–359

    Google Scholar 

  • Richter O (1985) Simulation des Verhaltens ökologischer Systeme — Mathematische Methoden und Modelle. VCH-Verlagsgesellschaft, Weinheim, S 1–219

    Google Scholar 

  • Richter O, Söndgerath D (1990) Parameter estimation in ecology — The link between data and models. VCH-Verlagsgesellschaft, Weinheim, pp 1–218

    Google Scholar 

  • Richter O, Diekkrüger B, Nörtersheuser P (1996) Environmental fate modeling of pesticides. VCH, Weinheim, pp 1–281

    Book  Google Scholar 

  • Sachs L (1992) Angewandte Statistik. Springer-Verlag, Berlin, S 1–846

    Book  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London, pp 1–357

    Google Scholar 

  • Schneeweiss C (1991) Planung 1 — Systemanalytische und entscheidungstheoretische Grundlagen. Springer-Verlag, Berlin, S 1–389

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. John Wiley & Sons, New York, pp 1–681

    Google Scholar 

  • Seydel R (1994) Practical bifurcation and stability analysis: From equilibrium to chaos. Springer-Verlag, Berlin, pp 1–405

    Google Scholar 

  • Sørensen PB, Carlsen L, Mogensen BB, Brüggemann R, Luther B, Pudenz S, Simon U, Halfon E, Bittner T, Voigt K, Welzl G, Rediske F (2000) Order theoretical tools in environmental sciences. Proceedings of the Second Workshop October 21st, 1999 in Roskilde, Denmark. National Environmental Research Institute, Roskilde, pp 1–172 (Der Text kann über das Internet heruntergeladen werden: http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporterfr318.pdf)

    Google Scholar 

  • Steinberg C, Brüggemann R, Kümmerer K, Liess M, Pflugmacher S, Zauke GP (2001) Stress in limnischen Ökosystemen. Parey Buchverlag, Berlin, S 1–276

    Google Scholar 

  • Stoyan D, Stoyan H, Jansen U (1997) Umweltstatistik: Statistische Verarbeitung und Analyse von Umweltdaten. B. G. Teubner Verlagsges., Stuttgart, S 5–348

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons, New York, pp 1–780

    Google Scholar 

  • Trapp S, Matthies M (1998) Chemodynamics and environmental modeling: An introduction. Springer-Verlag, Berlin, pp 1–285

    Book  Google Scholar 

  • Ulanowicz RE (1997) Ecology, the ascendant perspective. Columbia University Press, New York, pp 1–201

    Google Scholar 

  • Van Leeuwen CJE, Hermens JLM (1995) Risk assessment of chemicals: An introduction. Kluwer Academic Publishers, Dordrecht, pp 1–374

    Book  Google Scholar 

  • Westrich B (1988) Fluvialer Feststofftransport — Auswirkung auf die Morphologie und Bedeutung für die Gewässergute. R. Oldenbourg Verlag, München, S 1–173

    Google Scholar 

  • Wissel C (1989) Theoretische Ökologie — Eine Einführung. Springer-Verlag, Berlin, S 1–299

    Book  Google Scholar 

  • Zachmann HG (1972) Mathematik für Chemiker. Verlag Chemie, Weinheim, S 1–593

    Google Scholar 

  • Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH, Weinheim, pp 3–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brüggemann, R., Drescher-Kaden, U. (2003). Literatur. In: Einführung in die modellgestützte Bewertung von Umweltchemikalien. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55695-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55695-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62926-6

  • Online ISBN: 978-3-642-55695-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics