Skip to main content

Literaturverzeichnis

  • Chapter
Biotenside

Part of the book series: Chemie in der Praxis ((CIP))

  • 177 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Abu-Ruwaida AS, Banat IM, Haditirto S, Salem A & Kadri M (1991) Isolation of biosurfactant-producing bacteria: product characterization, and evaluation. Acta Biotechnol 11:315–324

    Article  CAS  Google Scholar 

  • Aha B, Berger M, Haase B, Hermann J, Keil O, Machmüller G, Müller S, Waldinger C & Schneider M (1997a) Tenside aus nachwachsenden Rohstoffen. In: Nachwachsende Rohstoffe — Perspektiven für die Chemie, Tagungsband, (pp 66–78), Hrsg. Deutsches Bundesministerium für Ernährung, Landwirtschaft und Forsten, Köllen Druck, Bonn

    Google Scholar 

  • Aha B, Berger M, Haase B, Hermann J, Keil O, Machmüller G, Müller S, Waldinger C & Schneider M (1997b) Tenside aus nachwachsenden Rohstoffen. In: Chemie nachwachsender Rohstoffe, Tagungsband, Hrsg. 1621Österr. Bundesministerium für Umwelt, Jugend und Familie (pp 206–210), Radinger, Scheibbs

    Google Scholar 

  • Akoh CC & Mutua LN (1994) Synthesis of alkyl glycoside fatty acid esters: effect of reaction parameters and the incorporation of n-3 polyunsaturated fatty acids. Enzyme Microb Technol 16: 115–119

    Article  CAS  Google Scholar 

  • Albrecht A, Rau U & Wagner F (1996) Initial steps of sophoroselipid biosynthesis by Candida bombicola ATCC 22214 grown on glucose. Appl Microbiol Biotechnol 46: 67–73

    Article  CAS  Google Scholar 

  • Alugupalli S, Portaels F & Larsson L (1994) Systematic study of the 3-hydroxy fatty acid composition of Mycobacteria. J Bacteriol 176: 2962–2969

    CAS  Google Scholar 

  • Amato S, Vanik J & Kocka FE (1980) Identification of Pseudomonas aeruginosa with the API-20E system. Can J Microbiol 26: 554–555

    Article  CAS  Google Scholar 

  • Ampon K, Salleh AB, Teoh A, Yunus W, Razak WMZ & Basri M (1991) Sugar esterification catalysed by alkylated trypsin in dimethylformamide. Biotechn Lett 13:25–30

    Article  CAS  Google Scholar 

  • Andresen O & Kirk O (1995) Fatty acid esters of ethyl glucoside, a unique class of surfactants. In: Carbohydrate Bioengineering, in: Progress in Biotechnology, Proceedings, Vol.10 (pp 343–349), Petersen SB, Svensson B & Pedersen S (eds), Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo

    Google Scholar 

  • Arima K, Kakinuma A & Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and inhibition of fibrin clot formation. Biochem Biophys Res Commun 31: 488–494

    Article  CAS  Google Scholar 

  • Arino S, Marchai R & Vandecasteele J-P (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45: 162–168

    Article  CAS  Google Scholar 

  • Aronstein BN, Calvillo YM & Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25: 1728–1731

    Article  CAS  Google Scholar 

  • Aronstein BN & Alexander M (1993) Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Appl Microbiol Biotechnol 39: 386–390

    Article  CAS  Google Scholar 

  • Asbell MA & Eagon RG (1966) The role of multivalent cations in the organization and structure of bacterial cell walls. Biochem Biophys Res Commun 22: 664–671

    Article  CAS  Google Scholar 

  • Asmer H-J, Lang S, Wagner F & Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65: 1460–1466

    Article  CAS  Google Scholar 

  • Asmer H-J (1991) Trehaloselipid-Bildung: Untersuchungen zur Substratspezifität und biochemischen Acylierung von Trehalose durch das marine Bakterium Arthrobacter spec. EK1. Dissertation TU Braunschweig

    Google Scholar 

  • Asmer H-J, Göbbert U, Kleppe F, Multzsch R, Schmeichel A, Steffen B, Lang S & Wagner F (1992) Selektive Veresterung von Fettsäuren mit Kohlenhydraten zu Glykolipiden. In: BMFT-Forschungsverbundvorhaben „Neue Einsatzmöglichkeiten nativer Öle und Fette als Chemierohstoffe“, Tagungsband (pp 34–54), Hrsg. Forschungszentrum Jülich GmbH, WEKA, Linnich

    Google Scholar 

  • Asselineau C & Asselineau J (1978) Trehalose-containing glycolipids. In: Progress in the chemistry of fats and other lipids, Vol 16 (pp 59–99), Pergamon Press

    Google Scholar 

  • Atlas RM & Bartha R (1992) Hydrocarbon Biodegradation and oil-spill bioremediation. Adv Microbiol Ecol 12: 287–338

    CAS  Google Scholar 

  • Atlas RM (1993) Bacteria and bioremediation of marine oil-spills. Oceanus 36: 71–81

    Google Scholar 

  • Aulmann W & Sterzel W (1997) Toxicology of alkyl polyglycosides. In: Hill K, Rybinski W v & Stoll G (eds) Alkyl Polyglycosides (pp 151–167). VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Azuma M, Sazaki K, Nishikawa Y, Takahashi T, Shimoda A, Suzutani T, Yoshida I, Sakuma T & Nakaya K (1988) Correlation between augmented resistance to influenza virus infection and histological changes in lung of mice treated with trehalose-6,6′-dimycolate. J Biol Response Mod 7: 473–482

    CAS  Google Scholar 

  • Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A & Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett 18: 263–268

    CAS  Google Scholar 

  • Baer HH & Wu X (1993) Synthesis of α,α-trehalose 2,3- and 2,3’-diesters with palmitic and stearic acid: potential immunoreactants for the serodiagnosis of tuberculosis. Carbohydr Res 238: 215–230

    Article  CAS  Google Scholar 

  • Bagi K & Simon LM (1999) Comparison of esterification and transesterification of fructose by porcine pancreas lipase immobilized on different supports. Biotechnol Techn 13: 309–312

    Article  CAS  Google Scholar 

  • Bai G, Brusseau ML & Miller RM (1997a) Influence of a rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl Environ Microbiol 63: 1866–1873

    CAS  Google Scholar 

  • Bai G, Brusseau ML & Miller RM (1997b) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Contaminant Hydrol 25: 157–170

    Article  CAS  Google Scholar 

  • Banat IM, Samarah N, Murad M, Horne R & Banerjee S (1991) Biosurfactant production and use in oil tank clean-up. World J Microbiol Biotechnol 7: 80–88

    Article  CAS  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15: 591–594

    Article  CAS  Google Scholar 

  • Banat IM (1995) Characterization of biosurfactants and their use in pollution removal — state of the art (review). Acta Biotechnol 15: 251–267

    Article  CAS  Google Scholar 

  • Banat IM, Makka, RS & Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53: 495–508

    Article  CAS  Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29: 179–208

    Article  CAS  Google Scholar 

  • Bar-Ness R, Avrahamy T, Matsuyama T & Rosenberg M (1988) Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol 170: 4361–4364

    CAS  Google Scholar 

  • Barnes EM, Swindell AC & Wakil SJ (1970) Purifications and properties of a palmityl thioesterase II from E. coli. J Biol Chem 245: 3122–3128

    CAS  Google Scholar 

  • Basse CW, Lottspeich F, Steglich W & Kahmann R (1996) Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur J Biochem 242: 648–656

    Article  CAS  Google Scholar 

  • Batrakov SG, Rozynov BV, Koronelli TV & Bergelson LD (1981) Two novel types of trehalose lipids. Chem Phys Lipids 29: 241–266

    Article  CAS  Google Scholar 

  • Beal R & Betts W B (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89: 158–168

    Article  CAS  Google Scholar 

  • Beecher JE, Andrews AT, Vulfson EN (1990) Glycosidases in organic solvents: II. Transgalactosylation by polyethylene glycol-modified β-galactosidase. Enzyme Microbial Technol 12: 955–959

    Article  CAS  Google Scholar 

  • Behlulgil K, Mehmetoglu T & Donmez S (1992) Application of microbial enhanced oil recovery technique to a Turkish heavy oil. Appl Microbiol Biotechnol 36: 833–835

    Article  CAS  Google Scholar 

  • Beilstein, Handbuch der Organischen Chemie (1977) 4. Ergänzungswerk, 3. Band, pp 873–874, pp 893–894, Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Bendinger B, Rijnaarts HHM, Altendorf K & Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59: 3973–3977

    CAS  Google Scholar 

  • Benning C, Huang Z-H & Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317: 103–111

    Article  CAS  Google Scholar 

  • Berger M, Machmüller G, Waldinger C & Schneider M (1998) Enzymatische Synthesen von Partialglyceriden und Zuckerestern. In: Biokonversion nachwachsender Rohstoffe.

    Google Scholar 

  • Berger M, Machmüller G, Waldinger C & Schneider M (1998) Enzymatische Synthesen von Partialglyceriden und Zuckerestern. In: Schriftenreihe Nachwachsende Rohstoffe (1621Fachagentur Nachwachsende Rohstoffe e.V., ed.) Vol. 10: 139–153. Münster, Germany: Landwirtschaftsverlag

    Google Scholar 

  • Bergström S, Theorell H & Davide H (1946) On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Myobact. tuberculosis. Ark Kem Mineralog Geolog 23A: 1–12

    Google Scholar 

  • Bernheimer AW & Avigad LS (1970) Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol 61: 361–369

    CAS  Google Scholar 

  • Bertrand J-C, Bonin P, Goutx M, Gauthier M & Mille G (1994) The potential application of biosurfactants in combatting hydrocarbon pollution in marine environments. Res Microbiol 145: 53–56

    Article  CAS  Google Scholar 

  • Besra GS, Khoo K-H, Belisle JT, McNeil MR, Morris HR, Dell A & Brennan PJ (1994) New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria. Carbohydr Res 251: 99–114

    Article  CAS  Google Scholar 

  • Besson F (1994) Characterization of the surfactin synthetase isolated from the Bacillus subtilis strain producing iturin. Biotechnol Lett 16: 1269–1274

    CAS  Google Scholar 

  • Betts KS (1997) Biosurfactants remove metals from soil. Environ Sci Technol 31: 547 A

    Google Scholar 

  • Bevinakatti HS & Mishra BK (1999) Sugar derived surfactants. Iin: Design and selection of performance surfactants (Karsa DR; ed.), in: Annual Surfactants Review (Karsa DR, Bognolo G, Callaghan IC, Harwell JH & Tsushima R; eds.). Vol. 2: 1–50, Sheffield, UK: Sheffield Academic Press

    Google Scholar 

  • Bhattacharjee SS, Haskins RH & Gorin PAJ (1970) Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydr Res 13: 235–246

    Article  CAS  Google Scholar 

  • Biermann M, Schmid K & Schulz P (1994) Alkylpolyglucoside — Technologie und Eigenschaften. Henkel — Referate 30: 7–15

    Google Scholar 

  • Bisht KS, Deng F, Gross RA, Kaplan DL & Swift G (1998) Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. J Am Chem Soc 120: 1363–1367

    Article  CAS  Google Scholar 

  • Björkling F, Godtfredsen SE & Kirk Ole (1989) A highly selective enzyme-catalysed esterification of simple glucosides. J Chem Soc Chem Commun 1989: 934–935

    Article  Google Scholar 

  • Bölker M, Urban M & Kahmann R (1992) The a mating type locus of U maydis specifies cell signaling components. Cell 68: 441–450

    Article  Google Scholar 

  • Boothroyd B, Thorn JA & Haskins RH (1956) Biochemistry of the ustilaginales, XII. Characterization of extracellular glycolipids produced by Ustilago sp.. Can J Biochem Physiol 34: 10–14

    Article  CAS  Google Scholar 

  • Botham PA & Ratledge C (1979) A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous microorganisms. J Gen Microbiol 114: 361–375

    CAS  Google Scholar 

  • Boulton CA & Ratledge C (1983) Use of transition studies in continuous culture of Lipomyces starkeyi, an oleaginous yeast, to investigate the physiology of lipid accumulation. J Gen Microbiol 129: 2871–2876

    CAS  Google Scholar 

  • Boulton CA & Ratledge C (1984) Cryptococcus terricolus, an oleaginous yeast reexamined. Appl Microbiol Biotechnol 20: 72–76

    Article  CAS  Google Scholar 

  • Bousquet M-P, Willemot RM & Monsan P (1998) Enzymatic synthesis of alkyl-α-glucoside catalysed by a thermostable α-transglucosidase in solvent-free organic medium. Appl Microbiol Biotechnol 50: 167–173

    Article  CAS  Google Scholar 

  • Brakemeier A, Lang S, Wullbrandt D, Merschel L, Benninghoven A, Buschmann N & Wagner F (1995) Novel sophorose lipids from microbial conversion of 2-alkanols. Biotechnol Lett 17: 1183–1188

    Article  CAS  Google Scholar 

  • Brakemeier A (1997) Mikrobielle Alkyl-Glycoside von Candida bombicola: Gewinnung, Strukturaufklärung und physiko-chemische Charakterisierung. Dissertation TU Braunschweig

    Google Scholar 

  • Brakemeier A, Wullbrandt D & Lang S (1998a) Microbial alkyl-sophorosides based on 1-dodecanol or 2-,3- and 4-dodecanones. Biotechnol Lett 20: 215–218

    Article  CAS  Google Scholar 

  • Brakemeier A, Wullbrandt D & Lang S (1998b) Candida bombicola: production of novel alkyl-glycosides based on glucose/2-dodecanol. Appl Microbiol Biotechnol 50: 161–166

    Article  CAS  Google Scholar 

  • Breithaupt TB & Light RJ (1982) Affinity chromatography and further characterization of the glucosyl-transferases involved in hydroxydocosanoic acid sophoroside production in Candida bogoriensis. J Biol Chem 257: 9622–9628

    CAS  Google Scholar 

  • Brennan JP, Lehane DP & Thomas DW (1970) Acylglucoses of the Corynebacteria and Mycobacteria. Eur J Biochem 13: 117–123

    Article  CAS  Google Scholar 

  • Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C & Wilkinson SG (eds) Microbial Lipids, Vol 1: 203–298, Academic Press, London, San Diego, New York, Berkeley, Boston, Sydney, Tokyo, Toronto

    Google Scholar 

  • Brown WA & Cooper DG (1991) Self-cycling fermentation applied to Acinetobacter calcoaceticus RAG-1. Appl Environ Microbiol 57: 2901–2906

    CAS  Google Scholar 

  • Bryant FO (1990) Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Appl Environ Microbiol 56: 1494–1496

    CAS  Google Scholar 

  • Bucholtz ML & Light RJ (1976a) Acetylation of 13-sophorosyloxydocosanoic acid by an acetyl-transferase purified from Candida bogoriensis. J Biol Chem 251: 424–430

    CAS  Google Scholar 

  • Bucholtz ML & Light RJ (1976b) Hydrolysis of 13-sophorosyloxydocosanoic acid esters by acetyl- and carboxylesterases isolated from Candida bogoriensis. J Biol Chem 251: 431–437

    CAS  Google Scholar 

  • Bunster L, Fokkema NJ & Schippers B, (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55: 1340–1345

    CAS  Google Scholar 

  • Burd G & Ward OP (1996a) Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can J Microbiol 42: 243–251

    Article  CAS  Google Scholar 

  • Burd G & Ward OP (1996b) Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: the role of biosurfactants. Biotechnol Tech 10: 371–374

    Article  CAS  Google Scholar 

  • Burd G & Ward OP (1997) Energy-dependent accumulation of particulate biosurfactant by Pseudomonas marginalis. Can J Microbiol 43: 391–394

    Article  CAS  Google Scholar 

  • Burger MM, Glaser L & Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238: 2595–2601

    CAS  Google Scholar 

  • Busscher HJ, Neu TR & van der Mei HC (1994) Biosurfactant production by thermophilic dairy streptococci. Appl Microbiol Biotechnol 41: 4–7

    Article  CAS  Google Scholar 

  • Busscher HJ, van der Kuijl-Booij M & van der Mei HC (1996) Biosurfactants from thermophilic dairy streptococci and their potential role in the fouling control of heat exchanger plates. J Ind Microbiol 16: 15–21

    Article  CAS  Google Scholar 

  • Cameotra SS & Singh HD (1990) Purification and characterization of alkane solubilizing factor produced by Pseudomonas PG-1. J Ferment Bioeng 69: 341–344

    Article  CAS  Google Scholar 

  • Cameron DR, Cooper DG & Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54: 1420–1425

    CAS  Google Scholar 

  • Cao L, Bornscheuer UT & Schmid RD (1996) Lipase-catalyzed solid phase synthesis of sugar esters. Fett/Lipid 98: 332–335

    Article  CAS  Google Scholar 

  • Cao L, Fischer A, Bornscheuer UT, Schmid RD (1997) Lipase-Catalyzed solid phase synthesis of sugar fatty acid esters. Biocatalysis and Biotransformation 14: 269–283

    Article  CAS  Google Scholar 

  • Carrea G, Riva S, Secundo F & Danielli B (1989) Enzymatic synthesis of various 1’-O-sucrose and 1’-O-fructose esters. J Chem Soc Perkin Trans 1057–1061

    Google Scholar 

  • Carreto L, Wait R, Nobre MF & Costa MS da (1996) Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus sp. J Bacteriol 178: 6479–6486

    CAS  Google Scholar 

  • Carrillo PG, Mardaraz C, Pitta-Alvarez SI & Giulietti AM (1996) Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12: 82–84

    Article  Google Scholar 

  • Casas JA & García-Ochoa F (1999) Sophorolipid Production by Candida bombicola: Medium Composition and Culture Methods. J Biosc Bioeng 88: 488–494

    Article  CAS  Google Scholar 

  • Casas JA, García de Lara S & García-Ochoa F (1997) Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme Microb Technol 21: 221–229

    Article  CAS  Google Scholar 

  • Chahid Z, Montet D, Pina M & Graille J (1992) Effect of water activity on enzymatic synthesis of alkylglycosides. Biotechnol Lett 14: 281–284

    Article  CAS  Google Scholar 

  • Chopineau J, McCafferty FD, Therisod M & Klibanov A M (1988) Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol Bioeng 31: 208–214

    Article  CAS  Google Scholar 

  • Chun J, Kang S-O, Hah YC & Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J Ind Microbiol 17: 205–213

    Article  CAS  Google Scholar 

  • Cirigliano MC & Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48: 747–750

    CAS  Google Scholar 

  • Cirigliano MC & Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50: 846–850

    CAS  Google Scholar 

  • Colaco C, Sen S, Thangavelu M, Pinder S & Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Bio/Technol 10: 1007–1011

    Article  CAS  Google Scholar 

  • Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, Nishino H, Nagatsu A & Sakakibara J (1996) 1-O-, 2-O- and 3-O-β-Glycosyl-sn-glycerols: structure — anti-tumor-promoting activity relationship. Bioorganic Med Chem Lett 6: 1187–1190

    Article  CAS  Google Scholar 

  • Cooper DG, Zajic JE & Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37: 4–10

    CAS  Google Scholar 

  • Cooper DG & Zajic JE (1980) Surface-active compounds from microorganisms. In: Advances in Applied Microbiology, Vol 26: 229–253, Academic Press, Inc.

    Chapter  Google Scholar 

  • Cooper DG, Zajic JE, Gerson DF & Manninen KI (1980) Isolation and identification of biosurfactants produced during anaerobic growth of Clostridium pasteurianum. J Ferment Technol 58: 83–86

    CAS  Google Scholar 

  • Cooper DG, MacDonald CR, Duff SJB & Kosaric N (1981a) Enhanced production of surfactin from Bacillus subtilis by continous product removal and metal cation additions. Appl Environ Microbiol 42: 408–412

    CAS  Google Scholar 

  • Cooper DG, Zajic JE & Denis C (1981b) Surface active properties of a biosurfactant from Corynebacterium lepus. J Am Oil Chem Soc 58: 77–80

    Article  CAS  Google Scholar 

  • Cooper DG, Akit J. & Kosaric N (1982) Surface activity of the cells and extracellular lipids of Corynebacterium fascians CF15. J Ferment Technol 60: 19–24

    CAS  Google Scholar 

  • Cooper DG & Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47: 173–176

    CAS  Google Scholar 

  • Córdova A, Hult K & Iversen T (1997) Esterification of methyl glycoside mixtures by lipase catalysis. Biotechnol Lett 19: 15–18

    Article  Google Scholar 

  • Coulon D, Girardin M, Rovel B & Ghoul M (1995) Comparison of direct esterification and transesterification of fructose by Candida antarctica lipase. Biotechnol Lett 17: 183–186

    Article  CAS  Google Scholar 

  • Coulon D & Ghoul M (1998) The enzymatic synthesis of non-ionic surfactants: the sugar esters — An overview. Agro-Food-Industry Hi-Tech 9: 22–26

    CAS  Google Scholar 

  • Coulon D, Girardin M & Ghoul M (1999) Enzymic synthesis of fructose monooleate in a reduced pressure pilot scale reactor using various acyl donors — and the influences of pressure, nature of the acyl donor and molar ratio sugar/acyl donor were investigated. Process Biochem 34: 913–918

    Article  CAS  Google Scholar 

  • Counter FT, Allen NE, Fukuda DS, Hobbs JN, Ott J, Ensminger PW, Mynderse JS, Preston DA & Wu CYE (1990) A54145 a new lipopeptide antibiotic complex: microbiological evaluation. J Antibiotics 43: 616–622

    CAS  Google Scholar 

  • Coutinho C, Bernardes E, Félix D & Panek AD (1988) Trehalose as cryoprotectant for reservation of yeast strains. J Biotechnol 7: 23–32

    Article  CAS  Google Scholar 

  • Csuk R & Glänzer I (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91: 49–97

    Article  CAS  Google Scholar 

  • Cutler AJ & Light RJ (1979) Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J Biol Chem 254: 1944–1950

    CAS  Google Scholar 

  • Czeschka K, Müller-Hurtig R & Wagner F (1992) Influence of biosurfactant producing microorganisms on the hydrocarbon degradation by an original soil population in a percolated soil fixed bed reactor. In: Preprints (DECHEMA, Hrsg.), Soil decontamination using biological processes, Karlsruhe, (pp. 421–428), Schön & Wetzel GmbH, Frankfurt a. M.

    Google Scholar 

  • Daniel H-J, Reuss M & Syldatk C (1997) Untersuchungen zur „Single Cell Oil“ -Bildung (SCO) von Cryptococcus curvatus ATCC 20509 in Molke. In: Kreysa G & Wagemann K (eds) 15. DECHEMA-Jahrestagung der Biotechnologen, Kurzfassungen, (pp 540–542), Schmitt, Frankfurt/Main

    Google Scholar 

  • Daniel H-J, Reuss M & Syldatk C (1998) Production of Sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotech Lett 20: 1153–1156

    Article  CAS  Google Scholar 

  • Daniels L, Linhardt RJ, Bryan BA, Mayerl F & Pickenhagen W (1988) Method for producing rhamnose. Europäisches Patent 0 282 942, Anmeldung: 17. 03. 1987, Offenlegung: 21. 09. 1989

    Google Scholar 

  • Davila A-M, Marchai R & Vandecasteele J-P (1992) Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11

    Article  CAS  Google Scholar 

  • Davila A-M, Marchai R, Monin N & Vandecasteele J-P (1993) Identification and determination of individual sophorolipids in fermentation products by gradient elution high-performance liquid chromatography with evaporative light-scattering detection. J Chromatogr 648: 139–149

    Article  CAS  Google Scholar 

  • Davila A-M, Marchai R & Vandecasteele J-P (1994) Sophorose lipid production from lipidic precursors: predictive evaluation of industrial substrates. J Ind Microbiol 13: 249–257

    Article  CAS  Google Scholar 

  • Davila A-M, Marchai R & Vandecasteele J-P (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phase. Appl Microbiol Biotechnol 47: 496–501

    Article  CAS  Google Scholar 

  • Davis DA, Lynch HC & Varley J (1999) The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microbiol Technol 25: 322–329

    Article  CAS  Google Scholar 

  • Degn P, Pedersen LH, Duus J & Zimmermann W (1999) Lipase-catalysed synthesis of glucose fatty esters in tert-butanol. Biotechnol Lett 21: 275–280

    Article  CAS  Google Scholar 

  • De Koster CG, Heerma W, Pepermans HAM, Groenewegen A, Peters H & Haverkamp J (1995) Tandem mass spectrometry and nuclear magnetic resonance spectroscopy studies of Candida bombicola sophorolipids and product formed on hydrolysis by cutinase. Analyt Biochem 230: 135–148

    Article  Google Scholar 

  • Deml G, Anke T, Oberwinkler F, Giannetti BM & Steglich W (1980) Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochem 19: 83–97

    Article  CAS  Google Scholar 

  • Denger K & Schink B (1995) New halo- and thermotolerant fermenting bacteria producing surface-active compounds. Appl Microbiol Biotechnol 44: 161–166

    Article  CAS  Google Scholar 

  • Desai JD (1987) Microbial surfactants: evaluation, types, production and future application. J Sci Ind Res 46: 440–449

    CAS  Google Scholar 

  • Desai AJ, Patel KM & Desai JD (1988) Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons. Curr Sci 57: 500–501

    CAS  Google Scholar 

  • Desai JD & Desai AJ (1993) Production of biosurfactants. In: Kosaric N (ed) Biosurfactants.

    Google Scholar 

  • Desai JD & Desai AJ (1993) Production of biosurfactants. In: Surfactant Science Series Vol 48 (pp 65–97), Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Desai JD & Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61: 47–64

    CAS  Google Scholar 

  • Deschênes L, Lafrance P, Villeneuve J-P & Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46: 638–646

    Article  Google Scholar 

  • Deshpande M & Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresource Technol 54: 143–150

    Article  CAS  Google Scholar 

  • Dubnau E, Lanéelle M-A, Soares S, Bénichou A, Vaz T, Promé D, Promé J-C, Daffé M & Quémard A (1997) Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol 23: 313–322

    Article  CAS  Google Scholar 

  • Ducret A, Giroux A, Trani M & Lortie R (1995) Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure. Biotechnol Bioeng 48: 214–221

    Article  CAS  Google Scholar 

  • Ducret A, Giroux A, Trani M & Lortie R (1996) Characterization of enzymatically prepared biosurfactants. J Am Oil Chem Soc 73: 109–113

    Article  CAS  Google Scholar 

  • Duvnjak Z, Cooper DG & Kosaric N (1982) Production of surfactant by Arthrobacter paraffineus ATCC 19558. Biotechnol Bioeng 24: 165–175

    Article  CAS  Google Scholar 

  • Duvnjak Z & Kosaric N (1985) Production and release of surfactant by Corynebacterium lepus in hydrocarbon and glucose media. Biotechnol Lett 7: 793–796

    Article  CAS  Google Scholar 

  • Duynstee HI, van Vliet MJ, van der Marel GA & van Boom JH (1998) An efficient synthesis of (R)-3-{(R)-3-[2-O-(α-L-rhamnopyranosyl)-α-L-rhamnopyranosyl]oxy-decanoyl}oxy-decanoic acid, a rhamnolipid from Pseudomonas aeruginosa. Eur J Org Chem 1998: 303–307

    Article  Google Scholar 

  • Edwards JR & Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111: 415–421

    Article  CAS  Google Scholar 

  • Esders TW & Light RJ (1972a) Characterization and in vivo production of three glycolipids from Candida bogoriensis: 13-glucopyranosyl-glucopyranosyl-oxydoco-sanoic acid and its mono- and diacetylated derivatives. J Lipid Res 13: 663–671

    CAS  Google Scholar 

  • Esders TW & Light RJ (1972b) Glucosyl- and acetyltransferases involved in the biosynthesis of glycolipids from Candida bogoriensis. J Biol Chem 247: 1375–1386

    CAS  Google Scholar 

  • Esders TW & Light RJ (1972c) Occurrence of a uridine diphosphate glucose:sterol glucosyl-transferase in Candida bogoriensis. J Biol Chem 247: 7494–7497

    CAS  Google Scholar 

  • Eskuchen R & Nitsche M (1997) Technology and production of alkyl polyglycosides. In: Hill K, von Rybinski W & Stoll G (eds) Alkyl Polyglycosides (pp 9–22), VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Espuny MJ, Egido S, Mercadé ME & Manresa RA (1995) Characterization of trehalose tetraester produced by a waste lubricant oil degrader Rhodococcus sp 51T7. Toxicol Environ Chem 48: 83–88

    Article  CAS  Google Scholar 

  • Espuny MJ, Egido S, Manresa RA & Mercadé ME (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus sp. 51T7. Biotechnol Lett 18: 521–526

    Article  CAS  Google Scholar 

  • Fabry B (1994) Tenside — Vergangenheit, Gegenwart und zukünftige Entwicklungen. SÖFW-Journal 120: 377–386

    Google Scholar 

  • Falch BS, König GM, Sticher O & Wright AD (1995) Studies on the glycolipid content of the Cyanobacterium Fischerella ambigua. Planta Med 61: 540–543

    Article  CAS  Google Scholar 

  • Farrés J, Caminal G & Lopez-Santin J (1997) Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella 1–714. Appl Microbiol Biotechnol 48: 522–527

    Article  Google Scholar 

  • Fell B (1993) Rohstoffe und Vorprodukte für die technische Synthese von Tensiden. In: Kosswig K & Stache H (eds) Die Tenside (pp 179–202), Hanser, München, Wien

    Google Scholar 

  • Ferrer M, Cruces MA, Bernabé M, Ballesteros A & Plou FJ (1999) Lipase catalyzed regioselective acylation of sucrose in two-solvent mixtures. Biotechnol Bioeng 65: 10–16

    Article  CAS  Google Scholar 

  • Fiechter A, Käppeli O, Einsele A, Hug H & Schneider H (1977) Studien zur Aufnahme von Alkanen durch die Hefezellwand. In: Rehm HJ (ed) Biotechnologie, Vol 81:157–164, VCH, Weinheim, New York

    Google Scholar 

  • Fiechter A (1992a) Biosurfactants: moving towards industrial application. Trends in Food Science & Technol 3: 286–293

    Article  CAS  Google Scholar 

  • Fiechter A (1992b) Integrated systems for biosurfactant synthesis. Pure & Appl Chem 64: 1739–1743

    Article  CAS  Google Scholar 

  • Fiehler K, Albrecht A, Rasch D & Rau U (1997) Kontinuierliche Produktion von Sophoroselipiden mit Candida bombicola ATCC 22214. Fett/Lipid 99:19–24

    Article  CAS  Google Scholar 

  • Finnerty WR & Singer ME (1983) Microbial enhancement of oil recovery. Bio/Technol 1:47–54

    Article  Google Scholar 

  • Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opinion Biotechnol 5: 291–295

    Article  CAS  Google Scholar 

  • Fischer L, Bromann R, Kengen SWM, de Vos W.M & Wagner F (1996) Catalytical potency of β-Glucosidase from the extremophile Pyrococcus furiosus in gluco-conjugate synthesis. Bio/Technology 14: 88–91

    Article  CAS  Google Scholar 

  • Fischer L, Bromann R & Wagner F (1995) Enantioselective sythesis of several l-O-β-D-Glucoconjugates using almond β-glucosidase (E.C. 3.2.1.21). Biotechnol Lett 17:1169–1174

    Article  CAS  Google Scholar 

  • Fluharty L & O’Brien JS (1969) A mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochem 8: 2627–2632

    Article  CAS  Google Scholar 

  • Foght JM, Gutnick DL & Westlake DWS (1989) Effect of emulsan on biodegradation of crude oil in pure and mixed cultures. Appl Environ Microbiol 55: 36–42

    CAS  Google Scholar 

  • Franzius V (1991) Möglichkeiten zur Bodensanierung. Chem-Ing-Tech 63: 348–358

    Article  CAS  Google Scholar 

  • Frautz B, Lang S & Wagner F (1984) Biosurfactant production by Ustilago maydis. In: Third European Congress in Biotechnology, Proceedings, Vol 1 (pp 79–83), VCH, Weinheim

    Google Scholar 

  • Frautz B (1985) Bildung und Charakterisierung von Glykolipiden bei Ustilago maydis ATCC 14826 in Abhängigkeit vom Substrat. Dissertation TU Braunschweig

    Google Scholar 

  • Frautz B, Lang S & Wagner F (1986) Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol Lett 8: 757–762

    Article  CAS  Google Scholar 

  • Fregapane G, Sarney DB & Vulfson EN (1991) Enzymic solvent-free synthesis of sugar acetal fatty acid esters. Enzyme Microb Technol 13: 796–800

    Article  CAS  Google Scholar 

  • Fregapane G, Sarney DB, Greenberg SG, Knight DJ & Vulfson EN (1994) Enzymatic synthesis of monosaccharide fatty acid esters and their comparison with conventional products. J Am Oil Chem Soc 71: 87–91

    Article  CAS  Google Scholar 

  • Furukawa M, Ohtsubo Y, Sugimoto N, Katoh Y & Dohi Y (1990) Induction of tumoricidal activated macrophages by a liposome-encapsulated glycolipid, trehalose-2,3,6’-trimycolate from Gordona aurantiaca. FEMS Microbiol Immunol 64: 83–88

    Google Scholar 

  • Fujimoto H, Isomura M, Ajisaka K (1997) Synthese of Alkyl-β-D-mannopyranosides and β-l,4-linked oligosaccharides using β-Mannosidase from Rhizopus niveus. Biosci Biotech Biochem 61: 164–165

    Article  CAS  Google Scholar 

  • Gamian A, Mordarska H, Ekiel I, Ulrich J, Szponar B & Defaye J (1996) Structural studies of the major glycolipid from Saccharopolyspora genus. Carbohydr Res 296: 55–67

    Article  CAS  Google Scholar 

  • Gao Ch, Whitcombe MJ, Vulson EN (1999) Enzymatic synthesis of dimeric and trimeric sugar-fatty acid esters. Enzyme and Microbial Technol 25: 264–270

    Article  CAS  Google Scholar 

  • Gartshore J, Lim Y C & Cooper D G (2000) Quantitative analysis of biosurfactants using Fourier Transform Infrared (FT-IR) spectroscopy. Biotech Lett 22: 169–172

    Article  CAS  Google Scholar 

  • Gastaldo L, Ciabatti R, Assi F, Restelli E, Kettenring JK, Zerilli LF, Romanò G, Denaro M & Cavalleri B (1992) Isolation, structure determination and biological activity of A-16686 factors A’ 1, A’ 2 and A’ 3 glycolipodepsipeptide antibiotics. J Ind Microbiol 11: 13–18

    Article  CAS  Google Scholar 

  • Geke J, Jakobi G, Kihn-Botulinski M & Speckmann H-D (1993) Tenside zum Reinigen von Textilien und harten Oberflächen im Haushalt und im industriellen Bereich. In: Kosswig K & Stache H (eds), Die Tenside (pp. 281–337) Carl Hanser Verlag, München, Wien

    Google Scholar 

  • George KM, Yuan Y, Sherman DR & Barry III CE (1995) The biosynthesis of cyclo-propanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 270: 27292–27298

    Article  CAS  Google Scholar 

  • Georgiou G, Lin S-C & Sharma MM (1992) Surface-active compounds from microorganisms. Bio/Technol 10: 60–65

    Article  CAS  Google Scholar 

  • Gerson DF & Zajic JE (1979a) Comparison of surfactant production from kerosene by four species of Corynebacterium. Antonie van Leeuwenhoek 45: 81–94

    Article  CAS  Google Scholar 

  • Gerson DF & Zajic JE (1979b) Microbial biosurfactants. Process Biochem 14: 20–29

    CAS  Google Scholar 

  • Giani C, Wullbrandt D, Rothert R & Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. United States Patent 5,658,793 (Hoechst AG, Frankfurt), Anmeldung: 5. 06. 1995, Pat. 19. 08. 1997

    Google Scholar 

  • Göbbert U, Lang S & Wagner F (1984) Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 6: 225–230

    Article  Google Scholar 

  • Göbbert U, Schmeichel A, Lang S & Wagner F (1988) Microbial transesterification of sugar-corynomycolates. J Am Oil Chem Soc 65: 1519–1525

    Article  Google Scholar 

  • Goclik E, Müller-Hurtig R & Wagner F (1990) Influence of the glycolipid-producing bacterium Rhodococcus erythropolis on the degradation of a hydrocarbon mixture by an original soil population. Appl Microbiol Biotechnol 34: 122–126

    Article  CAS  Google Scholar 

  • Goede de ATJW, Van Oosterom M, Van Deurzen MP J, Sheldon RA, Van Bekkum H & Van Rantwijk F (1994) Selective lipase-catalyzed esterification of alkyl glycosides. Biocatalysis 9: 145–155

    Article  Google Scholar 

  • Gorbach VI, Krasikova IN, Luk’yanov PA, Loenko YN, Solo’eva TF, Ovodov YS, Deev W & Pimenov AA (1994). New glycolipids (chitooligosaccharide derivatives) possessing immunostimulating and antitumor activities. Carbohydr Res 260: 73–82

    Article  CAS  Google Scholar 

  • Goren MB (1972) Mycobacterial lipid: selected topics. Bacteriol Rev 36: 33–64

    CAS  Google Scholar 

  • Gorin PAJ, Haskins RH & Spencer JFT (1960) Biochemistry of the ustilaginales, XIII. Observations on the structure and biosynthesis of 4–0-β-D-mannopyranosyl-D-erythritol. Can J BiochemPhysiol 38: 165–169

    Article  CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT & Tulloch AP (1961) Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can J Chem 39: 846–855

    Article  CAS  Google Scholar 

  • Goswami P, Hazarika AK & Singh HD (1994) Hydrocarbon pseudosolubilizing and emulsifying proteins produced by Pseudomonas cepacia Nl. J Ferment Bioeng 77: 28–31

    Article  CAS  Google Scholar 

  • Graber M, Morin A, Duchiron F & Monsan PF (1988a) Microbial polysaccharides containing 6-deoxysugars. Enzyme Microb Technol 10: 198–206

    Article  CAS  Google Scholar 

  • Graber-Gubert M, Morin A & Monsan P (1988b) Isolation of microorganisms producing 6-deoxyhexose-containing polysaccharides. System Appl Microbiol 10: 200–205

    CAS  Google Scholar 

  • Grand-Perret T, Lepoivre M, Petit J-F & Lemaire G (1986) Macrophage activation by trehalose dimycolate. Requirement for an expression signal in vitro for antitumoral activity; biochemical markers distinguishing primed and fully activated macrophages. Eur J Immunol 16: 332–338

    Article  CAS  Google Scholar 

  • Grangemard I, Bonmatin J-M, Bernillon J, Das B C & Peypoux F (1999) Lichenysins G, a Novel Family of Lipopeptide Biosurfactants from Bacillus licheniformis IM 1307. J Antibiot 52: 363–373

    CAS  Google Scholar 

  • Gridley JJ, Hacking AJ, Osborn HMI & Spackman DG (1998) Regioselective lipase-catalysed acylation of 4,6-O-benzylidene-α- and -β-D-pyranoside derivatives displaying a range of anomeric substituents. Tetrahedron 54: 14925–14946

    Article  CAS  Google Scholar 

  • Griffin WC (1979) Emulsions. In: Encyclopedia of Chemical Technology, 3rd Edition, Vol 8: 910–929

    Google Scholar 

  • Gruber T, Chmiel H, Käppeli O, Sticher P & Fiechter A (1993) Integrated process for continuous rhamnolipid biosynthesis. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 157–173, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Guerra-Santos L, Käppeli O & Fiechter A (1984a) Process development for the production of biosurfactants. In: Third European Congress in Biotechnology, Vol 1 (pp 507–512), Verlag Chemie München (FRG)

    Google Scholar 

  • Guerra-Santos L, Käppeli O & Fiechter A (1984b) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48: 301–305

    CAS  Google Scholar 

  • Guerra-Santos LH, Käppeli O & Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    Article  CAS  Google Scholar 

  • Guillardeau L, Montet D, Khaled N, Pina M & Graille J (1992) Fructose caprylate biosynthesis in a solvent-free medium (1992). Tenside Surf Det 29: 342–344

    CAS  Google Scholar 

  • Gunawardana G, Rasmussen RR, Scherr M, Frost D, Brandt KD, Choi W, Jackson M, Karwowski JP, Sunga G, Malmberg L-H, West P, Chen RH, Kadam S, Clement JJ & McAlpine JB (1997) Corynecandin: a novel antifungal glycolipid from Coryneum modonium. J Antibiot 50: 884–886

    CAS  Google Scholar 

  • Gutnick DL & Rosenberg E (1977) Oil tankers and pollution: a microbiological approach. Ann Rev Microbiol 31: 379–396

    Article  CAS  Google Scholar 

  • Gutnik DL & Shabtai Y (1987) Exopolysaccharide Bioemulsifiers. In: Kosaric N, Cairns WL & Gray NCC (eds) Biosurfactants and Biotechnology. In: Surfactants Science Series, Vol 25: 211–246, Dekker, New York, Basel

    Google Scholar 

  • Gutnik D (1994) Microbiological treatment of contaminated storage containers. Res Microbiol 145: 56–60

    Article  Google Scholar 

  • Haase B, Machmüller G & Schneider MP (1998) Enzymatische Synthesen von Zuckerestern. In: Biokonversion nachwachsender Rohstoffe, Tagungsband, in: Schriftenreihe Nachwachsende Rohstoffe, Band 10:218–224, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V. (Gülzow), LV-Druck, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  • Haferburg D, Hommel R, Claus R & Kleber H-P (1986) Extracellular microbial lipids as biosurfactants. Adv Biochem Eng/Biotechnol 33: 53–93

    Article  CAS  Google Scholar 

  • Haferburg D, Hommel R, Kleber H-P, Kluge S, Schuster G & Zschiegner H-J (1987) Antiphytovirale Aktivität von Rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnol 7: 353–356

    Article  CAS  Google Scholar 

  • Haffner T (1991) Untersuchungen zur Kultivierung und zur Synthese eines Glucoselipides bei einem marinen Bacterium spec. MM1. Diplomarbeit TU Braunschweig

    Google Scholar 

  • Hancock REW & Lehrer R (1998) Cationic peptides: a new source of antibiotics. Tibtech 16: 82–88

    CAS  Google Scholar 

  • Hartmann S, Besra GS, Fraser JL, König WA, Minnikin DE & Ridell M (1994) Stereochemistry of 2,4-dimethyleicos-2-enoate from pyruvylated glycolipid of Mycobacterium smegmatis. Biochim Biophys Acta 1201: 339–344

    Article  Google Scholar 

  • Hartmann HA, Kahmann R & Bölker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15: 1632–1641

    CAS  Google Scholar 

  • Harvey S, Elashvili I, Valdes JJ, Kamely D & Chakrabarty AM (1990) Enhanced removal of Exxon Valdez spilled oil from alaskan gravel by a microbial surfactant. Bio/Technol 8: 228–230

    Article  CAS  Google Scholar 

  • Haskins RH. (1950) Biochemistry of the ustilaginales, I. Preliminary cultural studies of Ustilago zeae. Can J Res 25: 213–223

    Article  Google Scholar 

  • Haskins RH, & Thorn JA (1951) Biochemistry of the ustilaginales, VII. Antibiotic activity of ustilagic acid. Can J Botany 29: 585–592

    Article  CAS  Google Scholar 

  • Haskins RH, Thorn JA & Boothroyd B (1955) Biochemistry of the ustilaginales, XL Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1: 749–756

    Google Scholar 

  • Hauser G & Karnovsky ML (1954) Studies on the production of glycolipid by Pseudomonas aeruginosa. J Bacteriol 68: 645–654

    CAS  Google Scholar 

  • Hauser G & Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 224: 91–105

    CAS  Google Scholar 

  • Hauser G & Karnovsky ML (1958) Studies on biosynthesis of L-rhamnose. J Biol Chem 233:287–291

    CAS  Google Scholar 

  • Häusler A, Müller-Hurtig R & Wagner F (1992) Influence of chemical- and biosurfactants on the microbial degradation of a fuel oil spill. In: DECHEMA Biotechnology Conferences Vol 5:1037–1041, VCH, Weinheim

    Google Scholar 

  • Hauthal HG (1994) L-Rhamnose als Zuckerbaustein. Nachr Chem Tech Lab 42: 285

    Article  Google Scholar 

  • Hauthal HG (1996) Olympiade der Tenside. Nachr Chem Tech Lab 44: 876–878

    Article  Google Scholar 

  • Heinz E, Tulloch AP & Spencer JFT (1969) Stereospecific hydroxylation of long chain compounds by a species of Torulopsis. J Biol Chem 244: 882–888

    CAS  Google Scholar 

  • Heinz E, Tulloch AP & Spencer JFT (1970) Hydroxylation of oleic acid by cell-free extracts of a species of Torulopsis. Biochim Biophys Acta 202: 49–55

    CAS  Google Scholar 

  • Herman DC, Zhang Y & Miller RM (1997) Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol 63: 3622–2627

    CAS  Google Scholar 

  • Hill K (1997) History of alkyl polyglycosides. In: Hill K, von Rybinski W & Stoll G (eds) Alkyl polyglycosides (pp. 1–7), VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Hill K, von Rybinski W & Stoll G (1997) Alkyl Polyglycosides: Technology, Properties and Applications. Weinheim, New York, Basel, Cambridge, Tokyo, VCH.

    Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N & Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agr Biol Chem 35: 686–692

    Article  Google Scholar 

  • Hisatsuka K, Nakahara T & Yamada K (1972) Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1. Agr Biol Chem 36: 1361–1369

    Article  CAS  Google Scholar 

  • Hoffmann H & Ulbricht W (1993) Physikalische Chemie der Tenside. In: Kosswig K & Stache H (eds) Die Tenside (pp 1–114), Hanser, München, Wien

    Google Scholar 

  • Holst O; Weckesser J & Mayer H (1983) Co-extraction of lipopolysaccharide and an ornithine-containing lipid from Rhodomicrobium vannielii. FEMS Lett 19: 33–36

    Article  CAS  Google Scholar 

  • Holst O (1985) Bakterielle Ornithinlipide — Lipoaminosäuren interessanter Struktur und unbekannter Funktion. Forum Mikrobiol 8: 225–228

    CAS  Google Scholar 

  • Holst O, Ulmer AJ, Brade H, Flad H-D & Rietschel ET (1996) Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol Med Microbiol 16: 83–104

    Article  CAS  Google Scholar 

  • Hommel R, Stüwer O, Stuber W, Haferburg D & Kleber H-P (1987) Production of water-soluble surface-active exolipids by Torulopsis apícola. Appl Microbiol Biotechnol 26: 199–205

    Article  CAS  Google Scholar 

  • Hommel R, Götzrath M & Kleber H-P (1989) Enzyme production by growing cells of Acinetobacter in presence of sophoroselipid and Triton X-100. Acta Biotechnol 9: 461–465

    Article  CAS  Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation 1: 107–119

    Article  CAS  Google Scholar 

  • Hommel RK & Ratledge C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol Lett 70: 183–186

    CAS  Google Scholar 

  • Hommel RK & Huse K (1993) Regulation of sophorose lipid production by Candida (Torulopsis) apícola. Biotechnol Lett 15: 853–858

    Article  CAS  Google Scholar 

  • Hommel RK & Ratledge C (1993) Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 3–63, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Hommel RK, Lassner D, Weiss J & Kleber H-P (1994a) The inducible microsomal fatty alcohol oxidase of Candida (Torulopsis) apícola. Appl Microbiol Biotechnol 40: 729–734

    Article  CAS  Google Scholar 

  • Hommel RK, Stegner S, Huse K & Kleber H-P (1994b) Cytochrome P-450 in the sophorose-lipid-producing yeast Candida (Torulopsis) apícola. Appl Microbiol Biotechnol 40: 724–728

    Article  CAS  Google Scholar 

  • Hommel RK, Stegner S, Weber L & Kleber H-P (1994c) Effect of ammonium ions on glycolipid production by Candida (Torulopsis) apicola. Appl Microbiol Biotechnol 42:192–197

    CAS  Google Scholar 

  • Hommel RK, Weber L, Weiss A, Himmelreich U, Rilke O & Kleber H-P (1994d) Production of sophorose lipid by Candida (Torulopsis) apicola grown on glucose. J Biotechnol 33: 147–155

    Article  CAS  Google Scholar 

  • Höpner T (1991) Die Ölkatastrophe am Golf — Zwischenbilanz, Zustandsbeschreibung, Maβnahmen, Prognosen. Z Umweltchem Ökotox 3: 354–361

    Article  Google Scholar 

  • Horowitz S & Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7: 45–52

    Article  CAS  Google Scholar 

  • Hull SR, Gray JSS, Koerner TAW & Montgomery R (1995) Trehalose as a common industrial fermentation byproduct. Carbohydr Res 266: 147–152

    Article  CAS  Google Scholar 

  • Hunter SW, Murphy RC, Clay K, Goren MB & Brennan PJ (1983) Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem 258: 10481–10487

    CAS  Google Scholar 

  • Ikeda I & Klibanov AM (1993) Lipase-catalyzed acylation of sugars solubilized in hydrophobic solvents by complexation. Biotechnol Bioeng 42: 788–791

    Article  CAS  Google Scholar 

  • Imperato F & Nazzaro R (1996) Luteolin 7-O-sophoroside from Pteris cretica. Phytochem 41:337–338

    Article  CAS  Google Scholar 

  • Inoue S & Ito S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol Lett 4: 3–8

    Article  CAS  Google Scholar 

  • Inoue S, Kimura Y & Utsunomiya T (1986) Neuer Mikroorganismus (Torulopsis bombicola KSM-36). Deutsches Patent DE 35 25 411

    Google Scholar 

  • Inoue S, Kimura Y & Utsunomiya T (1986) Al (Kao Corp., Tokio, JP) Anmeldung (Jp): 25. 07. 1984,

    Google Scholar 

  • Inoue S, Kimura Y & Utsunomiya T (1986) Offenlegung (DE): 30. 01. 1986

    Google Scholar 

  • Inoue S (1988) Biosurfactants in cosmetic applications. In: Applewhite TH (ed) Proceedings of the World Conference on Biotechnology for the Fats and Oil Industry (pp 206–210), American Oil Chemists’ Society, USA

    Google Scholar 

  • Iqbal S, Khalid ZM & Malik KA (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett Appl Microbiol 21: 176–179

    Article  CAS  Google Scholar 

  • Ishigami Y, Suzuki S, Funada T, Chino M, Uchida Y & Tabuchi T (1987a) Surface-active properties of succinoyl trehalose lipids as microbial biosurfactants. J Jpn Oil Chem Soc (Yukagaku) 36: 847–851

    Article  CAS  Google Scholar 

  • Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H & Kamata T (1987b) The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett 1987: 763–766

    Article  Google Scholar 

  • Ishigami Y, Gama Y & Kitamoto D (1992) Sophoroselipid-Derivate. Japanisches Patent/Anmeldung AZ: Toku Gan Hei 4–279561 (Agency of Industrial Science and Technology, Higaski 1–1, Tsukuba, Ibaraki), Anmeldung: 24. 09. 1992, Offenlegung: 12.04. 1994

    Google Scholar 

  • Ishigami Y (1993) Biosurfactants face increasing interest. Inform 4: 1156–1165

    Google Scholar 

  • Ishigami Y, Gama Y, Ishii F & Choi YK (1993) Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant. Langmuir 9: 1634–1636

    Article  CAS  Google Scholar 

  • Ishigami Y, Gama Y, Sano Y, Lang S & Wagner F (1994) Interfacial and micellar behavior of glucose lipid. Biotechnol Lett 16: 593–598

    Article  CAS  Google Scholar 

  • Ishigami Y, Ishii F, Choi YK & Kajiuchi T (1996) Estimation of polarity and fluidity of colloidal interfaces and biosurfaces using rhamnolipid B pyrenacylester as surface-active fluorescent probe. Colloid Surf B 7: 215–220

    Article  CAS  Google Scholar 

  • Ishigami Y & Suzuki S (1997) Development of biochemicals-functionalization of biosurfactants and natural dyes. Progress in Organic Coatings 31:51–61

    Article  CAS  Google Scholar 

  • Ismail A, Soultani S & Ghoul M (1999) Enzymatic-catalyzed synthesis of alkylglycosides in monophasic and biphasic systems. I. The transglycosylation reaction. J Biotechnol 69: 135–143

    Article  CAS  Google Scholar 

  • Ismail A, Soultani S & Ghoul M (1999) Enzymatic-catalyzed synthesis of alkylglycosides in monophasic and biphasic systems. II. The reverse hydrolysis reaction. J Biotechnol 69: 145–149

    Article  CAS  Google Scholar 

  • Isoda H, Shinmoto H, Matsumura M & Nakahara T (1995) Differentiation of human leukemia cells by bacterial extracellular glycolipids. In: Beuvery et al. (eds) Animal Cell Technology: Developments towards the 21st Century (pp 993–997), Kluwer Academic Publishers

    Chapter  Google Scholar 

  • Isoda H, Shinmoto H, Matsumura M & Nakahara T (1996) Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechn 19: 79–88

    Article  CAS  Google Scholar 

  • Isoda H, Kitamoto D, Shinmoto H, Matsumura M & Nakahara T (1997a) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotech Biochem 61:609–614

    Article  CAS  Google Scholar 

  • Isoda H, Shinmoto H, Kitamoto D, Matsumura M & Nakahara T (1997b) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32: 263–271

    Article  CAS  Google Scholar 

  • Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, Terui A, Yoshimatsu S, Ikenishi Y & Nakagawa Y (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiotics 43: 1524–1532

    CAS  Google Scholar 

  • Ito S & Inoue S (1982) Sophorolipids from Torulopsis bombicola: possible reaction to alkane uptake. Appl Environ Microbiol 43: 1278–1283 Itoh S, Honda H, Tomita F & Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiotics 24: 855–859

    Google Scholar 

  • Itoh S & Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agr Biol Chem 36: 2233–2235

    Article  CAS  Google Scholar 

  • Itoh S & Suzuki T (1974) Fructose-lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria grown on fructose. Agr Biol Chem 38: 1443–1449

    Article  CAS  Google Scholar 

  • Itoh H & Kamiyawa Y (1995) Synthesis of alkyl β-mannosides from mannobiose by Aspergillus niger β-mannosidase. J Ferment Bioeng 80: 510–512

    Article  CAS  Google Scholar 

  • Jain DK, Lee H & Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10: 87–93

    Article  Google Scholar 

  • Janssen AEM, Klabbers C, Franssen MCR & Van Reed K (1991) Enzymatic synthesis of carbohydrate esters in 2-pyrrolidone. Enzyme Microb Technol 13: 565–572

    Article  CAS  Google Scholar 

  • Jarvis FG & Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71: 4124–4126

    Article  CAS  Google Scholar 

  • Jenny K, Käppeli O & Fiechter A (1991) Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol 36: 5–13

    Article  CAS  Google Scholar 

  • Jenny K, Deltrieu V & Käppeli O (1993) Lipopeptide Production by Bacillus licheniformis. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 135–156, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Johnson V, Singh M, Saini VS, Adhikari DK, Sista V & Yadav NK (1992) Bioemulsifier production by an oleaginous yeast Rhodotorula glutinis IIP-30. Biotechnol Lett 14: 487–490

    Article  CAS  Google Scholar 

  • Jones DF (1967) Novel macrocyclic glycolipids from Torulopsis gropengiesseri. J Chem Soc (C): 479–484

    Google Scholar 

  • Jones DF (1968) Microbial oxidation of long-chain aliphatic compounds. Part II. Branched-chain alkanes. J Chem Soc (C): 2809–2815

    Google Scholar 

  • Jones DF & Howe R (1968a) Microbial oxidation of long-chain aliphatic compounds. Part I. Alkanes and alk-1-enes. J Chem Soc (C): 2801–2808

    Google Scholar 

  • Jones DF & Howe R (1968b) Microbial oxidation of long-chain aliphatic compounds. Part III. 1-Halogenoalkanes, 1-cyanohexadecane, and 1-alkoxyalkanes. J Chem Soc (C): 2816–2821

    Google Scholar 

  • Jung S, Coulon D, Girardin M & Ghoul M (1998) Structure and surface-active property determinations of fructose monooleates. J Surfactants Detergents 1: 53–57

    CAS  Google Scholar 

  • Kakinuma A, Hori M, Sugino H, Yoshida I, Isono M, Tamura G & Arima K (1969) Determination of the location of lactone ring in surfactin. Agr Biol Chem 33: 1523–1524

    Article  CAS  Google Scholar 

  • Kamada T, Gama Y, Nakahara H, Kamata T & Ishigami Y (1988) Characteristics of synthetic homologues of corynomycolic acids as microbial biosurfactant. In: Proceedings of the 19th World Congress of the International Society for Fat Research (pp. 768–774)

    Google Scholar 

  • Kamisango K-I, Saadat S, Dell A & Bailou CE (1985) Pyruvylated glycolipids from Mycobacterium smegmatis. Nature and location of the lipid components. J Biol Chem 260:4117–4121

    CAS  Google Scholar 

  • Käppeli O & Fiechter A (1976) The mode of interaction between the substrate and cell surface of the hydrocarbon-utilizing yeast Candida tropicalis. Biotechnol Bioeng 18: 967–974

    Article  Google Scholar 

  • Käppeli O & Fiechter A (1977) Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropcalis with possible relation to hydrocarbon transport. J Bacteriol 131:917–921

    Google Scholar 

  • Käppeli O, Mueller M & Fiechter A (1978) Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J Bacteriol 133: 952–958

    Google Scholar 

  • Käppeli O, Walther P, Mueller M & Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138: 279–282

    Article  Google Scholar 

  • Kato A & Arima K (1971) Inhibitory effect of sucrose ester of lauric acid on the growth of Escherichia coli. Biochem Biophys Commun 42: 596–601

    Article  CAS  Google Scholar 

  • Kawashima H, Nakahara T, Oogaki M & Tabuchi T (1983) Extracellular production of a mannosylerythritol lipid by a mutant of Candida sp. from n-alkanes and triacylglycerols. J Ferment Technol 61: 143–149

    CAS  Google Scholar 

  • Kesting W, Tummuscheit M, Schacht H & Schollmeyer E (1996) Ecological washing of textiles with microbial surfactants. Pogr Colloid Polym Sci 101: 125–130

    Article  CAS  Google Scholar 

  • Khaled N, Montet D, Pina M & Graille J (1991) Fructose oleate synthesis in a fixed catalyst bed reactor. Biotechnol Lett 13: 167–172

    Article  CAS  Google Scholar 

  • Khire JM & Khan Ml (1994) Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR. Enzyme Microb Technol 16: 170–172

    Article  CAS  Google Scholar 

  • Kim JE, Han JJ, Rhee JS (1998) Effect of salt hydrate pair on lipase-catalyzed regioselective Monoacylation of sucrose. Biotechnol Bioeng 57: 121–125

    Article  CAS  Google Scholar 

  • Kim J-S (1988) Bildung von anionischen Trehalose-2,2′,3,4-tetraestern durch Rhodococcus erythropolis DSM 43215 auf n-Alkanen verschiedener Kettenlänge. Dissertation TU Braunschweig

    Google Scholar 

  • Kim J-S, Powalla M, Lang S, Wagner F, Lünsdorf H & Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  CAS  Google Scholar 

  • Kim H-S, Yoon B-D, Lee C-H, Suh H-H, Oh H-M, Katsuragi T & Tani Y (1997a) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84: 41–46

    Article  Google Scholar 

  • Kim P, Oh D-K, Kim S-Y & Kim J-H (1997b) Relationship between emulsifying activity and carbohydrate backbone structure of emulsan from Acinetobacter calcoaceticus RAG-1. Biotechnol Lett 19: 457–459

    Article  CAS  Google Scholar 

  • Kim S-Y, Oh D-K & Kim J-H (1997c) Biological modification of hydrophobic group in Acinetobacter calcoaceticus RAG-1 emulsan. J Ferment Bioeng 84: 162–164

    Article  CAS  Google Scholar 

  • Kim S-Y, Oh D-K, Lee KH & Kim J-H (1997d) Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Appl Microbiol Biotechnol 48: 23–26

    Article  CAS  Google Scholar 

  • Kirchner G, Scollar MP & Klibanov AM (1985) Resolution of racemic mixtures via lipase catalysis in organic solvents. J Am Chem Soc 107: 7072–7076

    Article  CAS  Google Scholar 

  • Kirk O, Björkling F, Godtfredsen SE & Larsen TO (1992) Fatty acid specificity in lipase-catalyzed synthesis of glucoside esters. Biocatalysis 6: 127–134 Kirk O, Pedersen FD & Fuglsang CC (1998) Preparation and properties of a new type of carbohydrate-based cationic surfactant. J Surfactants Detergents 1: 37–40

    Article  Google Scholar 

  • Kitagawa M, Fan H, Raku T, Shibatani Sh, Maekawa Y, Hiraguri Y, Kurane R & Tokiwa Y (1999) Selective enzymatic preparation of vinyl sugar esters using DMSO as a denaturing co-solvent. Biotechnol Lett 21: 355–359

    Article  CAS  Google Scholar 

  • Kitagawa M & Tokiwa Y (1998) Synthesis of polymerizable sugar ester prossessing long spacer catalyzed by lipase from Alcaligenes sp. and its chemical polymerization. Biotechnol Lett 20: 627–630

    Article  CAS  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C & Tabuchi T (1990a) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agr Biol Chem 54: 31–36

    Article  CAS  Google Scholar 

  • Kitamoto D, Haneishi K, Nakahara T & Tabuchi T (1990b) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agr Biol Chem 54: 37–40

    Article  CAS  Google Scholar 

  • Kitamoto D, Fuzihiro T, Yanagishita H, Nakane T & Nakahara T (1992a) Production of mannosylerythritol lipids as resting cells of Candida antarctica. Biotechnol Lett 14: 305–310

    Article  CAS  Google Scholar 

  • Kitamoto D, Takashi N, Noriko N, Tadaatsu N & Takeshi T (1992b) Intracellular accumulation of mannosylerythritol lipids as storage materials by Candida antarctica. Appl Microbiol Biotechnol 36: 768–772

    Article  CAS  Google Scholar 

  • Kitamoto D, Nemoto T, Yanagishita H, Nakane T, Kitamoto H & Nakahara T (1993a) Fatty-acid metabolism of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Jpn Oil Chem Soc (Yukagaku) 42: 346–358

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C & Nakahara T (1993b) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29: 91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Haraya K & Kitamoto HK (1995) Effect of cerulenin on the production of mannosylerythritol lipids as biosurfactants by Candida antarctica. Biotechnol Lett 17:25–30

    Article  CAS  Google Scholar 

  • Kitamoto D, Ghosh S, Ourisson G & Nakatani Y (2000) Formation of giant vesicles from diacylmannosylerythritols, and their binding to concanavalin A. Chem Commun 2000: 861–862

    Article  Google Scholar 

  • Kizawa H, Miyazaki J-I, Yokota A, Kanegae Y, Miyagawa K-I & Sugiyama Y (1995) Trehalose production by a strain of Micrococcus varians. Biosc Biotech Biochem 59: 1522–1527

    Article  CAS  Google Scholar 

  • Klein J & Wagner F (1987) Different strategies to optimize the production phase of immobilized cells. Annals of the New York Academy of Sciences 501: 306–316

    Article  Google Scholar 

  • Klekner V, Kosaric N & Zhou QH (1991) Sophorose lipids produced from sucrose. Biotechnol Lett 13: 345–348

    Article  CAS  Google Scholar 

  • Klekner V & Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48 (pp 373–389), Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Kleppe F (1992) Untersuchungen zur biokatalytischen Acylierung von Zuckern und Fettalkoholen. Dissertation TU Braunschweig

    Google Scholar 

  • Knoche HW & Shively JM (1972) The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. J Biolog Chem 247: 170–178

    CAS  Google Scholar 

  • König S, Quitzsch K, König B, Hommel R, Haferburg D & Kleber H-P (1993) Physicochemical investigations in systems of composition biosurfactant/sodium dodecyl sulfate/water around the critical micelle concentration. Colloids Surf, B, 1: 33–41

    Google Scholar 

  • Kobayashi T, Ito S & Okamoto K (1987) Production of mannosylerythritol by Candida sp. KSM-1529. Agr Biol Chem 51: 1715–1716

    Article  CAS  Google Scholar 

  • Kobayashi K, Komeda T, Miura Y, Kettoku M & Kato M (1997) Production of trehalose from starch by novel trehalose-producing enzymes from Sulfolobus solfataricus KM1. J Ferment Bioeng 83: 296–298

    Article  CAS  Google Scholar 

  • Koch AK, Käppeli O, Fiechter A & Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173: 4212–4219.

    CAS  Google Scholar 

  • Kohring B, Baier R, Niehaus K, Pühler A & Flaschel E (1996) Kultivierung, Aufreinigung und Charakterisierung von Glykolipidderivaten: Fermentative Gewinnung von Nodulationsfaktoren mit dem Bodenbakterium Rhizobium meliloti. In: Kreysa G (ed) 14. DECHEMA-Jahrestagung der Biotechnologen, Kurzfassungen, Vol 1 (p 16), Schmitt, Frankfurt/Main

    Google Scholar 

  • Kohring B, Niehaus K, Pühler A & Flaschel E (1997) Produktion von Bodenbakterien der Gattung Rhizobium im Pilot-Maßstab und Gewinnung ihrer Glykolipide. In: Kreysa G & Wagemann K (eds) 15. DECHEMA-Jahrestagung der Biotechnologen, Kurzfassungen, (pp 540–542), Schmitt, Frankfurt/Main

    Google Scholar 

  • Kosaric N, Gray NCC & Cairns WL (1983) Microbial emulsifiers and de-emulsifiers. In: Rehm HJ, Reed G & Dellweg H (eds) Biotechnology, Vol 3 (pp 575–592), VCH, Weinheim, Deerfield Beach, Basel

    Google Scholar 

  • Kosaric N, Cairns WL & Gray NCC (1987) Microbial de-emulsifiers. In: Kosaric N, Cairns WL & Gray NCC (eds) Biosurfactants and Biotechnology. In: Surfactants Science Series, Vol 25: 247–321, Marcel Dekker, New York, Basel

    Google Scholar 

  • Kosaric N, Choi HY & Blaszczyk R (1990) Biosurfactant Production from Nocardia SFC-D. Tenside Surf Det 27: 294–297

    CAS  Google Scholar 

  • Kosaric N (1992) Biosurfactants in industry. Pure & Appl Chem 64: 1731–1737

    Article  CAS  Google Scholar 

  • Kosaric N & Lu G (1992) Removal of chlorinated aromatics in presence of sophorose biosurfactants. In: Preprints (DECHEMA, VAAM, Hrsg.), Soil decontamination using biological processes (pp. 44–51), Schön & Wetzel GmbH, Frankfurt a. M.

    Google Scholar 

  • Kosaric N (1996) Biosurfactants. In: Rehm HJ, Reed G, Pühler A & Stadler P (eds) Biotechnology, Vol 6: 659–717, VCH Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Kosswig K (1993) Herstellung, Eigenschaften und Verwendung von Tensiden. In: Kosswig K & Stäche H (eds) Die Tenside (pp 115–177), Hanser, München, Wien

    Google Scholar 

  • Kretschmer, A, Lang S, Marwede G, Ristau E & Wagner F (1981) Formation of surface active glycolipids by n-alkane utilizing microorganisms. In: Vezina C & Singh K (eds) Advances in Biotechnology, Vol 1: 475–479, Pergamon, Canada

    Google Scholar 

  • Kretschmer A, Bock H & Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44: 864–870

    CAS  Google Scholar 

  • Kretschmer A & Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Biochim Biophys Acta 753: 306–313

    CAS  Google Scholar 

  • Krivobok S, Guiraud P, Seigle-Murandi F & Steiman R (1994) Production and toxicity assessment of sophorosides from Torulopsis bombicola. J Agric Food Chem 42: 1247–1250

    Article  CAS  Google Scholar 

  • Künstler K (1993) Humantoxikologie der Tenside. In: Kosswig K & Stache H (eds) Die Tenside (pp 483–500), Hanser, München, Wien

    Google Scholar 

  • Ku MA & Hang YD (1995) Enzymatic synthesis of esters in organic medium with lipase from byssochlamysfulva. Biotechnol Lett 17: 1081–1084

    Article  CAS  Google Scholar 

  • Kurosawa T, Sakai K, Nakahara T, Oshima Y & Tabuchi T (1994) Extracellular accumulation of the polyol lipids, 3,5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium sp. Biosci Biotech Biochem 58: 2057–2060

    Article  CAS  Google Scholar 

  • Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Kawaguchi K, Mizuno Y, Hirano M & Taniguchi Y (1994) Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotech Biochem 58: 1977–1982

    Article  CAS  Google Scholar 

  • Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Tajima T, Hirano M & Taniguchi Y (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotech Biochem 59: 1652–1656

    Article  CAS  Google Scholar 

  • Lang S, Gilbon A, Syldatk C & Wagner F (1984) Comparison of interfacial active properties of glycolipids from microorganisms. In: Mittal KL & Lindman B (eds) Surfactants in Solution, Vol 2: 1365–1376, Plenum Publishing Corporation, New York

    Google Scholar 

  • Lang S, Frautz B, Henke GA, Kim JS, Syldatk C & Wagner F (1986) Production and biological activity of biosurfactants. Biol Chem Hoppe Seyler 367: 212 (Supplement 17th FEBS Meeting Berlin, 1986)

    Google Scholar 

  • Lang S & Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns WL & Gray NCC (eds) Biosurfactants and Biotechnology. In: Surfactants Science Series, Vol 25: 21–45, Marcel Dekker, New York, Basel

    Google Scholar 

  • Lang S, Katsiwela E & Wagner F (1989) Antimicrobial effects of biosurfactants. Fat Sci Technol 91: 363–366

    CAS  Google Scholar 

  • Lang S, Multzsch R, Passeri A, Schmeichel A, Steffen B, Wagner F, Hamann D & Cammenga HK (1991) Unusual wax esters and glycolipids: biocatalytical formation and physico-chemical characterization. Acta Biotechnol 4: 379–386

    Article  Google Scholar 

  • Lang S & Wagner F (1993a) Bioconversion of oils and sugars to glycolipids. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 205–227, Marcel Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Lang S & Wagner F (1993b) Biological activities of biosurfactants. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 251–268, Marcel Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Lang S & Wagner F (1993c) Biosurfactants from marine microorganisms. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 391–417, Marcel Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Lang S & Wagner F (1995) Mikrobielle und enzymatische Synthese von Biotensiden auf der Basis nachwachsender Rohstoffe. Fat Sci Technol 97: 69–77

    CAS  Google Scholar 

  • Lang S, Brakemeier A, Rau U, Spöckner S & Wagner F (1996a) Oberflächenaktive Sophoroselipide von Candida bombicola. In: Hefe und Hefeprodukte, Tagungsband, Hrsg. Versuchsanstalt der Hefeindustrie e.V. (pp 115–122)

    Google Scholar 

  • Lang S, Brakemeier A, Rau U & Wagner F (1996b) Biotechnological production of interfacial active glycolipids. In: Oils — Fats — Lipids, Proceedings of the 21st Congress of the ISF, The Hague, Vol 1: 53–54, PJ Barnes & Associates, Bridgwater, England

    Google Scholar 

  • Lang S, Brakemeier A, Schlotterbeck A & Wagner F (1996c) Biotechnological synthesis of surface-active glycolipids. Euro Cosmetics 4: 41–45

    Google Scholar 

  • Lang S, Brakemeier A, Seiffert-Störiko A & Wullbrandt D (1997a) Neuartige Sophoroselipide, Verfahren zu deren Herstellung und Verwendung. Deutsches Patent/Anmeldung 197 49 413.7 (Hoechst AG, Frankfurt) Anmeldung: 7.11.1997, Offenlegung: 12. 05. 1999

    Google Scholar 

  • Lang S, Spöckner S, Rasch D, Schlotterbeck A & Rau U (1997b) Biokonversion von Pflanzenölen zu Tensiden. In: Chemienachwachsender Rohstoffe, Tagungsband, Hrsg. Österr. Bundesministerium für Umwelt, Jugend und Familie (pp 107–112), Radinger, Scheibbs

    Google Scholar 

  • Lang S (1999) Production of microbial glycolipids. In: Bucke C (ed) Carbohydrate Biotechnology. In: Walker JM (ed) Methods in Biotechnology, pp. 103–118, Humana Press, Totowa, New Jersey

    Google Scholar 

  • Lang S & Philp J (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74: 59–70

    Article  CAS  Google Scholar 

  • Lang S, Rau U, Rasch D, Spöckner S & Vollbrecht E (1998a) Mikrowelle Gewinnung von oberflächenaktiven Glykolipiden auf der Basis pflanzlicher Öle und Kohlenhydrate. In: Biokonversion nachwachsender Rohstoffe, Tagungsband, in: Schriftenreihe Nachwachsende Rohstoffe, Band 10: 154–163, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V. (Gülzow), LV-Druck, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  • Lang S, Vollbrecht E, Schlotterbeck A, Zellmer D, Park S-H, Boger A & Fischer L (1998b) Bakterielle und enzymatische Konversion nachwachsender Rohstoffe zu Tensiden und Untersuchung ihrer Eigenschaften. In: BML-Forschungsverbundprojekt „Chemische Nutzung heimischer Pflanzenöle 1“, Tagungsband, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V., im Druck

    Google Scholar 

  • Lang S & Fischer L (1999) Microbial and enzymatic production of biosurfactants. I n: Design and selection of performance surfactants (Karsa DR; ed.); in: Annual Surfactants Review (Karsa DR, Bognolo G, Callaghan IC, Harwell JH & Tsushima R; eds.), Vol. 2: 51–103 Sheffield, UK: Sheffield Academic Press

    Google Scholar 

  • Lang S & Wullbrandt, D (1999) Rhamnose lipids — biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51: 22–32

    Article  CAS  Google Scholar 

  • Leclerc C, Lamensans A, Chedid L, Draper JC, Petit JF, Wietzerbin J & Lederer E (1976) Nonspecific immunoprevention of L1210 leukemia by cord factor (6,6′-dimycolate of trehalose) administered in a metabolizable oil. Cancer Immunol Immunother 1: 227–232

    Article  CAS  Google Scholar 

  • Lee KH & Kim JH (1993) Distribution of substrates carbon in sophorose lipid production by Torulopsis bombicola. Biotechnol Lett 15: 263–266

    Article  CAS  Google Scholar 

  • Lehmler C, Steinberg G, Snetselaar KM, Kahmann R & Bölker M (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16: 3464–3473

    Article  CAS  Google Scholar 

  • Leman J (1997) Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol 43: 195–243

    Article  CAS  Google Scholar 

  • Lemieux RU, Thorn JA, Brice C & Haskins RH (1951) Biochemistry of the ustilaginales, II. Isolation and partial characterization of ustilagic acid. Can J Chem 29: 409–414

    Article  CAS  Google Scholar 

  • Lemieux RU (1951) The biochemistry of the ustilaginales, III. The degradation products and proof of the chemical heterogeneity of ustilagic acid. Can J Chem 29: 415–425

    Article  CAS  Google Scholar 

  • Lemieux RU & Giguere J (1951) Biochemistry of the ustilaginales, IV. The configurations of some β-hydroxyacids and the bioreduction of β-ketoacids. Can J Chem 29: 678–690

    Article  CAS  Google Scholar 

  • Lemieux RU & Charanduk R (1951) Biochemistry of the ustilaginales, VI. The acyl groups of ustilagic acid. Can J Chem 29: 759–766

    Article  CAS  Google Scholar 

  • Lemieux RU (1953) Biochemistry of the ustilaginales, VIII. The structures and configurations of the ustilic acids. Can J Chem 31: 396–417

    Article  CAS  Google Scholar 

  • Lemieux RU, Thorn JA & Bauer HF (1953) Biochemistry of the ustilaginales, IX. The β-D-cellobioside units of the ustilagic acid. Can J Chem 31: 1054–1059

    Article  CAS  Google Scholar 

  • Li ZY, Lang S, Wagner F, Witte L & Wray V (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells of Arthrobacter sp. and potential use in tertiary oil recovery. Appl Environ Microbiol 48: 610–617

    CAS  Google Scholar 

  • Lin S-C, Carswell KS, Sharma MM & Georgiou G (1994a) Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl Microbiol Biotechnol 41:281–285

    Article  CAS  Google Scholar 

  • Lin S-C, Minton MA, Sharma MM & Georgiou G (1994b) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60: 31–38

    CAS  Google Scholar 

  • Lin S-C (1996) Biosurfactants: recent advances. J Chem Tech Biotechnol 66: 109–120

    Article  CAS  Google Scholar 

  • Linhardt RJ, Bakhit R, Daniels L, Mayerl F & Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33: 365–368

    Article  CAS  Google Scholar 

  • Liu Z, Jacobson AM & Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61: 145–151

    CAS  Google Scholar 

  • Ljunger G, Adlercreutz P & Mattiasson B (1994) Lipase catalyzed acylation of glucose. Biotechnol Lett 16: 1167–1172

    Article  CAS  Google Scholar 

  • Ljunger G, Adlercreutz P & Mattiasson B (1994) Enzymatic synthesis of octyl-β-gluco-side in octanol at controlled water activity. Enzyme Microb Technol 16: 751–755

    Article  CAS  Google Scholar 

  • Lockhoff O (1991) Glycolipide als Immunmodulatoren — Synthesen und Eigenschaften. Angew Chem 103: 1639–1649

    Article  CAS  Google Scholar 

  • Lottermoser K, Schunck W-H & Asperger O (1996) Cytochromes P450 of the sophorose lipid-producing yeast Candida apicola: Heterogeneity and polymerase chain reaction-mediated cloning of two genes. Yeast 12: 565–575

    Article  CAS  Google Scholar 

  • MacElwee CG, Lee H & Trevors JT (1990) Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1. J Ind Microbiol 5: 25–32

    Article  CAS  Google Scholar 

  • Makkar RS & Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18: 37–42

    Article  CAS  Google Scholar 

  • Makkar RS & Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20: 48–52

    Article  CAS  Google Scholar 

  • Manresa MA, Bastida J, Mercadé ME, Robert M, de Andrés J, Espuny MJ & Guinea J (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Ind Microbiol 8: 133–136

    Article  CAS  Google Scholar 

  • Marek M, Novotna Z, Jary J & Kocikova V (1989) Enzyme preparation of benzyl β-D Glucopyranoside. Biocatalysis 2: 239–243

    Article  CAS  Google Scholar 

  • Margaritis A, Zajic JE & Gerson DF (1979) Production and surface-active properties of microbial surfactants. Biotechnol Bioeng 21: 1151–1162

    Article  CAS  Google Scholar 

  • Marin M, Pedregosa A & Laborda F (1996) Emulsifier production and microscopial study of emulsions and biofilms formed by the hydocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44: 660–667

    Article  CAS  Google Scholar 

  • Markham KR & Campos M (1996) 7- and 8-O-methylherbacetin-3-O-sophorosides from bee pollens and some structure/activity observations. Phytochem 43: 763–767

    Article  CAS  Google Scholar 

  • Martin M, Bosch P, Parra J L, Espuny MJ & Virgili A (1991) Structure and bioconversion of trehalose lipids. Carbohydr Res 220: 93–100

    Article  CAS  Google Scholar 

  • Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M & Tsujisaka Y (1995) Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci Biotech Biochem 59: 1829–1834

    Article  CAS  Google Scholar 

  • Matsufuji M, Nakata K & Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19: 1213–1215

    Article  CAS  Google Scholar 

  • Matsumura Sh, Kinta Y, Sakiyama K & Toshima K (1996) Enzymatic synthesis of alkyl xylobioside and xyloside from xylan and alcohol. Biotechnol Lett 18: 1335–1340

    Article  CAS  Google Scholar 

  • Matsumura Sh, Yao E & Toshima K (1999) One-step preparation of alkyl β-D-glucosa-minide by the transglycosylation of chitosan and alcohol using purified exo-β-D-glucosaminidase. Biotechnol Lett 21: 451–456

    Article  CAS  Google Scholar 

  • Matsumura Sh, Yao E, Sakiyama K & Toshima K (1999) Novel direct preparation of n-Butyl 2-amino-2-deoxy-β-D-glucopyranoside from chitosan and n-butanol using bio-catalyst. Chemistry Lett 1999: 373–374

    Article  Google Scholar 

  • Matsumura D, Nakamura T, Yao E & Toshima K (1999) Biocatalytic one-step synthesis of n-octyl β-D-Xylotrioside and Xylobioside from Xylan and n-Octanol in supercritical dioxide. Chemistry Lett 581–582

    Google Scholar 

  • Matsuyama T, Fujita M & Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28: 125–129

    Article  CAS  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S & Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132: 865–875

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M & Yano I (1987) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53: 1186–1188

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M & Nakagawa Y (1989) Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 61: 243–246

    Article  CAS  Google Scholar 

  • Matsuyama T, Kaneda K, Ishizuka I, Toida T & Yano I (1990) Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol 172:3015–3022

    CAS  Google Scholar 

  • Matsuyama T & Nakagawa Y (1996) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Methods 25: 165–175

    Article  CAS  Google Scholar 

  • McCaffrey WC & Cooper DG (1995) Sophorolipids production by Candida bombicola using self-cycling fermentation. J Ferment Bioeng 79: 145–151

    Article  Google Scholar 

  • McCLure CD & Schiller NL (1992) Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukocyte Biol 51: 97–102

    CAS  Google Scholar 

  • Mercadé ME, Robert M, Espuny MJ, Bosch MP, Manresa MA, Parra JL & Guinea J (1988) New surfactant isolated from Pseudomonas 42A2. J Am Oil Chem Soc 65: 1915–1916

    Article  Google Scholar 

  • Mercadé ME & Manresa MA (1994) The use of agroindustrial by-products for biosurfactant production. J Am Oil Chem Soc 71: 61–64

    Article  Google Scholar 

  • Miyazaki J-I, Miyagawa K-I & Sugiyama Y (1996) Trehalose accumulation by a basidiomycotinous yeast, Filobasidiumfloriforme. J Ferment Bioeng 81:315–319

    Article  CAS  Google Scholar 

  • Morin A, Duchiron F & Monsan PF (1987) Production and recovery of rhamnose-containing polysaccharides from Acinetobacter calcoaceticus. J Biotechnol 6: 293–306

    Article  CAS  Google Scholar 

  • Mueller JG, Resnick SM, Shelton ME & Pritchard PH (1992) Effect of inoculation on the biodegradation of weathered Prudhoe Bay crude oil. J Ind Microbiol 10: 95–102

    Article  Google Scholar 

  • Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, Kurimoto M & Tsujisaka Y (1997) Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch/Stärke 49: 26–30

    Article  CAS  Google Scholar 

  • Mukesh D, Sheth D, Mokashi A, Wagh J, Tilak JM, Banerji AA & Thakkar KR (1993) Lipase catalysed esterification of isosorbide and sorbitol. Biotechnol Lett 15: 1243–1246

    Article  CAS  Google Scholar 

  • Müller-Hurtig R, Matulovic U, Feige I & Wagner F (1987) Comparison of the formation of rhamnolipids with free and immobilized cells of Pseudomonas spec. DSM 2874 with glycerol as C-substrate. In: Neijssel OM, van der Meer RR & Luyben KCAM (eds) Proc. 4th European Congress on Biotechnology, Vol 2: 257–260, Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Müller-Hurtig R, Wagner F, Blaszczyk R & Kosaric N (1993) Biosurfactants for environmental control. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 251–268, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Mulligan CN, Cooper DG & Neufeld RJ (1984) Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 62: 311–314

    CAS  Google Scholar 

  • Mulligan CN, Chow TY-K & Gibbs BF (1989a) Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl Microbiol Biotechnol 31: 486–489

    Article  CAS  Google Scholar 

  • Mulligan CN & Gibbs BF (1989b) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55: 3016–3019

    CAS  Google Scholar 

  • Mulligan CN, Mahmourides G & Gibbs BF (1989c) Biosurfactant production by a chloramphenicol tolerant strain of Pseudomonas aeruginosa. J Biotechnol 12: 37–44

    Article  CAS  Google Scholar 

  • Mulligan CN, Mahmourides G & Gibbs BF (1989d) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 12: 199–210

    Article  CAS  Google Scholar 

  • Münstermann B, Poremba K, Lang S & Wagner F (1992) Studies on environmental compatibility: influence of (bio)surfactants on marine microbial and enzymatic systems. In: Soil decontamination using biological processes, Preprints, DECHEMA, VAAM (pp 414–420), Schön & Wetzel GmbH, Frankfurt am Main

    Google Scholar 

  • Murakami N, Imamura H, Sakakibara J & Yamada N (1990) Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem Pharm Bull 38: 3497–3499

    Article  CAS  Google Scholar 

  • Murakami N, Morimoto T, Imamura H, Ueda T, Nagai S, Sakakibara J & Yamada N (1991) Studies on glycolipids. III. Glyceroglycolipids from an axenically cultured cyanobacterium, Phormidium tenue. Chem Pharm Bull 39: 2277–2281

    Article  CAS  Google Scholar 

  • Muriel JM, Bruque JM, Olías JM & Jiménez-Sánchez (1996) Production of biosurfactants by Cladosporium resinae. Biotechnol Lett 18: 235–240

    Article  CAS  Google Scholar 

  • Mutua LN & Akoh CC (1993) Synthesis of alkyl glycoside fatty acid esters in nonaqueous media by Candida sp. lipase. J Am Oil Chem Soc 70: 43–46

    Article  CAS  Google Scholar 

  • Nakagawa Y & Matsuyama T (1993) Chromatographic determination of optical configuration of 3-hydroxy fatty acids composing microbial surfactants. FEMS Microbiol Lett 108:99–102

    Article  CAS  Google Scholar 

  • Nakagawa Y, Kishida K, Kodani Y & Matsuyama T (1997) Optical configuration analysis of hydroxy fatty acids in bacterial lipids by chiral column high-performance liquid chromatography. Microbiol Immunol 41: 27–32

    CAS  Google Scholar 

  • Nakayama S, Takahashi S, Hirai M & Shoda M (1997) Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Microbiol Biotechnol 48: 80–82

    Article  CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ & Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61: 3240–3244

    CAS  Google Scholar 

  • Neu TR, Härtner T & Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol 32: 518–520

    CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151–166

    CAS  Google Scholar 

  • Nickel D, Rybinski W v, Kutschmann E-M, Stubenrauch C & Findenegg GH (1996) The importance of the emulsifying and dispersing capacity of alkyl polyglycosides for applications in detergent and cleaning agents. Fett/Lipid 98: 363–369

    Article  CAS  Google Scholar 

  • Nickel D, Förster T & Rybinski W v (1997) Physicochemical properties of alkyl polyglycosides. In: Hill K, Rybinski W v & Stoll G (eds) Alkyl Polyglycosides (pp 39–69), VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Nielsen T H, Christophersen C, Anthoni U & Soerensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR 54. J Appl Microbiol 86: 80–90

    Article  Google Scholar 

  • Niepel T, Meyer H, Wray V & Abraham W-R (1997) A new type of glycolipid, l-[α-manno-pyranosyl-(1α-3)-(6-O-acyl-α-mannopyranosyl)]-3-O-acylglycerol, from Arthrobacter atrocyaneus. Tetrahedron 53: 3593–3602

    Article  CAS  Google Scholar 

  • Oberbremer A & Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl Microbiol Biotechnol 31: 582–586

    Article  CAS  Google Scholar 

  • Oberbremer A, Müller-Hurtig R & Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32: 485–489

    Article  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A & Reiser J (1994a) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176: 2044–2054

    CAS  Google Scholar 

  • Ochsner UA, Fiechter A & Reiser J (1994b) Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rlhAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269: 19787–19795

    CAS  Google Scholar 

  • Ochsner UA & Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci 92: 6424–6428

    Article  CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A & Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipd biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    CAS  Google Scholar 

  • Ochsner UA, Hembach T & Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Fiechter A (ed) Advances in biochemical engineering biotechnology, Vol 53: 89–118, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Oguntimein G, Erdmann H & Schmid RD (1993) Lipase catalysed synthesis of sugar ester in organic solvents. Biotechnol Lett 15: 175–180

    Article  CAS  Google Scholar 

  • Ohno A, Ano T & Shoda M (1992) Production of a lipopeptide antibiotic surfactin with recombinant Bacillus subtilis. Biotechnol Lett 14: 1165–1168

    Article  CAS  Google Scholar 

  • Ohno A, Ano T & Shoda M (1995) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80: 517–519

    Article  CAS  Google Scholar 

  • Ohno A, Ano T & Shoda M (1996) Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochem 31: 801–806

    Article  CAS  Google Scholar 

  • Ohtsubo Y, Furukawa M, Imagawa T, Sugimoto N, Ikutoh M, Nakatsugi S, Katoh Y, Shinka S & Dohi Y (1991) Growth inhibition of tumour cells by a liposome-encapsulated, mycolic acid-containing glycolipid, trehalose 2,3,6′-trimycolate. Immunology 74: 497–503

    CAS  Google Scholar 

  • Ortalo-Magné A, Lemassu A, Lanéelle M-A, Bardou F, Silve G, Gounon P, Marchai G & Daffé M (1996) Identification of surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178: 456–461

    Google Scholar 

  • Osman M, Ishigami Y, Someya J & Jensen HB (1996) The bioconversion of ethanol to biosurfactants and dye by a novel coproduction technique. J Am Oil Chem Soc 73: 851–856

    Article  CAS  Google Scholar 

  • Otto RT, Bornscheuer UT, Syldatk C & Schmid RD (1998a) Lipase-catalyzed synthesis of arylaliphatic esters of β-D(+)-glucose, n-alkyl- and arylglucosides and characterization of their surfactant properties. J Biotechnol 64: 231–237

    Article  CAS  Google Scholar 

  • Otto RT, Bornscheuer UT, Scheib H, Pleiss J, Syldatk Ch & Schmid RD (1998b) Lipasecatalyzed esterification of unusual substrates: Synthesis of glucuronic acid and ascorbic acid (vitamin C) esters. Biotechnol Lett 20: 1091–1094

    Article  CAS  Google Scholar 

  • Otto RT, Bornscheuer UT, Syldatk Ch & Schmid RD (1998c) Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction. Biotechnol Lett 20:, 437–440

    Article  CAS  Google Scholar 

  • Otto RT, Scheib H, Bornscheuer UT, Syldatk C & Schmid RD (2000) Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. J Mol Catal B: Enzymatic 8: 201–211

    Article  CAS  Google Scholar 

  • Panza L, Luisetti M, Crociati E & Riva S (1993) Selective acylation of 4,6–O-benzylidene glyco-pyranosides by enzymatic catalysis. J Carbohydr Chem 12: 125–130

    Article  CAS  Google Scholar 

  • Parra JL, Guinea J, Manresa MA, Robert M, Mercadé ME, Comelles F & Bosch MP (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66: 141–145

    Article  CAS  Google Scholar 

  • Parra JL, Pastor J, Comelles F, Manresa MA & Bosch MP (1990) Studies of biosurfactants obtained from olive oil. Tenside Surf Det 27: 302–306

    CAS  Google Scholar 

  • Passeri A (1991) Marine Biotenside: Untersuchungen zur Strukturaufklärung eines Trehaloselipidtetraesters und zur Biosynthese eines Glucoselipids. Dissertation TU Braunschweig

    Google Scholar 

  • Passeri A, Lang S, Wagner F & Wray V (1991a) Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK1. Z Naturforsch 46 c: 204–209

    Google Scholar 

  • Passeri A, Schmidt M, Lang S, Wagner F, Wray V & Gunkel W (1991b) Formation of glycolipids by n-alkanes utilizing marine bacteria. Kieler Meeresforsch, Sonderheft 8: 331–334

    Google Scholar 

  • Passeri A, Schmidt M, Haffner T, Wray V, Lang S & Wagner F (1992) Marine biosurfactants, IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol 37: 281–286

    Article  CAS  Google Scholar 

  • Patel RM & Desai AJ (1997a) Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett Appl Microbiol 25: 91–94

    Article  CAS  Google Scholar 

  • Patel RM & Desai AJ (1997b) Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J Basic Microbiol 37: 281–286

    Article  CAS  Google Scholar 

  • Persson A, Österberg E & Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotechnol 29: 1–4

    Article  CAS  Google Scholar 

  • Peypoux F, Guinand M, Michel G, Delcambe L, Das BC & Lederer E (1978) Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochem 17: 3992–3996

    Article  CAS  Google Scholar 

  • Peypoux F & Michel G (1992) Controlled biosynthesis of Val7- and Leu7-surfactins. Appl Microbiol Biotechnol 36: 515–517

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin J M & Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51: 553–563

    Article  CAS  Google Scholar 

  • Phale PS, Savithri HS, Rao NA & Vaidyanathan CS (1995) Production of biosurfactant “Biosur-Pm” by Pseudomonas maltophila CSV89: characterization and role in hydrocarbon uptake. Arch Microbiol 163: 424–431

    CAS  Google Scholar 

  • Plou FJ, Cruces MA, Bernabe M, Martin-Lomas M, Parra JL & Ballesteros A (1995) Enzymatic synthesis of partially acylated sucroses. Annals New York Academy of Sciences 750: 332–337

    Article  CAS  Google Scholar 

  • Plou FJ, Cruces MA, Pastor E, Ferrer M, Bernabe M & Ballesterose A (1999) Acylation of sucrose with vinyl esters using immobilized hydrolases: demonstration that chemical catalysis may interfere with enzymatic catalysis. Biotechnol Lett 21: 635–639 Polat T, Bazin HG & Linhardt RJ (1997) Enzyme catalyzed regioselective synthesis of sucrose fatty acid surfactants. J Carbohydr Chem 16: 1319–1325

    Google Scholar 

  • Poremba K, Gunkel W, Lang S & Wagner F (1989) Mikrobieller Ölabbau im Meer. Biologie in unserer Zeit 19: 145–148

    Article  Google Scholar 

  • Poremba K (1990) Wirkung von Biotensiden auf marine Mikroorganismen. Dissertation TU Braunschweig

    Google Scholar 

  • Poremba K, Gunkel W, Lang S & Wagner F (1991a) Microbiotests with marine organisms for studying the toxic potential of biosurfactants and synthetic surfactants. Kieler Meeresforsch, Sonderheft 8: 327–330

    Google Scholar 

  • Poremba K, Gunkel W, Lang S & Wagner F (1991b) Marine biosurfactants, III. Toxicity testing with marine microorganisms. Z Naturforsch 46 c: 210–216

    CAS  Google Scholar 

  • Poremba K, Gunkel W, Lang S & Wagner F (1991c) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6: 157–163

    Article  CAS  Google Scholar 

  • Portmann M-O & Birch G (1995) Sweet taste and solution properties of α, α-trehalose. J Sci Food Agric 69: 275–281

    Article  CAS  Google Scholar 

  • Powalla M, Lang S & Wray V (1989) Penta- and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl Microbiol Biotechnol 31: 473–479

    Article  CAS  Google Scholar 

  • Powalla M (1990) Mikrobielle Bildung und Charakterisierung grenzflächenaktiver Penta-und Disaccharidlipide aus Nocardia corynebacteroides. Dissertation TU Braunschweig

    Google Scholar 

  • Providenti MA, Flemming CA, Lee H & Trevors JT (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol Ecol 17: 15–26

    Article  CAS  Google Scholar 

  • Pruthi V & Cameotra SS (1997a) Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens. World J Microbiol Biotechnol 13: 133–135

    Article  CAS  Google Scholar 

  • Pruthi V & Cameotra SS (1997b) Short communication: Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae — an antarctic strain. World J Microbiol Biotechnol 13: 137–139

    Article  CAS  Google Scholar 

  • Pruthi V & Cameotra SS (1997c) Rapid identification of biosurfactant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol Tech 11: 671–674

    Article  CAS  Google Scholar 

  • Puzo G, Tissié G, Aurelle H, Lacave C & Promé J-C (1979) Occurence of 3-oxo-acyl groups in the 6,6′-diesters of α-D-trehalose. Eur J Biochem 98: 99–105

    Article  CAS  Google Scholar 

  • Quémard A, Lanéelle M-A, Marrakchi H, Promé D, Dubnau E & Daffé M (1997) Structure of a hydroxymycolic acid potentially involved in the synthesis of oxygenated mycolic acids of the Mycobacterium tuberculosis complex. Eur J Biochem 250: 758–763

    Article  Google Scholar 

  • Raiders RA, Knapp RM & Mclnerney MJ (1989) Microbial selective plugging and enhanced oil recovery. J Ind Microbiol 4: 215–230

    Article  CAS  Google Scholar 

  • Ramana KV & Karanth NG (1989a) Production of biosurfactants by the resting cells of Pseudomonas aeruginosa CFTR-6. Biotechnol Lett 11: 437–442 Ramana KV & Karanth NG (1989b) Factors affecting biosurfactants production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45: 249–257

    Article  CAS  Google Scholar 

  • Ramsay BA, Cooper DG, Margaritis A & Zajic J E (1983) Rhodochrous bacteria: biosurfactant production and demulsifying ability. In: Zajic J E, Cooper D G, Jack T R & Kosaric N (eds) Microbial enhanced oil recovery (pp 61–65), PennWell Books, Tulsa, Oklahoma

    Google Scholar 

  • Ramsay B, McCarthy J, Guerra-Santos L, Kappeli O, Fiechter A & Margaritis A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34: 1209–1212

    Article  CAS  Google Scholar 

  • Rapp P, Bock H, Wray V & Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503

    CAS  Google Scholar 

  • Ratledge C (1997) Microbial lipids. In: Rehm HJ, Reed G, Pühler A & Stadler P (eds) Biotechnology, Vol 7: 133–197, VCH Weinheim

    Chapter  Google Scholar 

  • Rau U, Carette A, Manzke C, Fiehler K, Schwartze J & Wagner F (1995) Produktion und Aufarbeitung von Glykolipiden. In: Verfahren und Verfahrensschritte zur biotechnischen Produktion von Wertstoffen, DECHEMA-GVC-Tagungsband, Irsee, Vortrag 8, 4 S.

    Google Scholar 

  • Rau U, Manzke C & Wagner F (1996) Influence of substrate supply on the production of sophorose lipids by Candida bombicola ATCC 22214. Biotechnol Lett 18: 149–154

    Article  CAS  Google Scholar 

  • Rau U, Spöckner S, Fiehler K & Lang S (1997) Mikrobielle Tenside aus Pflanzenölen. In: Nachwachsende Rohstoffe — Perspektiven für die Chemie, Tagungsband, (pp 218–222), Hrsg. Deutsches Bundesministerium für Ernährung, Landwirtschaft und Forsten, Köllen Druck, Bonn

    Google Scholar 

  • Rau U, Fiehler K, Rasch D, Spöckner S & Lang S (1998) Produktion und Charakterisierung von eukaryotischen Glykolipiden. In: BML-Forschungsverbundprojekt „Chemische Nutzung heimischer Pflanzenöle 1“, Tagungsband, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V., im Druck

    Google Scholar 

  • Rau U, Hammen S, Heckmann R, Wray V & Lang S (2001) Sophorolipids: a source for novel compounds. Ind Crops Prod 13: 85–92

    Article  CAS  Google Scholar 

  • Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shyrock T, Hall R, McDonald-Gibson W, Lund V & Taylor G (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72: 2271–2277

    CAS  Google Scholar 

  • Reed RW & Holder MA (1953) The antibacterial spectrum of ustilagic acid. Can J Med Sci 31: 505–511

    CAS  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O & Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51: 985–989

    CAS  Google Scholar 

  • Reiser J, Koch AK, Ochsner UA & Fiechter A (1993) Genetics of surface-active compounds. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 231–249, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R & Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045: 189–193

    CAS  Google Scholar 

  • Rich JO, Bedell BA & Dordick JS (1995) Controlling enzyme-catalyzed regioselectivity in sugar ester synthesis. Biotechnol Bioeng 45: 426–434

    Article  CAS  Google Scholar 

  • Rilke O, Baum A, Weiss J, Hommel R & Kleber H-P (1992) Kinetics of enzymatic lysis, formation and regeneration of protoplasts of Candida (Torulopsis) apícola. World J Microbiol Biotechnol 8: 14–20

    Article  CAS  Google Scholar 

  • Ristau E (1983) Mikrobielle Produktion von grenzflächenaktiven Trehaloselipiden aus n-Alkanen; Strukturaufklärung eines anionischen Trehalosetetraesters. Dissertation TU Braunschweig

    Google Scholar 

  • Ristau E & Wagner F (1983) Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett 5: 95–100

    Article  CAS  Google Scholar 

  • Robert M, Mercadé ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA & Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11: 871–874

    Article  CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C & Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl Environ Microbiol 37: 402–408

    CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S & Ron EZ (1988a) Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54: 317–322

    CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R & Ron EZ (1988b) Purification and properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54: 323–326

    CAS  Google Scholar 

  • Rosenberg E (1993) Microbial diversity as a source of useful biopolymers. J Ind Microbiol 11: 131–137

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52: 154–162

    Article  CAS  Google Scholar 

  • Rouse JD, Sabatini DA, Suflita JM & Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24: 325–370

    Article  CAS  Google Scholar 

  • Roxburgh JM, Spencer JFT & Saltans HR (1954) Submerged culture fermentation, Factors affecting the production of ustilagic acid by Ustilago zeae. Agricultural and Food Chemistry 2: 1121–1124

    Article  CAS  Google Scholar 

  • Rybinski von W. & Hill K (1998) Alkylpolyglycoside — Eigenschaften und Anwendungen einer neuen Tensidklasse. Angew Chem 110: 1394–1412

    Article  Google Scholar 

  • Saadat S & Bailou C (1983) Pyruvylated glycolipids from Mycobacterium smegmatis. Structures of two oligosaccharide components. J Biol Chem 258: 1813–1818

    CAS  Google Scholar 

  • Saito N, Lu TS, Yokoi M, Shigihara A & Honda T (1993) An acylated cyanidin 3-sophoroside-5-glucoside in the violet-blue flowers of Pharbitis nil. Phytochem 33: 245–247

    Article  CAS  Google Scholar 

  • Sarney DB, Kappeler H, Fregapane G & Vulfson EN (1994) Chemo-enzymatic synthesis of di-saccharide fatty acid esters. J Am Oil Chem Soc 71: 711–714

    Article  CAS  Google Scholar 

  • Sarney DB, Barnard MJ, Virto M & Vulfson EN (1997) Enzymatic synthesis of sorbitan esters using a low-boiling-point azeotrope as a reaction solvent. John Wiley & Sons, Inc., 351–356

    Google Scholar 

  • Scheckermann C, Schlotterbeck A, Schmidt M, Wray V & Lang S (1995) Enzymatic monoacylation of fructose by two procedures. Enzyme Microb Technol 17: 157–162

    Article  CAS  Google Scholar 

  • Scheibenbogen K, Zytner RG, Lee H & Trevors JT (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Tech Biotechnol 59: 53–59

    Article  CAS  Google Scholar 

  • Schenk T, Schuphan I & Schmidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693: 7–13

    Article  CAS  Google Scholar 

  • Schlotterbeck A, Lang S, Wray V & Wagner F (1993) Lipase-catalyzed monoacylation of fructose. Biotechnol Lett 15: 61–64

    Article  CAS  Google Scholar 

  • Schmeichel A (1989) Bildung und Charakterisierung von Zuckercorynomycolaten mit Corynebacterium spezies M9b. Dissertation TU Braunschweig

    Google Scholar 

  • Schmeichel A, Lang S & Wagner F (1989) Transesterification of carbohydrate-corynomycolates by Corynebacterium sp. In: DECHEMA Biotechnology Conferences 3 (pp 267–270), VCH, Weinheim

    Google Scholar 

  • Schmidt M, Lang S & Wagner F (1988) Influence of Mn2+-ions on growth and surfactin formation of Bacillus subtilis. In: DECHEMA Biotechnology Conferences Vol 1: 333–337, VCH, Weinheim

    Google Scholar 

  • Schmidt M, Passeri A, Schulz D, Lang S, Wagner F, Poremba K, Gunkel W & Wray V (1989) Formation of biosurfactants by oil degradating marine microorgansims. In: DECHEMA Biotechnology Conferences Vol 3: 811–814, VCH, Weinheim

    Google Scholar 

  • Schmidt M (1990) Bildung und Strukturermittlung eines neuen Glukoselipides und Charakterisierung des Produzenten als marines Bakterium der Gattung Alcaligenes sp. MM1. Dissertation TU Braunschweig

    Google Scholar 

  • Schöberl P (1993) Biologischer Tensid-Abbau. In: Kosswig K & Stache H (eds) Die Tenside (pp 409–464), Hanser, München, Wien

    Google Scholar 

  • Schöberl P & Scholz N (1993) Aquatische Toxizität von Tensiden. In: Kosswig K & Stache H (eds) Die Tenside (pp 465–482), Hanser, München, Wien

    Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V & Gunkel W (1991a) Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z Naturforsch 46 c: 197–203

    Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V, Poremba K & Gunkel W (1991b) Screening for biosurfactants among crude oil degrading marine microorganisms. Kieler Meeresforsch, Sonderheft 8: 322–326

    Google Scholar 

  • Schulz D (1992) Strukturaufklärung und Charakterisierung von Biotensiden des marinen Bakteriums Arthrobacter sp. SI1 und der marinen Hefe NS/JR 1. Dissertation TU Braunschweig

    Google Scholar 

  • Seay T & Lueking DR (1986) Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides. Biochemistry 25: 2480–2485

    Article  CAS  Google Scholar 

  • Serrat JM, Caminal G, Gòdia F, Solà C & López-Santin J (1995) Production and purification of rhamnose from microbial polysaccharide produced by Klebsiella sp. I-714. Bioprocess Engineering 12: 287–29

    Article  CAS  Google Scholar 

  • Shabtai Y & Wang DIC (1990) Production of emulsan in a fermentation process using soybean oil (SBO) in a carbon-nitrogen coordinated feed. Biotechnol Bioeng 35: 753–765

    Article  CAS  Google Scholar 

  • Shennan JL & Levi JD (1987) In situ microbial enhanced oil recovery. In: Kosaric N, Cairns WL & Gray NCC (eds) Biosurfactants and Biotechnology. In: Surfactants Science Series, Vol 25: 163–181, Dekker, New York, Basel

    Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW & Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40: 207–217

    Article  CAS  Google Scholar 

  • Sheppard JD & Mulligan CN (1987) The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl Microbiol Biotechnol 27: 110–116

    Article  CAS  Google Scholar 

  • Sheppard JD, Jumarie C, Cooper DG & Laprade R (1991) Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta 1064: 13–23

    Article  CAS  Google Scholar 

  • Shi YP, Li JY & Li ZY (1997) A sophorose lipid from microbial conversion of oleyl alcohol. Chin Chem Lett 8: 417–418

    CAS  Google Scholar 

  • Shibatani Sh, Kitagawa M, Tokiwa Y (1997) Enzymatic synthesis of vinyl sugar ester in dimethylformamide. Biotechnol Lett 19: 511–514

    CAS  Google Scholar 

  • Shinoyama H, Kamiyama Y, Yasui T (1988) Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of aspergillus niger β-xylosidase. Agric Biol Chem 52: 2197–2212

    Article  CAS  Google Scholar 

  • Shinoyama H, Gama Y, Nakahara H, Ishigami Y & Yasui T (1991) Surface active properties of heptyl β-D-xyloside synthesized by utilizing the transxylosyl activity of β-xylosidase. Bull Chem Soc Jpn 64: 291–292

    Article  CAS  Google Scholar 

  • Shinoyama H, Takei K, Ando A, Fujii T, Sasaki M, Doi Y & Yasui T (1991) Enzymatic synthesis of useful alkyl β-glucosides. Agric Biol Chem 55: 1679–1681

    Article  CAS  Google Scholar 

  • Shirahashi H, Murakami N, Watanabe M, Nagatsu A, Sakakibara J, Tokuda H, Nishino H & Iwashima A (1993) Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem Pharm Bull 41: 1664–1666

    Article  CAS  Google Scholar 

  • Shoham Y & Rosenberg E (1983) Enzymatic depolymerisation of emulsan. J Bacteriol 156: 161–167

    CAS  Google Scholar 

  • Shoham Y, Rosenberg M & Rosenberg E (1983) Bacterial degradation of emulsan. Appl Environ Microbiol 46: 573–579

    CAS  Google Scholar 

  • Shulga AN, Karpenko EV, Eliseev SA & Turovsky AA (1993) The method for determination of anionogenic bacterial surface-active peptidolipids. Microbiol J 55: 85–88

    CAS  Google Scholar 

  • Siegmund I & Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Techn 5: 265–268

    Article  CAS  Google Scholar 

  • Siemann M & Wagner F (1993) Prospects and limits for the production of biosurfactants using immobilized biocatalysts. In: Kosaric N (ed) Biosurfactants. In: Surfactant Science Series Vol 48: 99–133, Dekker, New York, Basel, Hong Kong

    Google Scholar 

  • Sim L, Ward OP & Li Z-Y (1997) Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19: 232–238

    Article  CAS  Google Scholar 

  • Singer VME & Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36: 741–745

    Article  CAS  Google Scholar 

  • Singer VME, Finnerty WR & Tunelid A (1990) Physical and chemical properties of a biosurfactant synthesized by Rhodococcus species H13-A. Can J Microbiol 36: 746–750

    Article  CAS  Google Scholar 

  • Singh M & Desai JD (1988) Hydrocarbon emulsifying activity of bacterial strains: potential of Arthrobacter paraffineus. Curr Sci 57: 1307–1308

    CAS  Google Scholar 

  • Smith S, Mikkelsen J, Witkowski A & Libertini LJ (1986) Thioesterase II: structure-function relationships. Biochem Soc Trans 14: 583–584

    CAS  Google Scholar 

  • Soeder CJ, Papaderos A, Kleespies M, Kneifel H, Haegel F-H & Webb L (1996) Influence of phytogenic surfactants (quilla saponin and soya lecithin) on bio-elimination of phenanthrene and fluoranthene by three bacteria. Appl Microbiol Biotechnol 44: 654–659

    Article  CAS  Google Scholar 

  • Soedjak HS & Spradlin JE (1994) Enzymatic transesterification of sugars in anhydrous pyridine. Biocatalysis 11: 241–248

    Article  CAS  Google Scholar 

  • Sosa-Morales ME, Guevara-Lara F, Martínez-Juárez VM & Paredes-López O (1997) Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Appl Microbiol Biotechnol 48: 726–729

    Article  CAS  Google Scholar 

  • Spellig T, Bottin A & Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252: 503–509

    CAS  Google Scholar 

  • Spencer JFT, Gorin PAJ & Tulloch AP (1970) Torulopsis bombicola sp. n. Antonie van Leeuwenhoek 36: 129–133

    Article  CAS  Google Scholar 

  • Spencer JFT, Spencer DM & Tulloch AP (1979) Extracellular glycolipids of yeasts. In: Rose AH (ed) Economic Microbiology, Vol 3: 523–540, Academic Press, London

    Google Scholar 

  • Spöckner S (1994) Funktionalisierung eines mikrobiellen Sophoroselipides. Diplomarbeit TU Braunschweig

    Google Scholar 

  • Spöckner S & Lang S (1998) Glycolipide von Ustilago maydis auf der Basis heimischer Pflanzenöle. In: Biokonversion nachwachsender Rohstoffe, Tagungsband, in: Schriftenreihe Nachwachsende Rohstoffe, Band 10: 225–230, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V. (Gülzow), LV-Druck, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  • Spöckner S, Wray V, Nimtz M & Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51: 33–39

    Article  Google Scholar 

  • Stamatis H, Sereti V & Kolisis FN (1998) Studies on the enzymatic synthesis of sugar esters in organic medium and supercritical carbon dioxide. Chem Biochem Eng 12: 151–156

    CAS  Google Scholar 

  • Stanghellini ME & Miller RM (1997) Biosurfactants — Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease 81: 4–12

    Article  CAS  Google Scholar 

  • Stanislavsky ES & Lam JS (1997) Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol Rev 21: 243–277

    Article  CAS  Google Scholar 

  • Steber J, Guhl W, Stelter N & Schröder FR (1997) Ecological evaluation of alkyl polyglycosides. In: Hill K, Rybinski W v & Stoll G (eds) Alkyl Polyglycosides (pp 177–190), VCH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Stüwer O, Hommel R, Haferburg D & Kleber H-P (1987) Production of crystalline surface-active glycolipids by a strain of Torulopsis apicola. J Biotechnol 6: 259–269

    Article  Google Scholar 

  • Suzuki T, Tanaka K, Matsubara I & Kinoshita S (1969) Trehalose lipid and α-branched-β-hydroxy fatty acid formed by bacteria grown on n-alkanes. Agr Biol Chem 33: 1619–1627

    Article  CAS  Google Scholar 

  • Suzuki T & Itoh S (1972) Verfahren zur biotechnischen Herstellung rhamnosehaltiger Glycolipide. Deutsches Patent 2 150 375 (Kyowa Hakko Kogyo Co. Ltd, Tokio) Anmeldung: 14. 10. 1970, Offenlegung: 20. 04. 1972

    Google Scholar 

  • Suzuki T, Tanaka H & Itoh S (1974) Sucrose lipids of Arthrobacteria, Corynebacteria and Nocardia grown on sucrose. Agr Biol Chem 38: 557–563

    Article  CAS  Google Scholar 

  • Syldatk C, Matulovic U & Wagner F (1984) Biotenside — Neue Verfahren zur mikrobiellen Herstellung grenzflächenaktiver, anionischer Glykolipide. Biotech-Forum 1: 58–66

    Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V & Witte L (1985a) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch 40 c: 51–60

    Google Scholar 

  • Syldatk C, Lang S, Matulovic U & Wagner F (1985b) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch 40 c: 61–67

    Google Scholar 

  • Syldatk C & Wagner F (1987) Production of biosurfactants. In: Kosaric N, Cairns WL & Gray NCC (eds) Biosurfactants and Biotechnology. In: Surfactants Science Series, Vol 25: 89–120, Dekker, New York, Basel

    Google Scholar 

  • Syldatk C, Stoffregen A, Wuttke F & Tacke R (1988) Enantioselective reduction of acetyldimethylphenylsilane: a screening with thirty strains of microorganisms. Biotechnol Lett 10: 731–736

    Article  CAS  Google Scholar 

  • Tahara Y, Yamada Y & Kondo K (1975) Occurrence of phosphatidylcholine in Gluconobacter cerinus. Agr Biol Chem 39: 2261–2262

    Article  CAS  Google Scholar 

  • Tahara Y, Kameda M, Yamada Y & Kondo K (1976a) A new lipid; the ornithine and taurine-containing “Cerilipin”. Agr Biol Chem 40: 243–244

    Article  CAS  Google Scholar 

  • Tahara Y, Yamada Y & Kondo K (1976b) A new lysine-containing lipid isolated from Agrobacterium tumefaciens. Agr Biol Chem 40: 1449–1450

    Article  CAS  Google Scholar 

  • Takaichi S, Tamura Y, Azegami K, Yamamoto Y & Ishidsu J-I (1997) Carotenoid glucoside mycolic acid esters from the nocardioform actinomycetes, Rhodococcus rhodochrous. Phytochem 45: 505–508

    Article  CAS  Google Scholar 

  • Takayama K & Armstrong EL (1976) Isolation, characterization, and function of 6-mycolyl-6′-acetyl-trehalose in the H37Ra strain of Mycobacterium tuberculosis. Biochem 15:441–447

    Article  CAS  Google Scholar 

  • Takeshima H, Kitao C & Omura S (1977) Inhibition of the biosynthesis of leucomycin by cerulenin. J Biochem 81: 1127–1132

    CAS  Google Scholar 

  • Tan H, Champion JT, Artiola JF, Brusseau ML & Miller RM (1994) Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci Technol 28: 2402–2406

    Article  CAS  Google Scholar 

  • Tanaka K & Suzuki T (1973a) Verfahren zur Herstellung von Fettsäureestern von Zuckern. Deutsches Patent 1 905 472 (Kyowa Hakko Kogyo Co. Ltd, Tokio) Anmeldung: 1. 02. 1968, Offenlegung: 1.10. 1970

    Google Scholar 

  • Tanaka K & Suzuki T (1973b) Verfahren zur Herstellung eines C20H40O2-Fettsäuretrehaloseesters. Deutsches Patent 1 965 972 (Kyowa Hakko Kogyo Co. Ltd, Tokio) Anmeldung: 1. 02. 1968, Offenlegung: 17. 12. 1970

    Google Scholar 

  • Tanaka K & Suzuki T (1973 c) Verfahren zur Herstellung des Trehaloseesters der einbasischen Fettsäure C32H64O2 Deutsches Patent 1 965 975 (Kyowa Hakko Kogyo Co. Ltd, Tokio) Anmeldung: 1. 02. 1968, Offenlegung: 21. 01. 1971

    Google Scholar 

  • Therisod M & Klibanov AM (1986) Facile enzymatic preparation of monoacylated sugars in pyridine. J Am Chem Soc 108: 5638–5640

    Article  CAS  Google Scholar 

  • Thibault SL, Anderson M & Frankenberger Jr WT (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62: 283–287

    CAS  Google Scholar 

  • Thijsse GJE (1964) Fatty acid accumulation by acrylate inhibition in an alkane oxidizing Pseudomonas. Biochim Biophys Acta 84: 195–197

    CAS  Google Scholar 

  • Thijsse GJE (1964) Fatty acid accumulation by acry late inhibition in an alkane oxidizing Pseudomonas. Biochim Biophys Acta 84: 195–197

    CAS  Google Scholar 

  • Thorn JA & Haskins RH (1951) Biochemistry of the ustilaginales, V. Factors affecting the formation of ustilagic acid by Ustilago zeae. Can J Botany 29: 403–410

    Article  CAS  Google Scholar 

  • Tomiyasu I, Yoshinaga J, Kurano F, Kato Y, Kaneda K, Imaizumi S & Yano I (1986) Occurence of a novel glycolipid, trehalose-2,3,6′-trimycolate in a psychrophilic acid-fast bacterium. FEBS Lett 203: 239–242

    Article  CAS  Google Scholar 

  • Trincone A, Nicolaus B, Lama L, Morzillo P, de Rosa M & Gambacorta A (1991) Enzyme-catalyzed synthesis of alkyl β-D-glycosides with crude homogenate of sulfolobus solfataricus. Biotechnol Lett 13: 235–240

    Article  CAS  Google Scholar 

  • Tsitsimpikou C, Xhirogianni K, Markopoulou O & Kolisis FN (1996) Comparison of the ability of β-glucosides from almonds and fusarium oxysporum to produce n-alkyl-β-glucosides in organic solvents. Biotechnol Lett 18: 387–392

    Article  CAS  Google Scholar 

  • Tsuzuki W, Kitamura Y, Suzuki T & Kobayashi Sh (1999) Synthesis of sugar fatty acid esters by modified lipase. John Wiley & Sons, Inc., 267–271

    Google Scholar 

  • Tulloch AP, Spencer JFT & Gorin PAJ (1962) The fermentation of long-chain compounds by Torulopsis magnoliae. I. Structures of the hydroxy fatty acids obtained by the fermentation of fatty acids and hydrocarbons. Can J Chem 40: 1326–1338

    Article  CAS  Google Scholar 

  • Tulloch AP, Hill A & Spencer JFT (1968a) Structure and reactions of lactonic and acidic sophorosides of 17-hydroxyoctadecanoic acid. Can J Chem 46: 3337–3351

    Article  CAS  Google Scholar 

  • Tulloch AP, Spencer JFT & Deinema MH (1968b) A new hydroxy fatty acid sophoroside from Candida bogoriensis. Can J Chem 46: 345–348

    Article  CAS  Google Scholar 

  • Tulloch AP & Spencer JFT (1972) Formation of a long-chain alcohol ester of hydroxy fatty acid sophoroside by fermentation of fatty alcohol by a Torulopsis species. J Org Chem 37: 2868–2870

    Article  CAS  Google Scholar 

  • Uchida Y, Misawa S, Nakahara T & Tabuchi T (1989) Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agr Biol Chem 53: 765–769

    Article  CAS  Google Scholar 

  • Uchida Y, Tsuchiya R, Chino M, Hirano J & Tabuchi T (1989) Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agr Biol Chem 53: 757–763

    Article  CAS  Google Scholar 

  • Upasani VN, Desai SG, Moldoveanu N & Kates M (1994) Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology 140: 159–1966

    Article  Google Scholar 

  • Utaka M, Higashi H & Takeda A (1987) Asymmetric reduction of 3-oxo-octadecanoic acid with fermenting baker’s yeast. An easy synthesis of optically pure (+)-(2R,3R)- corynomycolic acid. J Chem Soc Chem Commun 1987: 1368–1369

    Article  Google Scholar 

  • Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56: 395–411

    CAS  Google Scholar 

  • Van Bernem K-H (1984) Experimentelle Untersuchungen zur Wirkung von Rohöl und Rohöl/Tensid-Gemischen im Ökosystem Wattenmeer. II. Eindringverhalten und Persistenz von Rohölkohlenwasserstoffen in Sedimenten nach experimeteller Kontamination. Senckenbergiana marit 16: 13–30

    Google Scholar 

  • Van Bernem KH (1987b) Feldtestverfahren zum Effekt von Ölen und Tensiden im Watt. UBA-Texte (Umweltbundesamt, GER) 6: 64–74

    Google Scholar 

  • Van der Vegt W, Van der Mei HC, Noordmans J & Busscher HJ (1991) Assessment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Appl Microbiol Biotechnol 35: 766–770

    Article  Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H & Trevors JT (1993 a) Pseudomonas aeruginosaUG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39: 1071–1078

    Article  Google Scholar 

  • Van Dyke MI, Gulley SL, Lee H & Trevors JT (1993b) Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 11: 163–170

    Article  Google Scholar 

  • Vic G & Crout D HG (1995) Synthesis of allyl and benzyl β-D-glucopyranosides and allyl β-D-galactopyranoside from D-glucose or D-galactose and the corresponding alcohol using almond β-D-glucosidase. Carbohydrate Research 279: 315–319

    Article  CAS  Google Scholar 

  • Vollbrecht E, Heckmann R, Wray V, Nimtz M & Lang S (1998) Production and structure elucidation of di- and oligosaccharide lipids (biosurfactants) from Tsukamurellaspec. nov. J Appl Microbiol Biotechnol 50: 530–537

    Article  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Özel M & Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63: 44–49

    CAS  Google Scholar 

  • Volpe JV & Vagelos PR (1973) Saturated fatty acid biosynthesis and its regulation. Annu Rev Biochem 42: 21–60

    Article  CAS  Google Scholar 

  • Vulfson E, Patel R & Law BA (1990) Alkyl-β-Glucoside synthesis in a water-organic two-phase system. Biotechnol Lett 12: 397–402

    Article  CAS  Google Scholar 

  • Vulfson E, Patel R, Beecher JE, Andrews AT & Law BA (1990) Glycosidases in organic solvents: I. Alkyl-β-glucoside synthesis in a water-organic two-phase system. Enzyme Microb Technol 1990 12: 950–954

    Article  Google Scholar 

  • Vulfson EN (1993) Enzymatic synthesis of food ingredients in low-water media. Food Sci Technol 4: 209–215

    Article  CAS  Google Scholar 

  • Von Rybinski W & Hill K (1998) Alkylpolyglycoside — Eigenschaften und Anwendungen einer neuen Tensidklasse. Angew Chem 110: 1394–1412

    Article  Google Scholar 

  • Wagner F, Rapp P, Lindörfer W, Schulz W & Gebetsberger W (1978) Verfahren zum Fluten von Erdöllagerstätten mittels Dispersionen nichtionogener grenzflächenaktiver Stoffe in Wasser. Deutsches Patent 26 46 507 (GBF, Braunschweig; Wintershall AG, Celle) Anmeldung: 15. 10. 1976, Offenlegung: 13.04. 1978

    Google Scholar 

  • Wagner F, Bock H & Kretschmer A (1980) Gewinnung von Tensiden mit n-Alkan-oxidierenden Mikroorganismen. In: Lafferty RM (ed) Fermentation (pp 181–192), Springer, Wien, New York

    Google Scholar 

  • Wagner F, Behrendt U, Bock H, Kretschmer A, Lang S & Syldatk C (1983) Production and chemical characterization of surfactants from Rhodococcus erythropolisand Pseudomonassp. MUB grown on hydrocarbons. In: Zajic JE, Cooper DG, Jack TR & Kosaric N (eds) Microbial enhanced oil recovery (pp 55–60), PennWell Books, Tulsa, Oklahoma

    Google Scholar 

  • Wagner F, Kim J-S, Lang S, Li Z-Y, Marwede G, Matulovic U, Ristau E & Syldatk C (1984) Production of surface active anionic glycolipids by resting and immobilized microbial cells. In: Proc. 3rdEuropean Congress on Biotechnology, Vol I: 3–8, Verlag Chemie, Weinheim

    Google Scholar 

  • Wagner F, Ristau E, Li Z-Y, Lang S, Schulz W, Hofmann H-J, Sewe K-U & Lindörfer W (1987a) Gemische aus Trehaloselipid-2,2′,3,4-tetraestern und Verfahren zu deren Herstellung. Deutsches Patent 32 48 167 C2 (Wintershall AG, Celle) Anmeldung: 27. 12. 1982, Offenlegung: 28. 06. 1984

    Google Scholar 

  • Wagner F, Ristau E, Lang S, Hofmann H-J, Sewe K-U & Lindörfer W (1987b) Verfahren zur Herstellung von Trehaloseestern. Deutsches Patent 34 05 371 C2 (Wintershall AG, Celle) Anmeldung: 15. 02. 1984, Offenlegung: 5. 09. 1985

    Google Scholar 

  • Wagner F & Lang S (1988) Nonionic and anionic biosurfactants: microbial production, structures and physico-chemical properties. In: Proceedings of the 2nd World Surfactants Congress (pp71–80), Paris

    Google Scholar 

  • Wagner F & Lang S (1993) Enzymatische Reaktionen in der Oleochemie zur Herstellung von Spezial Chemikalien. In: Eggersdorfer M, Warwel S & Wulff G (Hrsg) Nachwachsende Rohstoffe — Perspektiven für die Chemie (pp 109–126), VCH Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  • Wagner F, Müller-Hurtig R, Czeschka K, Haberz A, Häusler A, Lehmann M, Bullido I & Basso B (1995) Einfluß von Starterkulturen und Tensiden auf den Ölabbau im Boden. In: BMBF-Forschungsverbundvorhaben „Verbesserung des mikrobiellen Abbaus und der Lumineszenz- analytik von Erdölprodukten im Boden “, Projekt-Nr. 0310083A

    Google Scholar 

  • Wagner F & Lang S (1996) Microbial and enzymatic synthesis of interfacial active glycolipids. In: Proceedings of the 4th World Surfactants Congress (pp 125–137), Barcelona

    Google Scholar 

  • Wakamatsu Y, Zhao X, Jin Ch, Day N, Shibahara M, Nomura N, Nakahara T, Murata T & Yokoyama K (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC 12 cells through an ERK-related signal cascade. Eur J Biochem 268: 374–383

    Article  CAS  Google Scholar 

  • Waldhoff H, Scherler J & Schmitt M (1998) Analyse von Alkylpolyglycosides. Chemie in Labor und Biotechnik 49: 47–50

    CAS  Google Scholar 

  • Wallace PA & Minnikin DE (1994) Synthesis of 4,6:2′, 3′:4′,6′-tri-O-cyclohexylidene-α,α′-trehalose-2-palmitate: an intermediate for the synthesis of mycobacterial 2,3-di-O-acyl-α,α′-trehalose antigens. Carbohydr Res 263: 43–59

    Article  CAS  Google Scholar 

  • Wallace PA & Minnikin DE (1996) Synthesis and structure of acyl trehaloses from Mycobacteria. In: Tyman JHP (ed) Synthesis in lipid chemistry (pp 119–162), The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Ward OP, Fang J & Li Z (1997) Lipase-catalyzed synthesis of a sugar ester containing arachidonic acid. Enzyme Microb Technol 20: 52–56

    Article  CAS  Google Scholar 

  • Wasserman HH, Keggi JJ & McKeon JE (1961) Serratamolide, a metabolic product of Serratia. J Am Chem Soc 83: 4107–4108

    Article  CAS  Google Scholar 

  • Wasserman HH, Keggi JJ & McKeon JE (1962) The structure of serratamolide. J Am Chem Soc 84: 2978–2982

    Article  CAS  Google Scholar 

  • Watanabe M, Aoyagi Y, Ohta A & Minnikin DE (1997) Structures of phenolic glycolipids from Mycobacterium kansasii. Eur J Biochem 248: 93–98

    Article  CAS  Google Scholar 

  • Weber L, Stach J, Haufe G, Hommel R & Kleber H-P (1990) Elucidation of the structure of an unusual cyclic glycolipid from Torulopsis apícola. Carbohydr Res 206: 13–19

    Article  CAS  Google Scholar 

  • Weber L, Döge C, Haufe G, Hommel R & Kleber H-P (1992) Oxygenation of hexadecane in the biosynthesis of cyclic glycolipids in Torulopsis apícola. Biocatalysis 5: 267–272

    Article  CAS  Google Scholar 

  • Wicke C, Hüners M, Wray V, Nimtz M, Bilitewski U & Lang S (2000) Production and Structure Elucidation of Glycerolipids from a Marine Sponge-Associated Micro-bacteriumSpecies. J Nat Prod 63: 621–626

    Article  CAS  Google Scholar 

  • Wilkinson SG (1972) Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens. Biochim Biophys Acta 270: 1–17

    CAS  Google Scholar 

  • Willumsen PA & Karlson U (1997) Screening of bacteria, isolated from PAH-conta-minated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7: 415–423

    Article  Google Scholar 

  • Wolfe DA, Hameedi MJ, Galt JA, Watabayashi G, Short J, O’Claire C, Rice S, Michel J, Payne JR, Braddock J, Hanna S & Sale D (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28: 561 A-568 A

    Article  Google Scholar 

  • Woudenberg-van Oosterom M, Rantwijk Fv & Sheldon RA (1996) Regioselective Acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarcticalipase. Biotechnol Bioeng 49:328–333

    Article  CAS  Google Scholar 

  • Wullbrandt D (1998) Biotechnische Herstellung von L-Rhamnose. In: Biokonversion nachwachsender Rohstoffe, Tagungsband, in: Schriftenreihe Nachwachsende Rohstoffe, Band 10: 164–172, Hrsg. Fachagentur Nachwachsende Rohstoffe e.V. (Gülzow), LV-Druck, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lünsdorf H & Timmis KN (1998) Alcanivorax borkumensisgen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48: 339–348

    CAS  Google Scholar 

  • Yamaguchi M, Sato A & Yukuyama A (1976) Microbial production of sugar-lipids. Chem Ind 4: 741–742

    Google Scholar 

  • Yan T-R & Liau J-Ch (1998) Synthesis of alkyl β-glucosides from cellobiose with aspergillus nigerβ-glucosidase II. Biotechnol Lett 20: 653–657

    Article  CAS  Google Scholar 

  • Yan Y, Bornscheuer UT, Cao L & Schmid RD (1999) Lipase-catalyzed solid-phase synthesis of sugar fatty acid esters, removal of byproducts by azeotropic distillation. Enzyme Microb Technol 25: 725–728

    Article  CAS  Google Scholar 

  • Yi Qu, Sarney DB, Khan JA & Vulfson EN (1998) A. Novel approach to Biotransformations in aqueous-organic two-phase systems: enzymatic synthesis of alkyl β-[D]-glucosides using microencapsulated β-Glucosidase. John Wiley & Sons, Inc. 385–390

    Google Scholar 

  • Yoshida M, Nakamura N & Horikoshi K (1997) Production of trehalose from starch by maltose Phosphorylase and trehalose Phosphorylase from a strain of Plesiomonas. Starch/Stärke 49: 21–26

    Article  CAS  Google Scholar 

  • Zarevucka M, Vacek M, Wimmer Z & Brunet C (1999) Models for glycosidic juvenogens: enzymatic formation of selected alkyl-β-D-glucopyranosides and alkyl-β-galacto-pyranosides under microwave irradiation. Biotechnol Lett 21: 785–790

    Article  CAS  Google Scholar 

  • Zajic JE, Gignard H & Gerson DF (1977) Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng 19. 1303–1320

    Article  CAS  Google Scholar 

  • Zajic JE & Gerson DF (1978) Microbial extraction of bitumen from Athabasca oil sand. In: Strausz OP & Lown EM (eds) Oil sand and oil shale chemistry (pp 145–161), Verlag Chemie International

    Google Scholar 

  • Zajic JE & Seffens W (1984) Biosurfactants. Critical Rev Biotechnol 1: 87–107

    Article  CAS  Google Scholar 

  • Zajic JE & Mahomedy AY (1984) Biosurfactants: intermediates in the biosynthesis of amphipathic molecules in microbes. In: Atlas RM (ed.) Petroleum microbiology (pp 221–297), MacMillan Publishing Company, New York

    Google Scholar 

  • Zhang Y & Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonasrhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58: 3276–3282

    CAS  Google Scholar 

  • Zhang Y & Miller RM (1994) Effect of Pseudomonasrhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60: 2101–2106

    CAS  Google Scholar 

  • Zhang Y & Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61: 2247–2251

    CAS  Google Scholar 

  • Zhou QH, Klekner V & Kosaric N (1992) Production of sophorose lipids by Torulopsis bombicolafrom safflower oil and glucose. J Am Oil Chem Soc 69: 89–91

    Article  CAS  Google Scholar 

  • Zhou QH & Kosaric N (1993) Effect of lactose and olive oil on intra- and extracellular lipids of Torulopsis bombicola. Biotechnol Lett 15: 477–482

    Article  CAS  Google Scholar 

  • Zhou QH & Kosaric N (1995) Utilization of canola oil and lactose to produce biosurfactant with Candida bombicola. J Am Oil Chem Soc 72: 67–71

    Article  CAS  Google Scholar 

  • Zinjarde S, Chinnathambi S, Lachke AH & Pant A (1997) Isolation of an emuisifier from Yarrowia lipolyticaNCIM 3589 using a modified mini isoelectric focusing unit. Lett Appl Microbiol 24: 117–121

    Article  CAS  Google Scholar 

  • Zosim Z, Gutnick D & Rosenberg E (1983) Uranium binding by emulsan and emulsanosols. Biotechnol Bioeng 25: 1725–1735

    Article  CAS  Google Scholar 

  • Zuckerberg A, Diver A, Peeri Z, Gutnick DL & Rosenberg E (1979) Emuisifier of ArthrobacterRAG-1: chemical and physical properties. Appl Environ Microbiol 37: 414–420

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 B.G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden

About this chapter

Cite this chapter

Lang, S., Trowitzsch-Kienast, W. (2002). Literaturverzeichnis. In: Biotenside. Chemie in der Praxis. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80126-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80126-5_8

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-03615-9

  • Online ISBN: 978-3-322-80126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics